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Most of the work on opinion dynamics models focuses on the case of two or three opinion types.
We consider the case of an arbitrary number of opinions in the mean field case of the naming game
model in which it is assumed the population is infinite and all individuals are neighbors. A particular
challenge of the naming game model is that the number of variables, which correspond to the number
of possible sets of opinions, grows exponentially with the number of possible opinions. We present
a method for generating mean field dynamical equations for the general case of k£ opinions. We
calculate the steady states in two important special cases in arbitrarily high dimension: the case
in which there exist zealots of only one type, and the case in which there are an equal number of
zealots for each opinion. We show that in these special cases a phase transition occurs at critical
values p. of the parameter p describing the fraction of zealots. In the former case the critical value
determines the threshold value beyond which it is not possible for the opinion with no zealots to
be held by more nodes than the opinion with zealots, and this point remains fixed regardless of
dimension. In the latter case, the critical point p. is the threshold value beyond which a stalemate
between all k opinions is guaranteed, and we show that it decays precisely as a lognormal curve in

k.

PACS numbers: 64.60.aq, 89.75.He, 02.50.Ey, 02.60.Cb

I. INTRODUCTION

matically has been tackled by the research community

Opinions are influenced by exposure to different views;
for example, this forms the basic tenet of political elec-
tion and advertising campaigns [1], to name just two.
Opinion formation is a dynamic process, with new in-
formation leading to changes in the beliefs of a society
through both exogenous (e.g., media-driven) and endoge-
nous (e.g., peer-influence) means. The field of opinion
dynamics seeks to mathematically understand the evolu-
tion of opinions in a society.

Increasingly, individuals are facing a large number of
discrete choices (“opinions”) from which to choose. One
common example is the choice of which of several social
media platforms to engage in, such as Facebook, Twitter,
and Google+ [2]. Another example is the several plat-
forms for portable computing to choose from, such as
Apple iPad, Amazon Kindle, and Samsung Galaxy Note.
A third example is the choice of operating system, such as
Microsoft Windows, Apple MAC O/S, and Linux (which
itself has many choices, such as Ubuntu, Fedora, and
Mint). Note that in these examples, the possible choices
are not necessarily mutually exclusive; an individual may
choose to affiliate with only one opinion, or with multi-
ple opinions. Some of these individuals will be adaptive;
that is, presented enough evidence to consider another
opinion, they would adopt it (e.g., a Linux Ubuntu user
also installing Microsoft Windows). However, some in-
dividuals are zealots (e.g., fiercely loyal Apple fans) who
advocate a single opinion and refuse to consider any oth-
ers. In addition to the examples discussed above, zealotry
accounts for persistent disagreement in a wide variety of
other disciplines, such as in politics [3] or religion [4].

The challenge of modeling opinion dynamics mathe-

over the last four decades. The work in Ref. [5] provides
a comprehensive review. Much of the recent research
uses the so-called sociophysics approach, which borrows
fundamental ideas from physics in studying the macro-
level (population) behaviors that emerge from various
micro-level (individual) interactions. In practice, there
are a huge number of variants of opinion dynamics mod-
els to consider. Each unique definition of a micro-level
interaction process can lead to the emergence of differ-
ent regimes of behavior at the population-level. Yet after
a series of micro-level updates, we can ask several ques-
tions. Is the network converging to consensus on a par-
ticular opinion? If so, how quickly? If not, will one of
the competing opinions win a plurality? What aspects
of network structure and initial conditions affect the an-
swers to the previous questions?

Virtually all the classical research in discrete opinion
dynamics has considered the answers to the above ques-
tions in the context of a small number of competing opin-
ions, usually two, and where agents are adaptive, i.e.,
not zealots. The phenomenon of zealotry has been for-
mally studied only recently [6-11]. Both Ref. [12] and
Ref. [13] consider the “naming game” model with com-
peting zealots where there are two opinions, each with
a zealot backing. In 1995, the naming game model was
introduced as a method for agents to identify each other
with names or spatial descriptions [14]. More recently,
it has been adopted as a model decribing the evolution
of language and of opinion dynamics in social networks.
There have been several studies that have considered the
naming game model (with two opinions) for opinion dy-
namics; for example, see Refs. [15-18]. In this work, we
focus on the situation where there are a large number



of opinions in the presence of zealots. In particular, we
generalize some of the key results of Ref. [12] and Ref.
[13] of zealotry in the binary naming game, to arbitrary
dimensions. More than two opinions under cyclic domi-
nance have been studied under the classical Rock-Paper-
Scissors model, e.g., Ref. [19], the Rock-Paper-Scissors-
Spock-Lizard variant, e.g., Ref. [20], and a cyclic Lotka
- Volterra model [21].

In this manuscript “dimension” refers to the number of
different opinions, but in previous work, discussed next,
dimensionality refers to the dimension of the lattice on
which the dynamics occur. A few previous works have
considered higher-dimensional analogs of some opinion
dynamics models. For example, in the continuous-valued
case, Ref. [22] studies higher-dimensional analogs of the
standard consensus problem under linear update. The
authors consider the time to consensus as a function
of dimension. Ref. [23] shows through detailed simu-
lations that the chance of a “vast-majority” consensus
increases with dimension, but so do the number of mi-
nority opinions. There is even less work on higher di-
mensional analogs in the discrete opinion case. For ex-
ample, Ref. [24] considers higher dimensional versions
of the majority-rule model. The work in [25] also stud-
ies the majority rule model in higher dimensional lattices,
finding deviations from predicted mean-field behavior for
d = 4 and uses simulations to establish the approximate
values of the critical exponent for up to d = 7, showing
that these values agree well with mean field theory.

The rest of this paper is organized as follows. We first
begin in Sec. II by presenting the basic update mech-
anism and present the concrete rule table for the case
of the two opinion naming game. The case of k opin-
ions, k > 2, is a straightforward extension. In Sec. III
we provide a derivation of the general mean field equa-
tions for arbitrary k, which is one of the contributions
of this work. Sec. IV details our primary contribution,
which is the computation of steady states and critical
points in two important special cases for arbitrarily high
values of k. In Sec. V, we introduce a low-dimensional
model which is very similar to the naming game yet more
amenable to analysis.

II. MODEL, ASSUMPTIONS, PROBLEM
FORMULATION

We study the naming game using the same interaction
model presented in Xie et al. [12] and using notation from
Ref. [13]. Consider the general situation of a discrete
opinion space with k opinions where individuals can hold
multiple opinions. Define O = {O,,,m =1, ...,k} as the
set of all possible opinions. Let Iy(t) denote the set of
opinions held by node ¢ at time ¢, and let Ny (¢) denote its
neighbors, i.e., with whom it can communicate or interact
directly at time ¢ (note that in the mean field case that
we study here, Np(t) is the set of all nodes in the graph).
At each discrete timestep, an agent, say ¢, is selected

randomly and randomly selects one of its neighbors, say
j, with which to interact. Given node 1 is selected at time
t, the probability it chooses j is thus 1/|N;(t)|. Node 4
randomly chooses one opinion O,,, from its set of opinions
I;(t) with uniform probability 1/|I;(t)| and chooses it for
discussion with j. If j already has O,, in its own set,
then both agree upon O,, and both of them discard the
rest of the opinions from their sets; otherwise j adds O,,
to its set. If the initiator is a zealot, it does not change
its opinion; similarly, if the responder is a zealot, it does
not change it’s opinion. The interaction model for the
general case is described by:

(I, 1;) 2% (O, Op), if Op € 1 (1)
% (L, [; U{Om}),
if O, € I; and jis not a zealot (2)

O (I;,I;), otherwise . (3)

In particular, note that when a common opinion is
found between speaker and listener, it becomes the sole
opinion adopted by both.

The dynamics of the naming game model can be ap-
proximated in the mean field by a system of differential
equations. For example in the two opinion case (i.e., the
binary naming game) in the equations below, z and y
refer to the fraction of nodes which have opinion A and
B respectively, and z is the fraction of nodes which have
both opinions A and B. The zealotry parameters p and
q describe the fraction of zealots having opinions A and
B respectively. Note that © + y + z = 1, so the zealots
are included in the variables z and y. These equations
describe the mean field evolution over time of the naming
game, and can be used to determine the expected values
of x, y, and z over time as described in Sec. IIT C.

x’=Z(%+Z+§)—y(x—p)

q
y’=Z(y+Z+§)—fc(y—q)

z=1—-xz—y

It is straightforward to calculate the steady states by
setting ' = 3’ = 0, and there are two special cases in
which the steady state solutions can be expressed con-
cisely.

1. The case in which ¢ = 0 and hence there are no
zealots representing opinion B. In this case, a phase
transition occurs as p is increased at a critical point
pe = 0.1. In the subcritical case where p < p. it
is possible to have y > x in steady state. In the
supercritical case where p > p., it is guaranteed
that > y in steady state [9)].

2. The case in which p = ¢ and hence the number of
zealots representing opinions A and B are equal. A
phase transition also occurs in this case at a differ-
ent critical point p. = v/10 — 3. There is always



a steady state solution in which x = y, but when
p < p. this solution is unstable and two other sta-
ble solutions exist in which respectively = > y and
x < y. When p > p. the only steady state solution
is = y, which is stable [9].

A. The Challenge of High Dimensionality

Extending the binary naming game model to higher
dimensions leads to an exponential blowup in the dimen-
sionality of the opinion space, primarily because of the
undecideds, i.e., those holding mutiple opinions. To see
this, note that for & unique opinions, the “decideds” can
only be of k unique types, but the undecideds may have
any subset of the k opinions that has cardinality greater
than or equal to 2. Thus, when there are k possible dis-
tinct opinions the total number of possible unique opin-
ion states (decided plus undecided) is 2¥-1. For example,
if the number of opinions is k& = 4, the possible opin-
ion states are A, B, C, D, AB, AC, AD, BC, BD,
CD, ABC, ABD, ACD, BCD, and ABCD where the
first four are decideds and the remaining are undecideds.
Explicitly deriving the governing system of mean field
equations and then computing the resulting steady state
values for all possible states for even moderate k is te-
dious at best. One significant contribution of this paper
is to provide general mean field equations for all k. How-
ever, since the number of variables is exponential it still
quickly becomes computationally intractable to find the
steady states and critical points from these mean field
equations. We address this challenge in Sec. V.

B. Mean Field Analysis

To simplify analysis, we make the mean field assump-
tion that each node can interact with every other node.
We refer to this as mean field analysis, and it is equiva-
lent to assuming that the underlying graph is complete.
To assess the validity of the mean field assumption, we
ran the process with k¥ = 3 and 3% zealots of each type
on several different online social networks in comparison
to the mean field case and Erdds-Rényi random graphs.
In order to compute the steady states on these networks
with respect to the naming game process we ran the pro-
cess for a total of 200n timesteps, where n is the number
of nodes in the system, and averaged over 10 realizations.
In the table below, A, B, and C refer to the fraction of the
network following the three decided opinions, with Z rep-
resenting all other nodes. We see a remarkable similarity
in steady state achieved in real world networks (which
have a heterogeneous degree distribution) compared to
the mean field case and to Erdés-Rényi random graphs
with the same number of nodes and edges (which have
a homogeneous degree distribution). It is reasonable to
conjecture that results which hold in the mean field case
may also hold more generally on a large number of social

Network | Mean |System| A B C Z
Degree| Size
Mean field | 50,000 | 50,000 |0.879|0.032{0.032|0.057

brightkite | 7.35
Erdés-Rényi| 7.35
gowalla 9.6
Erdés-Rényi| 9.6
facebook 25.6
Erdés-Rényi| 25.6

58,000 [0.832]0.068]0.068|0.032
58,000 [0.815]0.058]0.058]0.069
196,000{0.839]0.064|0.064|0.033
196,000| 0.83 [0.049]0.049|0.072
63,000 [0.847]0.052]0.052]0.049
63,000 [0.864]0.037]0.037]0.062

TABLE I. Steady states for the fraction of nodes with opin-
ions A,B, and C obtained via a direct implementation of the
opinion dynamics process described at the beginning of Sec.
IT on real-world networks compared to the mean field case and
to Erd6s-Rényi random graphs of the same edge density. Z
refers to the portion of undecided nodes, that is, nodes with
opinion sets containing more than one opinion. The intent is
to measure the effect of network topology on the naming game
process in the specific case of real-world social networks, and
although the real-world networks differ significantly in struc-
ture from both the Erdés-Rényi random graphs and the mean
field case, the broad agreement is striking.

networks. Since p. > 3% for k = 3 , we expect that,
depending upon initial conditions, different steady state
results are possible with the mean-field approach. Table
I presents the steady state in which A dominates.

III. GENERAL MEAN FIELD EQUATIONS

Previously, we defined the naming game model with
zealots, and below in Sec. III A we introduce mean field
equations for the three-opinion case, which demonstrates
how unwieldy it is to explicitly write out these equations
when k£ > 2. In Sec. IIIB we address this problem by
providing a method for quickly deriving mean field equa-
tions for general k.

A. The Three Opinion Case

A natural generalization of the binary naming game
is to consider the case in which there are three opinions
rather than two. Instead of three variables, this results
in seven:

1. The decideds with a single opinion: z,y, w.
2. The undecideds with two opinions: zgy, Zzw, Zyw
3. The undecideds with three opinions: zgy.

For convenience, define:

Zy = Zzy T Zyw

Zw = Zzw T Zyw



Finally, we define p, ¢, r, as the zealot fractions backing
the three opinions modeled by z,y,and w. We can then

derive the following mean field equations:

1
SC, = Zz (I + Zx + B) - (y +w+ Zyw)(‘r - P) + gz.ryw(zr + 210 + 2Zrcyw + 5Z’I')

2
!
Y =z(y+z+

@+ w20y

1
—q) + 5 Zeyw(2y + 2 + 22440 + 52y)

2 3
r 1
w' =z (W + 24 + 5) —(@+ Y+ zay)(w—r)+ gzzyw(2w+2r+22myw + 52y)
) 11 11
Zoy = (T + 5% + gzzyw)(y —q)+(y+ 5% + gzxyw)(ff - D)
S kU o
2 —(x—l—lz —|—12 ) (w — r)—l—(w—i— ~z +1z )(x —p)
Tw 2 x 3 TYyw 9 w 3 TYWw p
S Gt S ol
Tw 5 Yy 2%y
) 11 1
Zyw = (w+ §Zw + gzzuw)(y —q)+(y+ §Zy + gzww)(w -7)
S Gl AU Y
Yyw 2 Yy 2 T
! _ / !/ ! !/ ! !
Zmyw__(x +y tw +Zzy+zmw+zyw)

The last equation follows from the identity z 4y 4w+
Zoy T Zzw T Zyw T Zayw = 1.

B. The General Case

Suppose that there are k opinions, with the frac-
tion of inividuals holding opinion ¢ denoted by z; for
i = 1,2,...,k. More generally, zg is the fraction of
nodes whose opinion set is S. Note that, in this no-
tation, xz; = z;. For convenience, we also define T; as
the probability that a random opinion from the opinion
set of a random node is i. In other words, T; is the
probability that opinion ¢ is transmitted. 7T; is the sum
over all ﬁzs where the set S contains 7. In symbols,

Ti = Yicscio,.. k) TST5S"

Similarly, C; is the probability that a randomly chosen
node’s opinion set contains i. C; is the sum over all zg
where the set S contains 7, or C; = Y cscqi2,. k) 2S-
These variables make it much easier to define general
mean field equations for any number of opinions k, shown

in equations (4)-(6) below.

oy = 2T —2@y)(Ci — wpy) + (T — zgiy gy
+ 2y (Ci—agn) = Y Tilegy —p)  (4)
J#i

Zagy = Ti(xggy — i) + Tj (@ — pi)

— (1= 2z g))2ig) — 2205
1

— 2 (GG =2y + G —2a) ()
E

(1—29)z 5—22’%

=2
|S|
—Zs FZ zJ—ZS

ZS\ZJ

C. Numerical Methods

For each choice of k, the set of solutions to system
(4)-(6) comprise the steady state solutions of the nam-
ing game process with k opinions. However, because the



number of variables in the system increases exponentially
in k, it is computationally difficult to solve this system.
Another method of finding steady state solutions is to
simply run the process until it has essentially converged
to a steady state from particular initial conditions. That
is, we estimate lim;_, -, 25(t) for each set S through direct
simulation. By ”direct simulation,” we mean a direct im-
plementation of the opinion dynamics process described
at the beginning of Sec. II. By definition, we can write:

(z5(t)) = (zs(t)) + (25(t — 1)) — (zs(t — 1))
Thus:

(25(t)) = (zs(t — 1)) + 25(t)

By iterating this equation for all variables we may
calculate the expected value of each variable at each
step of the process. We terminate the process when
|z%(t)| < 107° for every variable zg. This yields a more
accurate estimation of steady state solutions compared
to direct simulation of the process, as illustrated in Fig.
1 where we see there is still some amount of variance
in the curves due to the stochastic nature of the pro-
cess. These minor fluctuations persist even after reaching
steady state.

However, this method will not find all steady state so-
lutions, because the solution found depends on the initial
point. In particular, note that if two variables describing
decideds x; and z; are initially equal and p; = p;, then by
symmetry they will remain equal in expected value. In
an actual run of the process however, the symmetry will
almost surely be broken and the process may converge to
a steady state in which x; # ;.

IV. PHASE TRANSITION IN HIGHER
DIMENSIONS

As stated in Sec. II A, the primary challenge of ex-
tending the model to higher dimensions is the exponen-
tially increasing number of variables. Although we have
provided a means for explicitly writing the mean field
equations in any dimension, the large number of vari-
ables makes it intractable to analyze these equations in
higher dimensions. Here we reduce the number of vari-
ables by “glueing” most of them together in certain spe-
cial instances, reducing the total number of variables
from 2* — 1 to 2k. Note that the analysis in this sec-
tion utilizes the mean field equations of Sec. III B, and
so we make the mean field assumption that all nodes are
neighbors, and ignore fluctuations. We consider the ther-
modynamic limit, corresponding to an infinite number of
nodes.

A. Zealots of only one type

The first case we consider is that in which there are
only zealots corresponding to a single opinion. Without
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FIG. 1. The fraction of followers for each of three opinions:
A,B, and C, with system size n = 1,000, 000. Initially, A has
60% of the followers, B and C both have 20%, and there are
no initial undecideds. The solid line indicates expected value
obtained from equations (4)-(6) and the dots indicate direct
simulation. Note that direct simulation yields a less accurate
approximation of steady states due to minor fluctuations in
the stochastic process. The x axis is scaled by n In(n) and not
by n as might seem more natural, due to the mixing time of
the process, which appears to be of order nln(n) in both the
subcritical and supercritical regimes.

loss of generality, we may assume that p == p; is non-zero
and p; =0 for all ¢ > 2.

In the subcritical regime, simulations show that if we
only have zealots with opinion 1, there are k stable steady
states. There is always one steady state in which all
nodes hold opinion 1, and there are k—1 additional steady
states in which one of the other opinions gains the largest
number of followers, opinion 1 holds a lower number of
followers, and all the remaining end up with no followers
at all. In Fig. 2 we show this behavior occurring in
simulation of the process. In this special case, there exists
a critical value p. beyond which all nodes will eventually
have only opinion 1. That is, there exists only one stable
steady state and in that state z;;; = 1 and z(; = 0
for i # 1. In Fig. 3 we show this behavior occurring in
simulation of the process. Moreover, Fig. 2 and Fig. 3
together show that the critical point occurs somewhere
around p. = 0.1. Although these figures only show the
case of k = 4, we observe similar behavior for k = 3 and
k = 5.

In order to estimate the value of p., the critical value
of p1 at which z;, = 1 is the only stable steady state, we
assume that in steady state x(3y = wyqy = - = xqp) =
0. That is, we assume that if any opinion aside from
opinion 1 “wins” and is non-zero in steady state, then
it is opinion 2. Since all opinions aside from opinion 1
are interchangeable, this assumption loses no generality.
Note that in this case it is clear that zg = 0 if the opinion
set S contains any opinion that is not 1 or 2. It follows
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FIG. 2. The naming game with zealots of only one type for
k =4 and p = 0.09, with initial conditions that strongly favor
an opinion without zealots. In steady state an opinion without
zealots dominates due to the initial conditions which favor
that opinion. Note that all but two opinions are eliminated,
consistent with the assumption made in Sec. IV A in order
to calculate critical points for all k.
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FIG. 3. The naming game with zealots of only one type for
k =4 and p = 0.11, with initial conditions that strongly favor
an opinion without zealots. In steady state the opinion with
zealots dominates despite initial conditions which are unfavor-
able for that opinion, and all others opinions are eliminated.
This is consistent with the assumption made in Sec. IV A in
order to calculate critical points for all k.

that the only non-zero variables in the system in steady
state are w(1y,72; and z{;9). In other words, we are
reduced to the case of two variables, and hence the value
of p. remains the same as k varies. To sum up, in the case
where there are only zealots of one type, the fraction of
zealots required to guarantee that the opinion with zealots
wins out is approximately 0.1 regardless of the number of
opinions k. Moreover, the possible steady states can be
calculated by solving the equations in Sec. II, with the

two decided opinions which do not die corresponding to
the variables = and y, and the single undecided opinion
which does not die out corresponds to the variable z.
Alternatively, we may argue as follows.

We wish to show that the critical point does not change
as the number of opinions is increased. The critical point
pe will be the value of p at which the variable z(; is
guaranteed to achieve full consensus. That is, in the su-
percritical regime we are guaranteed to achieve the ab-
sorbing steady state in which zg;; = 1 and all other
variables are equal to 0. Our approach is to consider
the “worst case” initial conditions most likely to achieve
a non-absorbing steady state in which consensus is not
achieved. More specifically, since we only need one vari-
able other than z;y to be non-zero in order to be in the
subcritical regime, we will try to find the initial condi-
tions most likely to result in a non-zero (3. This loses
no generality, because:

variables
decideds

1. There is symmetry amongst the
T{2},T(3},---,T{k} Which represent
and have no zealots ,

2. If a variable representing undecideds is non-zero in
steady state, one of the variables x(2y, 2 (3}, ..., T{x}
must be non-zero in steady state as well.

To see that 2. holds, suppose zy;, 4, .4,3 # 0 and
2,y = 0. It is straightforward to verify from the mean
field equations in Sec. III B that m’{il} > 0, contradict-
ing the assumption that we are in steady state. There-
fore, if any variable representing undecideds in non-zero
in steady state, there must be non-zero variables repre-
senting decideds as well. So it suffices to find the worst
case conditions which make it least likely that x(py =0
in steady state. It is intuitively clear that these initial
conditions are x(1y = p, zy2; = 1 — p and all other
variables equal to 0. But with these initial conditions
only the variables x 1y, x(sy and z; 5y will ever be non-
zero, so it proceeds exactly as in the two-opinion case. If
we were to find the value of p at which we first observe
consensus with these “worst case” initial conditions, we
would therefore find the same critical point as in the two-
opinion case. This shows that as the number of opinions
increases, the critical point remains stationary.

B. Equal zealots for all opinions

Next we consider the case in which there are an equal
fraction of zealots representing all opinions. That is, we
take p = p1 = ps = p3 = - - - = pi. Simulations show that
in steady state, the variables describing decideds take on
at most two distinct values. There will be one variable,
say x1, which has a higher value, and the remaining vari-
ables will all have the same value which is lower. See Fig.
4 for a plot of a particular simulation with random initial
conditions and k = 5. We observe similar behavior for k
= 3 and k = 4. Also note that in the supercritical regime,
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FIG. 4. The naming game with equal zealots of all opin-
ions, random initial conditions, k = 5, and p = 0.05. In
steady state it appears that the decideds for a single opinion
dominates while the remaining decideds tie at a lower value,
consistent with the assumption made in Sec. IV B in order
to calculate critical points for all k.

there is one distinct value among the variables describing
decideds by definition. Hence in the supercritical regime
it is trivially the case that there are at most two dis-
tinct values amongst the variables describing decideds.
Furthermore, note that a small number of distinct val-
ues amongst the variables describing decideds in steady
state implies a small number of distinct values amongst
the remaining variables. For example, if z19) = 23 in
steady state, it must be the case that x(; 2y = 213} in
steady state. By applying this logic across all variables,
it is straightforward to determine that there are at most
2n distinct values amongst all variables in steady state.
We can make use of this fact by “glueing” together any
variables which appear to have the same value in steady
state in order to reduce the total number of variables
which must be considered. We refer to this glueing pro-
cess as “identifying” two variables, that is, giving two
variables the same identity. For example, we may iden-
tify the two variables x and y as a single variable z.

For the sake of analysis, we hypothesize that the ob-
servation that the variables x(1y, T2y, ..., 2} only take
on two distinct values in any stable steady state is true.
It then becomes possible to quickly and accurately calcu-
late the stable steady states observed in simulations and
estimate the critical value p. for any fixed k. We refer
to the variable which attains the higher value as x and
identify all other variables which attain the lower value
as T. For example, if z;) attains the higher value we
would have x := 21y and T == x(py = w3} = - = Ty}
We also identify zg and zg as z|g| if sets S and S are the
same size and both have the same status as to whether
or not they contain z. That is, Zy; 3.4y and Zy 53y are
identified as Zy3y since both contain the dominant vari-

able 1 and are of size 3.
In symbols, zs and zg are identified with each other if

|S| = |S| and 6,es5 = dpcsr where 4 = 1 if A is true and
04 = 0 otherwise. This results in the following system of
2k variables. Note that by definition z; = x and z; = Z.

:C/ = Q(Tx - 17)(03; - )
— (1 =T)(z —p)

y =2(T5 —7)(Cz; — 7) + (T — 2)7 + 2(Cs
—5) - (1-T5)@ - p)

2l =TpZiq + (1 — VDTpzima — (1 — 2;)2 — 227
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Since there is only a linear number of variables, it is
possible to quickly solve these equations through numer-
ical integration. In this special case there exists a critical
point p.. If p > p. a stalemate is achieved among all k
opinions, and if p < p, then a single opinion dominates.
To calculate the critical point it is necessary to find the
lowest possible value of p for which any set of initial con-
ditions will result in a stalemate: a‘“k-way tie” between
all k opinions. In this context, a k-way tie is equivalent
to x = Z. For any given p, if there exist any initial con-
ditions for which x # T in steady state, then p is a lower
bound on p.. Note that the initial condition which maxi-
mizes x will not result in x = Z in steady state so long as
p < pe. Therefore, to find an upper bound on the critical
point we begin with the initial condition x =1—(k—1)p
and £ = p. This is the initial condition that maximizes
x. If in steady state x = T, then a stalemate has oc-
curred and hence p, < p. We may use these upper and
lower bounds to efficiently approximate p. for each value
of k to an arbitrary level of accuracy. In Fig. 5 these
critical points are plotted against the number of opinions
k, along with a fitted lognormal curve, for 1 < k < 20.
Recall that a lognormal distribution is a 2-parameter dis-
tribution defined as f(z) = — Qﬂelnzfﬂu, where p is the
mean and o the standard deviation.

In Fig. 6, we show a similar plot up to kK = 100. The
parameters for the lognormal curve in Fig. 5 are yu = 6.05
and o = 3.73, and the parameters for the lognormal curve
in Fig. 6 are the same as in Fig. 5. In both cases the
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FIG. 5. Critical value p. of p above which a stalemate is
guaranteed, plotted against a fitted lognormal curve up to
k = 20. The residual sum of squares is 2.05 x 107°.
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FIG. 6. Critical points plotted against a fitted lognormal
curve up to k = 100. Note that the lognormal curve plot-
ted here has the same parameters and is normalized as the
lognormal curve in Fig. 5. The residual sum of squares is
2.34 x 107°.

residual sum of squares is less than 3 x 1076, This is a
strong indication that the decay of the critical points is
truly lognormal.

C. Verification of Critical Points

In order to calculate the critical point in Fig. 6 it was
necessary to assume without proof that many of the vari-
ables would be equal in steady state. Here we will verify
that the critical points are correct in lower dimensional
cases. Given the calculated critical point p., we verify
that p. + € is greater than the true critical point and

pe — € is less than the true critical point, where ¢ = 0.001.
In order to verify that p.+ € is greater than the true crit-
ical point, we calculate the steady state with p = p. + €
and observe that the variables describing decideds all dif-
fer by less than 10~°. In order to verify that p. — € is less
than the true critical point, we calculate the steady state
with p = p. — € and observe that the variables describing
decideds can differ by more than 0.1. We performed this
verification process for k = 2,3,4,5,6 and 7 .

V. A LOW DIMENSIONAL OPINION
DYNAMICS MODEL SIMILAR TO THE
NAMING GAME WITH ZEALOTS

Although we have studied the naming game model
with zealots in two special cases, the methods used do
not extend to the general case. However, simulations
show that variables describing undecideds seem to “con-
verge” more quickly than variables describing decideds
in the sense that their derivatives quickly become small.
One way to greatly simplify the naming game model is
to assume that the variables describing undecideds con-
verge instantanously at each timestep. That is, for each
variable zg where |S| > 1 we define zg as the solution
to zg = 0, which makes zg a deterministic function of
the random variables described by the decideds. An-
other way of stating this assumption is that the variables
describing undecides are on a different time scale, hav-
ing sufficient time to converge to steady state before any
change occurs in the variables describing decideds. We
begin with the case k = 2 for intuition and then proceed
to the general case.

Note that the model described in Sec. II is two-
dimensional due to the the restriction x +y + z = 1.
By setting y = 1 — & — 2z, the system depends only on
the variables 2 and z. We define a function f(z) as the
unique positive solution to z’ = 0. The uniqueness of the
positive solution to 2z’ = 0 can be easily shown as follows:

2 =24 222 + %ﬂm] + 222
+ta(=2-p+q)+p
=0
f(a) = ~3 () + 3 VE@? - 410@)

where L and @ are defined as follows:

—p+q+2
2
Qz)=22"+z(—2—p+q) +p

L(z) =2z +

It is straightforward to show that —iL(z) —
1v/L(z)? — 4Q(z) is non-positive. Since a negative solu-
tion to the equation 2’ = 0 is inadmissible, we need focus
only on the positive root, which we denote by f(z). That
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FIG. 7. Simplified versus original process with k =2, p=¢q =
0.05 and initial condition z = 0.3 compared to the original
process with p = ¢ = 0.05 and initial conditions x = 0.3 and

z = f(z).

is, f(x) is that function of x having the property that if
z took the value f(x), then 2z’ would equal 0. Since at
steady state, 2’ is indeed 0, a reasonable approximation
it to set z = f(x), and examine the resulting lower di-
mensional approximation of the true model.

Fixing z = f(z) yields a 1-dimensional approximation
of the original model. The one dimensional process has
the following mean field equation:

x':Z(x+Z+g)—y(x—p)

= f@)(+ f@)+5) ~ 1 -2~ f@))@—p)

We may compare this simple system to the larger sys-
tem of two variables introduced in the previous section.
We observe an excellent agreement in the trajectory of
the variable x if both the original and reduced dimen-
sion system start with the initial condition z = f(x), as
shown in Fig. 7. This is true regardless of p,q and the
initial choice of x. However, if initially z # f(z), then the
processes may be quite different, although they necessar-
ily have the same steady states. This is demonstrated in
Fig. 8 in which initially z = 0.0.

Based on the appearance of the curve, we conjecture
that for a short time frame the z variable is converging
to the deterministic function f, at which point both pro-
cesses look similar. This intuition can be confirmed by
delaying the start of the one dimensional process until
some time ty. As tg is increased, the curves look more
and more similar as shown in Fig. 9 and Fig. 10.

The k£ = 3 opinion case yields a similar two dimensional
approximation, by setting 2, = 2, = 25, = 23 = 0
The k variables in this process correspond to the variables
x iy, with all other variables zg depending on them in a
deterministic way. Specifically, we numerically determine
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FIG. 8. Simplified versus original process with k =2, p=¢g =
0.05 and initial condition z = 0.3 compared to the original
process with p = ¢ = 0.05 and initial conditions x = 0.3 and
z =0.0.
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FIG. 9. The original process is run with x = 0.3, y = 0.7,
and z = 0.0. The simplified process is run starting at time
0.15nIn(n) with initial conditions equal to the values of the
original process at that time.

the value of the variable zg as the solution to 25 = 0 ac-
cording to equations (4)-(6). For convenience, we define
Zg as the solution to z5 = 0. In mean field analysis it does
not matter how we define a process which corresponds to
these equations, since it depends only on the system of
derivatives. For concreteness a process may be defined as
follows: at each timestep we choose a random node and a
random neighbor, and transmit a random opinion of the
first node to its neighbor. At this point we utilize the
interaction rules of the naming game with zealots model
as usual. However, after the rules have been applied to
determine the net opinion sets of the chosen nodes, each
node whose opinion set contains more than one opinion
must randomly choose a new opinion set with the set S
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FIG. 10. The original process is run with = 0.3, y = 0.7,
and z = 0.0. The simplified process is run starting at time
0.3n1n(n) with initial conditions equal to the values of the
original process at that time.

chosen proportional to Zg. Hence, in the mean field, the
variables z; are still updated in exactly the same manner
as in the naming game with zealots model, but all other
variables are deterministic functions of the z;’s.

VI. CONCLUSION

In this paper, we analyzed a generalized version of the
binary naming game with zealots by considering an arbi-
trary number of opinions. We were able to numerically
calculate critical points in two special cases: the case in
which there are zealots of only one type, and the case in
which there are an equal fraction of zealots of each type.
The primary challenge was in the exponential number of
variables in the system for general k, with 2¢ — 1 differ-
ent variables corresponding to the non-empty subsets of
{1,2,3,...,k}. We observed in simulations that in these
two special cases there were not very many distinct vari-
ables in steady state, with many variables being equal to
each other in value. This led to the hypothesis that many
variables could be “glued” together in order to obtain a
smaller system.

Recall that in the first special case, in which there are
only zealots of one type, we defined the critical point
as the threshold value beyond which the opinion with
zealots will always “win” by having more proponents
than any other opinion regardless of initial conditions.We
reduced the system from 2¢ — 1 variables to only 3. The
critical point, therefore, does not depend on k and is al-
ways approximately 0.1. That is, it is necessary for 10%
of the nodes in the system to be zealots in support of a
single opinion in order to guarantee that this opinion is
held by more nodes than any other in steady state.

In the second special case, in which there are an equal
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fraction of zealots for each opinion, the critical point is
the threshold value beyond which a stalemate is guaran-
teed between all k£ opinions. We reduced the system of
2k — 1 variables to a system of 2k variables. This sys-
tem can be solved numerically even for very large k, and
we determined that the critical points appeared to decay
precisely as a lognormal curve in k. This slow decay in-
dicates that as the number of opinions increases, it still
requires a massive fraction of zealots in order to achieve
a stalemate, which shows that there will almost certainly
be a dominant variable in any real-world situation which
is well-described by naming game dynamics and in which
there are an equal fraction of zealots of each type. We
presented strong evidence that the critical points decay
precisely as a lognormal curve in the special case in which
there is an equal fraction of zealots of each type. To do
this, we first found the best fit of a lognormal curve to the
critical points from k& = 1 to k = 20 with respect to the
residual sum of squares error, and then plotted this curve
against the larger collection of critical points from k& = 1
to k = 100. We found that the residual sum of squares
error remained on the order of 1076, It is not clear at
present why the curve of critical points would show pre-
cisely lognormal decay. The lognormal distribution may
arise as the limiting distribution of a product of random
variables, which can often explain it’s appearance as a
probability distribution [26]. However, critical points are
certainly not probability distributions arising from a pro-
cess, so this cannot explain the appearance of lognormal
decay. Moreover, although we presented strong evidence,
we did not rigorously prove that the decay is precisely
lognormal. It may be possible to prove analytically that
the decay is precisely lognormal by first assuming that
the critical points assume a general lognormal form and
then solving for the undetermined parameters. We leave
this for future work.

It is unlikely that in any real-world scenario the num-
ber of zealots corresponding to each opinion would be
precisely equal. For this reason, it is desirable to show
that the result we have given in this paper is stable.
That is, if the fraction of zealots of each type is slightly
perturbed, will there still be a critical point at which a
stalemate (or near stalemate) is guaranteed and will the
critical point be in nearly the same location? Note that
since such a perturbation takes us out of the special case
in which there is only a single parameter, p, to vary, it
is not immediately clear how to extend the definition of
“critical point.” Moreover, a perfect stalemate will al-
most certainly no longer occur. A possible approach is
to set some zealotry parameters to p + € and others to
p — € so that there is still only one parameter, p, to vary.
An additional benefit of this approach is that the meth-
ods presented in this paper may be applied to it. In
fact, the general method of “glueing” together variables
allows efficient steady state analysis in any case in which
the zealotry parameters take on only a finite number of
different values. Concretely, suppose there are two values
p1 and ps representing the fractions of zealots for different



opinions, which could be considered an extension of the
case in which the fraction of zealots for each opinion is p.
By setting p1 = p — € and ps = p + €, we may study the
effects of perturbation on steady states and still remain
in a numerically tractable case.

Finally, we presented a model which behaves similarly
to the naming game but has only & random variables.
This model may be easier to study analytically, and
makes the assumption that all variables corresponding
to undecideds converge instantaneously at each timestep.
In the context of this paper, this gives evidence that the
naming game with zealots is fundamentally low dimen-
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sional in the sense that there are only k stable steady
states, all of which are accounted for in our analysis.
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