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We investigate high-dimensional nonlinear dynamical systems exhibiting multiple resonances un-
der adiabatic parameter variations. Our motivations come from experimental considerations where
time dependent sweeping of parameters is a practical approach to probing and characterizing the bi-
furcations of the system. The question is whether bifurcations so detected are faithful representation
of the bifurcations intrinsic to the original stationary system. Utilizing a harmonically forced, closed
fluid flow system that possesses multiple resonances and solving the Navier-Stokes equation under
proper boundary conditions, we uncover the phenomenon of early effect. Specifically, as a control
parameter, e.g., the driving frequency, is adiabatically increased from an initial value, resonances
emerge at frequency values that are smaller than those in the corresponding stationary system. The
phenomenon is established by numerical characterization of physical quantities through the reso-
nances, which include the kinetic energy and the vorticity field, and a heuristic analysis based on
the concept of instantaneous frequency. A simple formula is obtained which relates the resonance
points in the time dependent and time independent systems. Our findings suggest that, in general,
any true bifurcation of a nonlinear dynamical system can be unequivocally uncovered through adi-
abatic parameter sweeping, in spite of a shift in the bifurcation point, which are of general value to
experimental studies of nonlinear dynamical systems.

PACS numbers: 05.45.-a

I. INTRODUCTION

Fundamental to nonlinear dynamical systems are a rich
variety of bifurcation phenomena. As a control param-
eter of the system is changed, the asymptotic state of
the system can exhibit transition from one type of be-
havior to another, characteristically different type. The
bifurcations constitute the most pronounced feature that
distinguish nonlinear from linear dynamical systems. In
fact, the history of research on nonlinear dynamics can
be said to center about the study of various bifurcation
or transition phenomena [1, 2].
Given a dynamical system, numerical studies of bifur-

cations are relatively straightforward: one identifies the
most relevant set of parameters responsible for the phys-
ical phenomena of interest, changes the parameters sys-
tematically, and then investigate, for each fixed param-
eter set, the attractors or invariant sets of the system
from random initial conditions. This approach, however,
often is not applicable to experimental study of bifurca-
tions because of the practical difficulty to vary the system
parameters in small increments in a controlled manner.
An alternative and feasible way is to vary the most rel-
evant parameter of the system slowly or adiabatically in
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time. Especially, if the intrinsic time scale of the system
is much faster than that of the parameter variation, the
system can be regarded as constantly being in some adi-
abatic state. The hope is that, in any such state, the
system reaches approximately some asymptotic invari-
ant set so that appropriate measurements can be taken,
based on which the system dynamics can be studied. The
question is, are bifurcations from adiabatic variations of
system parameters faithful reflection of the true bifur-
cations of the system? This is referred to as the slow

passage problem, which has been investigated in different
physical contexts such as laser instabilities [3, 4], fluctu-
ations in mechanical systems exhibiting resonances [5],
and thermal convection in fluids [6, 7]. Mathematically,
a dynamical system under adiabatic, time dependent pa-
rameter variation can be modeled by using a set of non-
autonomous differential equations. For convenience, we
use the terms stationary system and slow passage sys-

tem to describe the original dynamical system with time
independent, stationary parameters and the correspond-
ing system with adiabatic parameter variations, respec-
tively. A remarkable phenomenon is the so-called early

effect, where a bifurcation occurs at a parameter value
smaller than the corresponding bifurcation point in the
original stationary system. For example, slow passage
through resonance typically results in early onset of os-
cillations [8, 9]. We note that, in the vast literature on
nonlinear dynamical systems, there are only a few ad-
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dressing the slow passage problem. Yet, in spite of the
existing works, the mechanism leading to early bifurca-
tion of the system due to adiabatic parameter change for
nonlinear dynamical systems, especially high dimensional
systems, has not been well understood.

In this paper, we seek to obtain a better understand-
ing of the phenomenon of early effect associated with the
slow passage problem in high dimensional nonlinear dy-
namical systems by focusing on the phenomenon of res-
onance that is ubiquitous in many physical systems [10].
Consider a dynamical system under external forcing and
suppose that the forcing frequency, denoted by ωf , is an
experimentally controllable bifurcation parameter. As ωf

changes through ωn, a natural frequency of the unforced
system, the system response is typically dramatically en-
hanced, e.g., in its oscillation amplitude. Because of its
relative simplicity, the phenomenon of resonance serves
as a prototypical class of systems to study, understand
and exploit the slow passage problem. In this regard, re-
cently the system of a linear, periodically forced, damped
pendulum [8] was investigated, revealing the early ef-
fect. Interestingly, the shift in the onset of resonance was
found to depend on the initial parameter of the system,
indicating a kind of memory effect. Here, to significantly
broaden the scope of investigation, we consider high di-
mensional nonlinear systems with multiple resonances.
In particular, we study a fluid flow in an enclosed circular
cylinder, subject to external periodic forcing. The top lid
and sidewall of the cylinder are at rest, while the bottom
lid is under harmonic modulation. To investigate the res-
onant phenomenon from the slow passage point of view,
we assume that the forcing frequency varies slowly with
time. The flow is thus effectively driven periodically with
slowly time-ramped frequency for fixed modulation am-
plitude of the bottom lid. Due to the nonlinear nature of
the system, there are multiple resonant frequencies. We
find that the early effect occurs for each and every res-
onant frequency, where the resonance frequency emerges
in between its initial value and the static resonance fre-
quency, regardless of the direction of the variation of the
forcing frequency (i.e., increasing or decreasing). Based
on these results, we uncover a simple parameter scaling
law characterizing the early effect, which is generally ap-
plicable to all resonances. We anticipate these findings
to have considerable value for experimental bifurcation
study of nonlinear dynamical systems in general.

In Sec. II, we describe the mathematical model of the
static rotating fluid system and demonstrate the phe-
nomenon of multiple resonances. In Sec. III, we nu-
merically investigate the slow passage problem by adia-
batically varying the frequency of the external harmonic
modulation. In Sec. IV, we derive the onset condition for
multiple resonances using the concept of instantaneous
frequency. In Sec. V, we present conclusions.

II. A FLOW SYSTEM WITH MULTIPLE
RESONANCES

We consider the system of a swirling fluid flow con-
fined in a cylinder of radius R and height H . The bot-
tom lid is driven externally to rotate at the angular rate
Ω[1+A sin(Ωf t)], where t is time in seconds, Ωf (in rad/s)
is the mean rotation frequency, Ωf (in rad/s) is the forc-
ing frequency, and A is the forcing amplitude. Using
R as the length scale and the dynamic time 1/Ω as the
time scale, the system can be nondimensionalized with
four dimensionless parameters: (1) the Reynolds number
Re = ΩR2/ν (ν is the kinematic viscosity), (2) the forc-
ing amplitude A, (3) the aspect ratio H/R, and (4) the
normalized forcing frequency ωf = Ωf/Ω. The resulting
Navier-Stokes equation is

(∂t + u · ∇)u = −∇p+
1

Re
∇2

u, (1)

where u = (ur, uθ, uz, t) is the velocity field in the cylin-
drical coordinates (r, θ, z), p is the kinematic pressure,
and the flow is incompressible: ∇ · u = 0. The no-slip
boundary conditions are

u(1, θ, z, t) = (0, 0, 0) (2)

u(r, θ,H/R, t) = (0, 0, 0) (3)

u(r, θ, 0, t) = (0, r[1 +A sin(ωf t)], 0). (4)

To solve Eqs. (1-4) numerically, we employ a standard
second-order time splitting method, in combination with
a pseudo-spectral method for spatial discretization based
on the Galerkin-Fourier expansion in θ and Chebyshev
collocation in r and z. Specifically, we use nr = 64 and
nz = 96 Chebyshev modes in the radial and axial di-
rections, respectively, and nθ = 24 Fourier modes in the
azimuthal direction. For accurate use of spectral tech-
niques, a smooth regularization of the boundary condi-
tion singularity that occurs in the corners is provided.
The time step in the numerical integration is set to be
δt = 0.02. The numerical code was previously developed
and validated to study turbulent solutions in the large
Reynolds number regime [11].
For A = 0 (no external forcing) and moderate as-

pect ratio (e.g., H/R = 2.5), the stationary flow sys-
tem exhibits several supercritical Hopf bifurcations as the
Reynolds number Re is increased, which occur for Rei ≈
2710, 3044, 3122 (i = 1, 2, 3) with the corresponding
natural (Hopf) frequencies ωH

i ≈ 0.1692, 0.1135, 0.2182.
When a harmonic force is applied to the bottom lid of the
system (A 6= 0), the resulting flow can be in a quasiperi-
odic state possessing both the forcing frequency and the
natural frequency of the unforced limit cycle state. If the
ratio between the former and the latter is rational, the
phenomenon of Arnold tongues will occur, which is typ-
ical in quasiperiodic dynamical systems [2]. In this case,
the system exhibits multiple resonances.
Numerically, we find a supercritical Hopf bifurcation

with the frequency ω0 ≈ 0.17 for Re = 2710 for H/R =



3

FIG. 1. (Color online) Structure of azimuthal vorticity
field in the stationary flow system. For Re = 2600,
H/R = 2.5, and A = 0.01, snapshots of the azimuthal vor-
ticity modulation for various values of ωf : ωf = nωb (n =
1, . . . , 16), where ωb = 0.014544027777. For ωf = 8ωb, 12ωb

or 15ωb, the vorticity fields are relatively stronger.
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FIG. 2. Multiple resonances in the stationary driven
flow system. Normalized peak-to-peak amplitude of the ki-
netic energy versus the forcing frequency ωf for A = 0.01 in
the stationary driven system, where each dashed line indicates
a Hopf frequency ωi (i = 1, 2, 3).

2.5. Consider the static system for Re slightly smaller
than the bifurcation point, e.g., Re = 2600. Without
forcing, the system is in a steady vortex breakdown state.
To examine the effect of small harmonic forcing on the
flow structure, we set A = 0.01, choose a set of system-
atically increasing values of the forcing frequency, and
calculate the vorticity field. The sixteen panels in Fig. 1
show the difference between the azimuthal vorticity η(t)
and η0, the corresponding vorticity associated with the
steady state for A = 0, for different values of ωf . We
observe alternation in the vorticity structure near the
disk and sidewall boundary layers, particularly near the
corner where th disk meets the sidewall. This is due to
the formation of junction vortices between the station-
ary sidewall and the modulated rotating disk. Another
feature is that the junction vortices propagate up along
the sidewall, collide with each other at the axis near the
top, and then combine to enhance the vortex breakdown
recirculation, amplifying its pulsations. This dynamical
feature appears more dramatic at the 1 : 1 resonance with
ωf ≈ 12ωb, where ωb = 0.014544027777. The resonant
behavior also occurs for other frequencies, e.g., ωf ≈ 8ωb

and 15ωb, as shown in Fig. 1.

To characterize the multiple resonance behavior in a
quantitative manner, we calculate the total kinetic en-
ergy E(t) of the flow:

E(t) =
1

2

∫ H/R

0

∫ 1

0

(u2
r + u2

θ + u2
z) r dr dz. (5)

We can quantify the oscillation amplitude of the flow by
calculating the peak-to-peak amplitude ∆E of the kinetic
energy as a function of the forcing frequency ωf . For con-
venience, we normalize ∆E by the kinetic energy E0 as-
sociated with the unforced flow (A = 0) multiplied by the
scaling factor

√
ωf . The result is shown in Fig. 2, where

the quantity ω0.5
f ∆E/E0 is plotted versus the forcing fre-

quency ωf and the three vertical dotted lines indicate the
Hopf frequencies of the first three modes bifurcated from
the basic steady state for Re = 2600. When the forcing
frequency matches any of the Hopf frequencies (ωf = ωi),
ω0.5
f ∆E/E0 exhibits a local maximum, signifying a res-

onance. The flow system described by Eqs. (1-4) under
harmonic forcing can thus serve as a prototypical model
for investigating the slow passage problem in high dimen-
sional nonlinear systems with multiple resonances.

III. PHENOMENA ASSOCIATED WITH SLOW
PASSAGE

To be concrete, we fix the Reynolds number (Re =
2600), the aspect ratio (H/R = 2.5), and the amplitude
of the forcing frequency (A = 0.01). We vary the forcing
frequency ωf slowly according to

ωf (t) = ω0 + (ǫt)P , (6)
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FIG. 3. (Color online) Demonstration of early effect.
Normalized kinetic energy ω0.5

f ∆E/E0 as a function of the
forcing frequency for two cases: (1) from static (conventional)
bifurcation analysis (solid red curve), as in Fig. 2, and (2)
when the forcing frequency is time dependent as given in
Eq. (6) (dashed black curve). Other parameters are ǫ = 10−6,
ω0 = 0.01, and A = 0.01. Panels (a-c) correspond to three
different values of the power exponent P in the parameter
ramping. In all three cases, the resonances occur “earlier”
than those in the static, time-independent system as the driv-
ing frequency is increased from ω0. For linear parameter vari-
ation [panel (a)], the resonances occur at the mid-frequencies
between the initial frequency ω0 and the corresponding Hopf
frequencies ωi. For slowly decelerated ramping [panel (b),
P = 0.5], the early effect is not as pronounced as in the case
of constant ramping rate. For slowly accelerating ramping
[panel (c), P = 2], the resonances occur even earlier than the
constant ramping case.

where ω0 is an initial frequency, P > 0 is a power ramping
exponent, and ǫ ≪ 1. For P = 1, the forcing frequency
ωf (t) is varied at a constant rate, but there is “accelera-
tion” for P > 1 and “deceleration” for P < 1. The slow
parameter variation ωf (t) is to be incorporated into the
boundary condition Eq. (4). The initial velocity field is
chosen to be that associated with a limit cycle under con-
stant driving frequency ω0. Our goal is to determine the
dynamical response of the system as ωf (t) passes through
a series of internal (Hopf) frequencies ωi.

Early effect. To demonstrate early effect, we carry
out bifurcation analysis in two ways: (1) for stationary
system for a set of systematically increasing parameter

values, and (2) for time dependent system with param-
eter sweeping as in Eq. (6). In both cases, we calculate
the normalized, peak-to-peak kinetic energy ω0.5

f ∆E/E0

and plot it against the driving frequency ωf , as shown
in Figs. 3(a-c) for three different values of the frequency
ramping power P . In all cases, we observe that, in the
slow passage system, the resonances (as indicated by the
occurrence of local maxima in the energy) occur “earlier”
than those in the corresponding stationary system with
respect to the bifurcation parameter ωf . This is thus
clear evidence that the early effect can occur in nonlin-
ear systems with multiple resonances.

Let ωJ be the resonant frequency (or the jump fre-
quency [8]) in the slow passage system. For P = 1 (lin-
ear frequency ramping), we see from Fig. 3(a) that each
resonant frequency ωJi

occurs at the middle between the
initial frequency ω0 and the resonant frequency ωi in the
stationary system:

ωJi
=

ω0 + ωi

2
, i = 1, 2, 3. (7)

or ωJk
−ωJi

= (ωk −ωi)/2. For decelerated and acceler-
ated frequency ramping, as shown in Figs. 3(b) and 3(c),
respectively, we have

ω0 < ωP1

Ji
< ω1

Ji
< ωP2

Ji
< ωi,

where 0 < P2 < 1 < P1. In the slow passage system,
the resonant frequency thus depends on the parameter
ramping power: ωJ = ωJ(P ). In Sec. IV, we obtain

ωJi
(P ) =

ωi + Pω0

(P + 1)
as ǫ → 0. (8)

Note that, for P → 0 so that the slow passage system
approaches its stationary counterpart, we have ωJi

(P ) →
ωi.

Vorticity field. A key question is whether the dynam-
ical properties of the flow under time dependent param-
eter ramping reflect those of the original stationary sys-
tem. An affirmative answer would provide justification
for experimental investigation of bifurcations by sweeping
a parameter slowly in a time dependent fashion. While
our computation indicates that, under slow parameter
ramping, multiple resonances still occur and their num-
ber is preserved, it is not apparent that the dynami-
cal properties of the original stationary system are un-
changed when measurements are taken on a time scale
faster than that of the adiabatic parameter change. To
address this issue, we examine the structure of some key
physical quantity at different time instants, each corre-
sponding to a particular value of the driving frequency
that is approximately constant in the time scale of mea-
surement. To be concrete, we calculate the snapshots of
the vorticity field.

Figures 4-6 show, for P = 1 (linear ramping), P = 1/2
(decelerated ramping), and P = 2 (accelerated ramping),
respectively, 16 snapshots of the azimuthal vorticity dis-
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FIG. 4. (Color online) Vorticity field under linear pa-
rameter ramping. For P = 1 [ωf (t) = ω0 + ǫt], snapshots
of the azimuthal vorticity field for various values of ωf , where
ωl = ωb/2. Relatively strong vorticity fields are observed for
ωf (t) = 8ωb 12ωb or 15ωb, as in the corresponding stationary
system (c.f., Fig. 1).

tribution, each corresponding to a specific value of the
driving frequency. Due to the early effect, the increment
δω in the driving frequency from one snapshot to the
next needs to be adjusted as compared with the case of
stationary system [cf., Fig. 1], and the amount of adjust-
ment depends on P . In particular, for Figs. 4-6, we have
δω ≡ ωl = ωb/2, ωd = 2ωb/3, and ωa = ωb/3, respec-
tively. Comparing Figs. 4-6 with Fig. 1, we find that
the dynamical structure of the azimuthal vorticity field
remains characteristically unchanged under adiabatic pa-
rameter change. Examination of other physical quanti-
ties, such as different vorticity components or the velocity
field, reveals essentially the same phenomenon, thereby
justifying the use of the slow passage method to probe
into the bifurcation structure of the underlying system.

FIG. 5. (Color online) Vorticity field under decelerated
parameter ramping. For P = 1/2, snapshots of the az-
imuthal vorticity field for various values of ωf at different
instants of time, where ωd = 2ωb/3. Relatively strong vortic-
ity fields are observed for ωf (t) = 8ωb 12ωb or 15ωb, as in the
corresponding stationary system (c.f., Fig. 1).

IV. ONSET OF RESONANCES UNDER
ADIABATIC PARAMETER MODULATION

We aim to obtain the onset conditions under which
multiple resonances emerge in the presence of adiabatic
parameter sweeping. For linear dynamical systems under
such parameter variations, there is a single resonance and
its onset can be analytically understood through explicit
determination of the trajectory in the phase space [8].
This approach, however, is not applicable to nonlinear
systems with multiple resonances, especially in high di-
mensions. We resort to the concept of instantaneous fre-
quency, commonly used in signal processing [12], to ob-
tain a heuristic understanding of the emergence of mul-
tiple resonances.
Given the time-dependent frequency modulation

ωf(t) = ω0 + (ǫt)P , the instantaneous phase φ of the
forcing is [12]

φ(t) = ωf (t)t−
π

2
= ω0t+ (ǫt)P t− π

2
, (9)
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FIG. 6. (Color online) Vorticity field under accelerated
parameter ramping. For P = 2, snapshots of the azimuthal
vorticity field for various values of ωf at different instants of
time, where ωa = ωb/3. Relatively strong vorticity fields are
observed for ωf (t) = 8ωb 12ωb or 15ωb, as in the corresponding
stationary system (c.f., Fig. 1).

the instantaneous frequency is given by

IF(t) =
dφ(t)

dt
= ω0 + (P + 1)(ǫt)P , (10)

where ω0 is chosen to be smaller than the minimal res-
onant frequency. Let ωni

be the i-th natural frequency
in the stationary system. Then a resonance occurs if
ωni

= ωi. If IF(ti) = ωni
, a resonance occurs at time ti,

which can be determined through Eq. (10) as

ti = P

√

ωni
− ω0

(P + 1)ǫP
. (11)

Substituting this expression of ti into Eq. (6), we obtain
the following formula for the frequency of the ith reso-
nance:

ωP
Ji

= ωf(ti) =
ωni

+ Pω0

(P + 1)
as ǫ → 0, (12)
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FIG. 7. (Color online) Verification of Eq. (12). Numeri-
cally obtained relation between (ωni

−ωP
Ji
) and (ωP

Ji
−ω0) for

P = 1/2, 1, and 2 and fixed ǫ = 10−6.
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FIG. 8. (Color online) Kinetic energy normalized by in-
stantaneous frequency. Replotting of Figs. 3(a-c) by re-
placing the driving frequency by the instantaneous frequency.
The red, blue and green curves correspond to P = 1/2, 1,
and 2, respectively. The black curve is the same energy ver-
sus frequency curve in Fig. 2 for the original stationary flow
system. All curves match with each other, validating the use
of the instantaneous frequency in the slow passage system to
uncover the resonances in the original stationary system.

where ωP
Ji

= ωni
for P = 0. For P > 0, ωP

J depends

on the initial frequency ω0. We have ω0 < ωP
J < ωni

,
indicating an early effect. Equation (12) can be rewritten
as

(ωni
− ωP

Ji
) = P (ωP

Ji
− ω0). (13)

Numerical verification of this relation is presented in
Fig. 7.

We provide further support for the use of the instan-
taneous frequency. Note that Eq. (10) can be rewritten
as IF(t) = (P + 1)ωf(t) − Pω0. Thus, we can replot
Figs. 3(a-c), normalized kinetic energy versus the driv-
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FIG. 9. (Color online) Early effect with backward pa-
rameter sweeping. For ǫ = 10−6, properly normalized ki-
netic energy versus the driving frequency (upper panel) and
the instantaneous frequency (lower panel) for backward pa-
rameter sweeping where the driving frequency is decreased
adiabatically from some initial value above all possible reso-
nant frequencies of the stationary system, i.e., ω0 = 0.25 >
ωni

(i = 1, 2, 3). We observe essentially the same phenomena
as for the forward parameter sweeping case.

ing frequency, by using the instantaneous frequency in-
stead. In particular, the kinetic energy can be normalized
through the instantaneous frequency as (IF)0.5∆E/E0,
and plotted versus this frequency, as shown in Fig. 8. The
remarkable phenomenon is that, all curves for different
values of P collapse into a single one - energy versus the
driving frequency in the original stationary system as in
Fig. 2. This means that, by using the instantaneous fre-
quency, a full picture of the bifurcation behavior of the
stationary system can be captured by one time dependent
sweeping of a relevant parameter, which is experimentally
desirable.

So far we have discussed the setting where the driv-
ing frequency is adiabatically increased from some ini-
tial value well below all possible resonant frequencies of
the stationary system. The time dependent parameter
sweeping can also be carried out in the opposite direc-
tion, i.e., we can adiabatically decrease the frequency
from some initial value that is above all intrinsic reso-
nant frequencies:

ωf (t) = ω0 − (ǫt)P with ωn < ω0. (14)

As shown in Fig. 9, this “back-sweeping” of the driving
frequency results in essentially the same early effect, so
it is equally effective for obtaining a detailed picture of
the bifurcations of the system.

0p ep cp

1 P

FIG. 10. (Color online) Schematic illustration of early
effect. For a nonlinear dynamical system with adiabatic pa-
rameter variations in the form: p(t) = p0 + (ǫt)P , where p0 is
the initial parameter value and ǫ ≪ 1, onset of a bifurcation
occurs at pe < pc, where pc is the corresponding bifurcation
point in the original stationary system. Quantitatively, we
have (pe − p0)/(pc − pe) = 1/P for ǫ → 0. A similar relation
holds for reverse parameter ramping: p(t) = p0−(ǫt)P , where
p0 > pc.

V. CONCLUSION

In experimental studies of nonlinear dynamical sys-
tems, it is desirable to use a single parameter sweep to
detect the possible bifurcations. This can be done by
letting the bifurcation parameter vary with time adia-
batically, effectively producing a time dependent, non-
stationary dynamical system. Can the true bifurcations
be correctly detected and would the dynamical properties
of the system, especially those at the bifurcation points,
be affected? To address these experimentally relevant
questions, we study a closed, externally driven fluid flow
system that exhibits multiple resonances as the driving
frequency is varied. We find that early effect, originally
discovered in driven linear systems with a single reso-
nance [8], also occurs in nonlinear systems. In particu-
lar, as the driving frequency is increased from an initial
value below which there are no resonances, a particu-
lar resonance occurs for frequency value that is smaller
than that for the same resonance to occur in the original
time independent, stationary system. Further, by ex-
amining the spatial distributions of physical quantities,
e.g., the vorticity field, at different instants of time (cor-
responding to different values of the driving frequency),
we find that the dynamical properties of the original sys-
tem is preserved under adiabatic parameter variations.
For the representative setting of power ramping of the
bifurcation parameter, our analysis and numerical com-
putations reveal a simple relation between the bifurca-
tion points in the slow passage and stationary systems,
as summarized schematically in Fig. 10. Moreover we
have shown that either “forward-sweeping” and “back-
sweeping” of the driving frequency results in essentially
the same early effect, which gives an effective opportu-
nity for obtaining a detailed picture of the bifurcations of
the system. Our findings not only establish a foundation
for experimental detection of bifurcations in nonlinear
dynamical systems through the method of time depen-
dent parameter sweeping, but also provide insights into
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the fundamental correspondence between stationary and
non-stationary systems.
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