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We examine the shape change of a thin disk with an inserted wedge of material when it is
pushed against a plane, using analytical, numerical and experimental methods. Such sheets occur
in packaging, surgery and nanotechnology. We approximate the sheet as having vanishing strain, so
that it takes a conical form in which straight generators converge to a disclination singularity. Then
its shape is that which minimizes elastic bending energy alone. Real sheets are expected to approach
this limiting shape as their thickness approaches zero. The planar constraint forces a sector of the
sheet to buckle into the third dimension. We find that the unbuckled sector is precisely semicircular,
independent of the angle δ of the inserted wedge. We generalize the analysis to include conical as
well as planar constraints and thereby establish a law of corresponding states for shallow cones of
slope ε and thin wedges. In this regime the single parameter δ/ε2 determines the shape. We discuss
the singular limit in which the cone becomes a plane, and the unexpected slow convergence to the
semicircular buckling observed in real sheets.

I. INTRODUCTION

Throughout history people have devised means of mod-
ifying two-dimensional materials, such as cloth or paper,
to take on designed three-dimensional shapes [1]. The
art of tailoring consists of cutting and joining cloth to
conform to the wearer’s body. To accomplish this the
tailor forms disclinations by making a cut into the cloth
and then inserting or removing a wedge-shaped sector,
thus altering the intrinsic internal geometry of the mate-
rial. The creation of the disclination introduces a point
source of Gaussian curvature at the tip of the wedge.
The amplitude or “charge” of the point source gives, up
to a sign, the wedge angle. The point Gaussian charge
forces the cloth to assume a non-flat three dimensional
configuration. The sheet may be further limited by the
exterior constraint of impenetrability: the cloth cannot
pass through itself or the wearer’s body

Here we study the simplest ways that a sheet with
a disclination defect can be altered by such an exterior
constraint. First we push a sheet containing an inserted
wedge against an impenetrable plane. We observe that
the plane deforms the sheet in a novel and robust way.
We then generalize to a sheet containing a point Gaus-
sian charge of arbitrary sign confined by an impenetrable
frictionless cone. Our results unify some of the results ob-
tained for d-cones (confined flat sheets) [2, 3], and e-cones
(unconstrained disclinations in thin sheets) [4, 5].

These findings are part of a recent surge of interest in
controlling the spatial configuration of a sheet by modi-
fying its material geometry. In the last decade, the art of
controlling the spatial configuration of a sheet by modi-
fying its internal construction has developed far beyond
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classical tailoring methodology. The discrete disclina-
tion charges of the tailor’s art have been generalized to
a continuum charge density profile of intrinsic Gaussian
curvature. In this way one can make materials that spon-
taneously form a range of designed shapes in response
to temperature or solvents [6, 7]. The shapes arising
from individual disclinations [4, 8] or multiple disclina-
tions [9, 10] are understood formally. The shape selection
is strongest in the asymptotic limit where the thickness of
the material goes to zero relative to its other dimensions.
In this limit the strain in the surface approaches zero, and
a disclination in an otherwise flat sheet approaches a con-
ical shape in which every point is connected to the vertex
by a straight, unbent line. These limiting configurations,
termed conical defects, can be described mathematically
in terms of elliptic functions.

A complementary means of shaping a sheet is to con-
strain its shape by external confinement. The best stud-
ied example is the d-cone mentioned above. As defined
in Ref. [3], a d-cone is a flat sheet pushed into a con-
ical container (cf [2]). Any surface fully conforming to
the conical shape of the container would have a Gaus-
sian charge, but the flat sheet has no such charge. The
sheet must accommodate this mismatch by buckling in-
ward, away from the supporting cone, forming the d-cone
structure. The angular size of the buckled region is se-
lected by subtle matching conditions relating the solution
in the buckled region and the conformation of the sheet
in the supported region. In particular, even for an in-
finitesimally shallow cone, the “takeoff lines” separating
the free standing buckled region and the contacting re-
gion form a finite angle of about 139 degrees.

The two distinct mechanisms necessitating buckling:
external confinement, as in the d-cone of Fig 1(a), and
internal geometry (in the form of the intrinsic Gaussian
charge) as in the unconstrained e-cone of Fig 1(b), can
occur simultaneously. An example of such a system is
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FIG. 1. Examples of conical defects. (a-c): photos of con-
ical defects made of paper. (a) A d-cone. A flat disk is
pushed by a point force at its center into a confining cone.
(b) An unconstrained e-cone of Gaussian charge −π/6. (c) A
plane-supported conical defect. The e-cone appearing in (b)
is pushed by a point force at its center onto a smooth sup-
porting plane (not shown). (d) A reconstruction of a rubber
tube subject to the longitudinal cutting and traverse rejoin-
ing as performed in the Heineke-Mikulicz surgery (see [11]).
The resulting geometry contains a −2π Gaussian charge at
the center of the joining line, and two +π Gaussian charges
at its ends. Shaded dark (blue) region notes the collection of
points on the rubber tube separated by one radius or less from
the center of the joining line. For more details see [11]. (e)
The numerically calculated shape of an unconstrained strain-
free sheet with a single conical defect of Gaussian charge −2π
along with two weak lines for bending (corresponding to the
joining suture line) gives a very good agreement with the ob-
served geometry in (d). (f) Due to the symmetry of the prob-
lem it can also be understood by studying the behavior of a
conical defect supported on a frictionless impenetrable plane.
Plotted is the right portion of the solution appearing in (e)
along with its symmetry plane. The resulting structure is
equivalent to (c) except for the magnitude of the disclination.

depicted in Fig 1(e) showing a plane supported wedge
disclination. Such systems arise naturally in certain sur-
gical reconstructions, and they show distinct behavior
due to the simultaneous action of both effects, as dis-
cussed below.

II. EXAMPLES OF SUPPORTED CONICAL
DEFECTS

In tayloring, the inserted wedge in an e-cone defect is
called a godet. Godets are inserted in order to add vol-
ume and flair to the bottom of a skirt. If the godet wedge
is fastened to a stiff, flat material, the added volume is
increased. The confinement by a plane, shown in Fig-
ure 1(c) illustrates the same principle, the confined sheet
subtends a larger volume than the unconfined sheet in
Figure 1(b). A similar effect also appears in sheets plas-
tically deformed near their edges [12]. This effect is used

implicitly whenever a flat sheet is cut and joined in or-
der to increase subtended volume. Similar shapes emerge
when a wrapper is torn open [13] or a notched graphene
sheet is stretched [14].

Many surgical reconstructions amount to cutting an
otherwise flat thin tissue (e.g. skin, slender muscle lay-
ers, etc.) and stitching the cut to itself so as to alter
the material geometry. In much the same manner de-
scribed above, this results in Gaussian charges. Examples
of such procedures include the Heinicke Mikulitz (HM)
strictureplasty performed to alleviate a bowel narrowing
[11], and the Z-plasty, a plastic surgery aimed at rotating
the direction of an existing wound [15, 16]. In both cases
the resulting 2D geometry is that of a Gaussian charge
quadrupole. In the latter procedure the skin’s natural
tensile stress and finite thickness keep the structure pla-
nar, while in the former procedure the surgically treated
bowel assumes an expanded three dimensional shape.

The structure resulting from the Heinicke Mikultz pro-
cedure, shown in Figure 1(c), is formed through the in-
terplay of the geometry induced by disclinations created,
thin sheet elasticity and impenetrability of the tissue it-
self [11]. As discussed in [11], the negative point Gaussian
charge at the center of the suture-line dominates the re-
sulting shape. Thus in order to understand the shape of
a tube after HM strictureplasty it suffices to consider the
simplified problem of two flat disks with a radial cut in
each, connected to each other along the radial cut and
splayed open, as depicted in Figure 1(b). The outcome
is a mirror-symmetric buckled shape in which each of the
two disks displays a free-standing buckled portion flanked
by two flat regions supported on the flat region of the op-
posite disk. We can therefore further reduce the problem
and solve the elastic equilibrium configuration of only
one of the radially cut disks supported on a frictionless
plane, as in Figure 1(c). By this process we are led to the
simplified problem of a plane supported conical defect: A
thin elastic disk with a negative Gaussian charge (whose
charge is given by the angle between the two edges of the
radial cut) supported on a frictionless plane, as shown in
Figure 3; we next determine this shape mathematically.

III. PLANE SUPPORTED CONICAL DEFECT

The equilibrium shape of a thin conical defect is that
which minimizes its bending energy. For such conical
configurations the surface is described by straight gen-
erators that all meet at a single vertex, e.g. the radial
lines in Figs 1(a–c). We specify position on the surface
using radial and azimuthal coordinates r and s. The
configuration of such surfaces is determined uniquely by
the non-vanishing component of their normal curvature
κ1(r, s), whose variation along the generators is given
by κ1(s, r) = κ(s)/r. Equilibrium solutions for κ(s) are
available in terms of elliptic functions [3, 4]. For uncon-
strained disclinations (e-cones) the solution for κ(s) is
periodic and differentiable. For e-cones the period-two
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shape (in which the curvature has four nodes) seen in
Figure 1(b) was shown to be the only stable solution for
defects that do not have self contact [4, 5, 17]. For the
case of a confined flat sheet, continuity of the curvature
across the takeoff line, separating the buckled and sup-
ported portions of the sheet, leads to a solution in which
the curvature possesses only two nodes, as seen in Figure
1(b) [3]. We now specialize to the case of Fig. 1(c): a
plane-supported e-cone.

We consider a conical defect made by inserting a sec-
tor of angle δ into a disk of unit radius supported on a
frictionless plane. The origin is set at the center of the
disk such that the circumference of the disk lies on the
unit sphere [4]. We parameterize the edge of the disk by
the unit vector r̂(s). We use an arc-length parameter s
such that r̂′ ≡ ∂sr̂ = t̂, is the unit tangent to the curve.
The normal to the conical surface is given by n̂ = r̂× t̂.
These triply orthogonal unit vectors satisfy the following
relation [9]:



r̂′

t̂′

n̂′


 ≡ d

ds



r̂
t̂
n̂


 =




0 1 0
−1 0 κ
0 −κ 0





r̂
t̂
n̂


 . (1)

Note that this is not the Serret-Frenet frame of the cor-
responding curve. In particular κ = t̂′ · (r̂ × t̂) is not
the curvature of the curve given by r̂ but rather the non-
vanishing principal normal curvature of the conical sur-
face bounded by the curve r̂. Thus the bending energy is
simply proportional to

∫
dr
r

∫
κ2ds ∝

∫
κ2ds, where the

logarithmic divergence of the radial term is regularized
by a core of finite radius in which the isometric condition
is compromised [4].
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FIG. 2. Determining the takeoff angle: Left: the angle θn be-
tween the normals as a function of positions ±s0 of vanishing
curvature κ for various values of the parameter c, using Eq.
4. Each c corresponds to a particular value of the wedge angle
δ, to be determined. A valid takeoff point s0 is one in which
θn vanishes. Right: the angle θn at the point of vanishing
curvature plotted vs the angle θr between the displacement
vectors r̂(s0) and r̂(−s0). It shows that at the valid takeoff
point where θn = 0, θr = π for all values of c plotted.

With the aid of these vectors we may formulate the
following elastic energy minimization problem in the free

standing portion of the sheet:

E[~r,~t ] =

∫ s0

−s0
ds
(
(~t ′ · (~r × ~t ))2 (2)

+λr(~r · ~r − 1) + λt(~t · ~t− 1) + 2~η · (~r ′ − ~t )
)
.

The first integrand is simply the normal curvature
squared and accounts for the bending energy of the sheet.
The two scalar Lagrange multiplier functions λt(s), λr(s)
enforce unit length for the vectors r̂ and t̂ and can be re-
lated to the radial and azimuthal stresses. The Lagrange
multiplier vector function ~η(s) enforces the relation be-
tween t̂ and r̂. The use of unrestricted vector variables
~r, ~t allows to easily prescribe boundary conditions on
both the position of the boundary of the sheet and its
orientation. We use Eq. (1) to replace the derivatives of
the unit vectors by expressions containing only κ and the
unit vectors themselves. One can further eliminate the
Lagrange multipliers from the vectorial Euler Lagrange
equations to obtain a second order ordinary differential
equation for the normal curvature:

κ′′ + 1
2κ

3 + Cκ = 0. (3)

As noted in [3, 4] the equation above is the same as the
equation for equilibrium of the classical Elastica, and its
solution may be given explicitly in terms of elliptic func-
tions. We choose s = 0 at the center of the free standing
portion of the sheet and obtain

κ(s) = d · JacobiCN( d2cs, c
2), (4)

where, JacobiCN(x, c2) is the cosine of the Jacobi am-
plitude of the variable x and the elliptic modulus c, and
−s0 ≤ s ≤ s0 [19] 1. The constants d, c and the take-
off point s0 are yet to be determined by the relevant
boundary conditions; continuity of r̂, t̂ and of κ across
the takeoff line s = ±s0. These correspond to a con-
tinuous solution with no folds in which the normal force
exserted by the supporting plane may be singular but not
negative [3, 4].

As the portion of the thin sheet that is supported on
the plane has a vanishing curvature, we obtain the bound-
ary conditions κ(±s0) = 0. This condition quantizes the
values the product ds0/2c can assume to the nodes of
the JacobiCN function. To be consistent with the ob-
served form of the solution (concave center flanked by two
convex regions, see Figure 1(f)) we set d = s−10 6cK(c2),
where K(c2) is the elliptic quarter period. Continuity of
the tangent vector and the Gaussian charge δ determine
the two remaining constants s0 and c. This is usually
done via a shooting method [3]. Practically, one may
seek such solutions in the following fashion: We choose

1 Euler’s elastica equations have inflectional solutions (in which
the curvature changes signs) and non-inflectional solutions. To
be consistent with the observed form of the sheet we consider
here only the inflectional solutions.
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Translucent disc 
(a) (b) (c) 

FIG. 3. Visualizing the takeoff angle in plane supported conical defects: (a) Top and perspective view of simulated conical
defects calculated as described in Sec. III and colored by the normal force exerted on the thin sheet by the supporting plane;
light (Green) shading implies greater normal force. The finite width of the bright (green) lines is due to the discretization and
to non-zero compliance of the supporting plane. Note that varying the magnitude of the wedge angle by an order of magnitude
results in no discernible change in the takeoff angle, which remains at the value 180◦±5◦. (b) A schematic diagram of the total
internal reflection (TIR) setup. A laser sheet enters into a glass slab at an angle such as to meet the glass air interface at an
angle above the angle of TIR, reflecting entirely back into the glass. When a translucent plastic sheet touches the glass, light
can travel into the plastic sheet and is then scattered. The amount of the light that enters the plastic sheet is proportional to
the true area of contact and thus proportional to the local normal force between the plastic sheet and the glass plate [18]. (c)
Top view of a notched disk in a translucent thin plastic sheet imaged through TIR. Disc diameter is 4′′ and its thickness is
0.005′′.The white rod entering from the bottom serves to force down the plastic sheet at its vertex. Yellow circle is shown to
guide the eye. Bright (green) regions correspond to the takeoff lines. The takeoff angle is somewhat smaller than the predicted
180 degrees as discussed in the text.

a co-ordinate system such that at s = 0 r̂(0) = (1, 0, 0)
and t̂(0) = (0, 1, 0). Given these initial conditions, we
have a two-dimensional family of solution for the set of
equations (1), corresponding to different choices for the
values of s0 and c. We denote by 2θ0 the angle between
r̂(s0) and r̂(−s0), as measured on the supporting plane.
This angle can be related to the Lagrangian angle, 2s0,
measured along the sheet through the Gaussian charge,
δ, via the arc length condition θ0 = s0 − δ/2. We expect
the arc-length condition to single out one curve in the
(s0, c) plane. An additional condition requires the vec-
tors n̂(s0) and n̂(−s0) to coincide, since n̂(±s0) is the
normal to the supporting plane. The angle θn between
these normal vectors is plotted in Figure 2. According to
this numerical solution, whenever n̂(s0) = n̂(−s0) then
r̂(s0) = −r̂(−s0).

This result implies in particular that the angle between
takeoff lines is independent of the defect magnitude δ,
This result can be understood in simple terms by con-
sidering the torque balance about the vertex of a plane
supported cone. For a classical d-cone (with a vertical
axis), the inward pressure from the contacting support
exerts a torque about the apex. The torque vector is in
the horizontal plane and is normal to the plane of sym-
metry. The necessary balancing torque comes from the
singular forces at the take-off lines. These torques are
also horizontal and are normal to the two takeoff lines.
These two takeoff lines must have a nonzero component
in the symmetry plane in order to produce a net torque.

The zero total torque condition may be used, together
with vanishing of the total force on the system, to predict
the angle between the takeoff lines for standard d-cones

[3]. In the present case, however, the portion of the elastic
disk supported on the plane, does not change orientation
and cannot exert any normal pressure on the supporting
plane. Therefore, the singular force density at the takeoff
lines cannot result in any torque, necessitating a takeoff
angle of π. This also explains similar results obtained for
other systems exhibiting planar self contact, which can
be observed for example in Fig. 1 in ref [20].

IV. VERIFICATIONS

To verify the prediction of the takeoff angle we mini-
mize numerically a variant of the elastic energy functional
of Equation (2). We eliminate the first Lagrange multi-
plier by employing the polar angles of r̂ as the unknown,
and replace the second and third Lagrange multipliers by
an in-plane elastic stretching term. To account for the
impenetrability of the supporting plane we added a short
range repelling interaction decaying exponentially with
the distance from the plane. Changing the integrated
Gaussian charge by over an order of magnitude results in
no discernible change in the takeoff angle, which remains
constant near 180◦, as observed in Figure 3(a).

The takeoff angle is also visualized experimentally us-
ing total internal reflection imaging allowing direct ob-
servation of the takeoff line. While due to extreme sen-
sitivity of the system to its boundary conditions the sys-
tem displays a deviation of about 10% from the expected
value of 180◦, it shows no systematic variation with the
opening angle δ.

As noted above, the takeoff angle ceases to remain fixed
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when the support becomes conical; in the case of d-cones
the (real space) takeoff angle shows quadratic variation
with the parameter ε measuring the degree of confine-
ment [3, 9]. We now develop a framework which inter-
polates between the different kinds of conical defects de-
scribed above: the unconstrained disclination, the d-cone
and the plane supported e-cone

V. SUPPORTED CONICAL DEFECTS

We consider a general wedge disclination of arbitrary
Gaussian charge δ confined by an impenetrable friction-
less cone of depth ε and base radius 1, as depicted in Fig.
4. The vertex of the conical defect and that of the con-
fining cone are constrained to coincide. The curvature
κ(s) in the free-standing buckled portion of the sheet is
again given by the solution (4). However, all three con-
stants d, c and s0 are now to be determined numerically.
In order to gain insight into the the system we will next
consider the linearized setting within the small slope ap-
proximation, which will allow explicit determination of
all the relevant parameters in the solution.

F 

F 
(a) 

(b) 

(c) 

FIG. 4. The geometry of a supported conical defect: (a) Side
view; a notched disk is pushed into an impenetrable cone,
shaded (red) in plot, by a force F pushing down at its center
point. (b) Perspective view; colors correspond to vertical dis-
placement of the edge. The dark (blue) region is in contact
with the supporting cone. (c) Top view showing the open-
ing angle of the notch, δ. The (black) solid circle shows the
perimeter of the supporting cone.

A. Small slope approximation

In the small slope approximation the profile of the coni-
cal defect can be fully described using the height function
ψ = r · ẑ, see Fig 4. To leading order, the curvature in
this case is given by, κ = ψ + ψ′′ [2]. Omitting the κ3

term from Eq. 3 leads to the linear equation

ψ′′′′ + (a2 + 1)ψ′′ + a2ψ = 0. (5)

Here a is a measure of the hoop compression. The
height function ψ(s) must satisfy the boundary condi-

tions ψ(±s0) = ε (continuity of the sheet) and ψ′(±s0) =
0 (no kinks, finite bending energy). Since the equation
for ψ(s) is linear and autonomous, the general solution
can be expressed as a superposition of trigonometric func-
tions:

ψ =
ε

cot(as0)− a cot(s0)

( cos(as)

sin(as0)
− a cos(s)

sin(s0)

)
. (6)

Here the two parameters appearing above; a, and the
takeoff point s0 are determined by the total length of
the curve (which corresponds to determining δ), and the
torque applied at the takeoff point, τ0. The form of
the above solution is unique provided that a2 6= 1 and
s0 6= π/2. Noting that the curvature is continuous at the
takeoff point s0, we infer κ(s0) = ψ(s0) + ψ′′(s0) = ε.
Together with the length restriction we obtain for s0 and
a:2

δ

ε2
= s0 − π +

s0 + tan(s0)
(
1− 2a2 + a2s0 tan(s0)

)

2(a2 − 1)
,

tan(as0)/as0 = tan(s0)/s0.
(7)

Note that the internal and external parameters δ and ε
enter only through the ratio δ/ε2. This implies that the
rescaled vertical displacement ψ/ε does not depend on
the internal and external constraints separately but only
through the combination δ/ε2. Thus in the general case
within the small slope approximation confinement and
Gaussian charge are interchangeable. However, in two
limiting cases, reviewed next, this is not true.

Given a finite (but sufficiently small) value for δ we
may obtain any value, arbitrarily large or small, for the
parameter δ

ε2 , by appropriately adjusting the value of ε.
Similarly, given a sufficiently small value for ε we can
choose δ to arrive at a desired valued for the combined
parameter. The remaining possibilities are δ = 0 and
ε = 0. The case of vanishing Gaussian charge, δ = 0,
gives the familiar d-cone. In this case equation (7) does
not depend on ε and for example the value s0 = const ≈
139◦ (measured on the deformed sheet). The case where
ε = 0 corresponds to the plane supported conical defect.
In this case equation (7) becomes singular. As we expect
to approach this solution continuously as ε → 0 we are
led to conclude that either a2 = 1 or that s0 = π/2. The
former corresponds to no hoop stress in the sheet and
leads only to trivial solutions. Setting s0 = π/2 gives

2 These conditions yield infinitely many solutions for a. To be
consistent with experimental results, as well as to minimize the
total bending energy, we chose the first non-trivial solution to
the equation; i.e., the minimal value of 1 < a which solves the
equation.
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FIG. 2. The takeoff angle: (a) For small values of δ/�2 the classic D-cone takeoff angle ∼ 139◦ is slightly perturbed. Increasing
(decreasing) the value of δ/ep2, increases (decreases) the value of s0. (b) For large values, 1 � δ/�2 an upper limit of 2s0 = π
is found. The approach to this limiting value is

Von-Kármán approximation of the exact isometry.1 We
consider a small deflection from a planar disc of the form

r = (r + R(r, θ))r̂(θ) + T (r, θ)θ̂(θ) + ζ(r, θ)ẑ.

For a conical deformation of the form ζ(r, s) = rψ(s) this
leads to radial and azimuthal deflections of the form

R = −r

2
ψ2, T =

r

2

� s0

0

�
ψ2(s�) − ψ�2(s�)

�
ds�.

The normal curvature reads κ = (ψ + ψ��), which leads
to a linearized elastic energy functional:

E =

� �
(ψ + ψ��)2 − 2FN (s)ψ + Λ(ψ2 − ψ�2)

�
ds,

where the local Lagrange multiplier FN (s) represents the
normal force exerted by the confining impenetrable cone
and vanishes in the free standing portions of the sheet.
The global Lagrange multiplier Λ fixes the total length
of the curve, and through it the magnitude of the Gaus-
sian curvature condensation, α. We may solve the prob-
lem for the supported portion of the thin sheet and the
free standing portion matching their value at the takeoff
point.

In the supported region ψ = �. In the free stand-
ing part we need to solve the fourth order homogenous
O.D.E for ψ supplemented by the boundary conditions
ψ(±s0) = � (continuity of the sheet) and ψ�(±s0) = 0
(no kinks, finite bending energy). This leads to a family
of solutions:

ψ =
�

cot(as0) − a cot(s0)

� cos(as)

sin(as0)
− a

cos(s)

sin(s0)

�
. (2)

The two parameters appearing above; a, defined through
a2 = 1 + Λ, and the takeoff point s0 are determined by

1 We may extend the validity of this approximation to small in-
compatibility −α/2π(2 + α/2π) − �2 � 1 in which case the per-
turbation will be performed about the conical isometry, whose
edge is a planar circle

the total length of the curve (which corresponds to deter-
mining α), and the torque applied at the takeoff point,
τ0. The form of the above solution is unique povided that
a2 �= 1 and s0 �= π/2.

Assuming the normal force at the takeoff point can
be singular, but not worst than a delta function yields
τ0 = 0, which corresponds to ψ��(s0) = 0. Together with
the length restriction we obtain for s0 and a:2

δ

�2
= s0 − π +

s0 + tan(s0)
�
1 − 2a2 + a2s0 tan(s0)

�

2(a2 − 1)
,

tan(as0)/as0 = tan(s0)/s0.
(3)

Note that the incompatibility enters only through the ra-
tio δ/�2. This implies that the rescaled vertical displace-
ment ψ/� does not depend on the incompatibility and
confinement separately but only through the combination
δ/�2, which means that in the small slope approximation
confinement and incompatibility are interchangeable. In
two limiting cases this is not true. The first being a van-
ishing δ and a non vanishing �. This corresponds to the
well studied D-cone problem. The second is the limit
� = 0 where δ > 0. This limit corresponds to a conical
defect supported on a plane and will be discussed below.

IV. ANALYSIS OF THE TAKEOFF ANGLE

The takeoff angle, 2s0, measures the amount of mate-
rial in the free standing portion of the disc. An opening
angle of 2s0 measured on the disc corresponds to a com-
plementary angle of 2π−2s0+δ resting on the supporting
cone. Therefore the real space opening between the take-
off lines, to leading order in δ and �, reads

∆θ = 2s0 − δ − �2(π − s0).

2 This solutions yield infinitely many solutions for a. To be consis-
tent with experimental results, as well as to minimize the total
bending energy we chose the first non-trivial solution to the equa-
tion; i.e. the minimal value of 1 < a which solves the equation.
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FIG. 2. The takeoff angle: (a) For small values of δ/�2 the classic D-cone takeoff angle ∼ 139◦ is slightly perturbed. Increasing
(decreasing) the value of δ/ep2, increases (decreases) the value of s0. (b) For large values, 1 � δ/�2 an upper limit of 2s0 = π
is found. The approach to this limiting value is

Von-Kármán approximation of the exact isometry.1 We
consider a small deflection from a planar disc of the form

r = (r + R(r, θ))r̂(θ) + T (r, θ)θ̂(θ) + ζ(r, θ)ẑ.

For a conical deformation of the form ζ(r, s) = rψ(s) this
leads to radial and azimuthal deflections of the form

R = −r

2
ψ2, T =

r

2

� s0

0

�
ψ2(s�) − ψ�2(s�)

�
ds�.

The normal curvature reads κ = (ψ + ψ��), which leads
to a linearized elastic energy functional:

E =

� �
(ψ + ψ��)2 − 2FN (s)ψ + Λ(ψ2 − ψ�2)

�
ds,

where the local Lagrange multiplier FN (s) represents the
normal force exerted by the confining impenetrable cone
and vanishes in the free standing portions of the sheet.
The global Lagrange multiplier Λ fixes the total length
of the curve, and through it the magnitude of the Gaus-
sian curvature condensation, α. We may solve the prob-
lem for the supported portion of the thin sheet and the
free standing portion matching their value at the takeoff
point.

In the supported region ψ = �. In the free stand-
ing part we need to solve the fourth order homogenous
O.D.E for ψ supplemented by the boundary conditions
ψ(±s0) = � (continuity of the sheet) and ψ�(±s0) = 0
(no kinks, finite bending energy). This leads to a family
of solutions:

ψ =
�

cot(as0) − a cot(s0)

� cos(as)

sin(as0)
− a

cos(s)

sin(s0)

�
. (2)

The two parameters appearing above; a, defined through
a2 = 1 + Λ, and the takeoff point s0 are determined by

1 We may extend the validity of this approximation to small in-
compatibility −α/2π(2 + α/2π) − �2 � 1 in which case the per-
turbation will be performed about the conical isometry, whose
edge is a planar circle

the total length of the curve (which corresponds to deter-
mining α), and the torque applied at the takeoff point,
τ0. The form of the above solution is unique povided that
a2 �= 1 and s0 �= π/2.

Assuming the normal force at the takeoff point can
be singular, but not worst than a delta function yields
τ0 = 0, which corresponds to ψ��(s0) = 0. Together with
the length restriction we obtain for s0 and a:2

δ

�2
= s0 − π +

s0 + tan(s0)
�
1 − 2a2 + a2s0 tan(s0)

�

2(a2 − 1)
,

tan(as0)/as0 = tan(s0)/s0.
(3)

Note that the incompatibility enters only through the ra-
tio δ/�2. This implies that the rescaled vertical displace-
ment ψ/� does not depend on the incompatibility and
confinement separately but only through the combination
δ/�2, which means that in the small slope approximation
confinement and incompatibility are interchangeable. In
two limiting cases this is not true. The first being a van-
ishing δ and a non vanishing �. This corresponds to the
well studied D-cone problem. The second is the limit
� = 0 where δ > 0. This limit corresponds to a conical
defect supported on a plane and will be discussed below.

IV. ANALYSIS OF THE TAKEOFF ANGLE

The takeoff angle, 2s0, measures the amount of mate-
rial in the free standing portion of the disc. An opening
angle of 2s0 measured on the disc corresponds to a com-
plementary angle of 2π−2s0+δ resting on the supporting
cone. Therefore the real space opening between the take-
off lines, to leading order in δ and �, reads

∆θ = 2s0 − δ − �2(π − s0).

2 This solutions yield infinitely many solutions for a. To be consis-
tent with experimental results, as well as to minimize the total
bending energy we chose the first non-trivial solution to the equa-
tion; i.e. the minimal value of 1 < a which solves the equation.
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FIG. 2. The takeoff angle: (a) For small values of δ/�2 the classic D-cone takeoff angle ∼ 139◦ is slightly perturbed. Increasing
(decreasing) the value of δ/ep2, increases (decreases) the value of s0. (b) For large values, 1 � δ/�2 an upper limit of 2s0 = π
is found. The approach to this limiting value is

Von-Kármán approximation of the exact isometry.1 We
consider a small deflection from a planar disc of the form

r = (r + R(r, θ))r̂(θ) + T (r, θ)θ̂(θ) + ζ(r, θ)ẑ.

For a conical deformation of the form ζ(r, s) = rψ(s) this
leads to radial and azimuthal deflections of the form

R = −r

2
ψ2, T =

r

2

� s0

0

�
ψ2(s�) − ψ�2(s�)

�
ds�.

� = 0

The normal curvature reads κ = (ψ + ψ��), which leads
to a linearized elastic energy functional:

E =

� �
(ψ + ψ��)2 − 2FN (s)ψ + Λ(ψ2 − ψ�2)

�
ds,

where the local Lagrange multiplier FN (s) represents the
normal force exerted by the confining impenetrable cone
and vanishes in the free standing portions of the sheet.
The global Lagrange multiplier Λ fixes the total length
of the curve, and through it the magnitude of the Gaus-
sian curvature condensation, α. We may solve the prob-
lem for the supported portion of the thin sheet and the
free standing portion matching their value at the takeoff
point.

In the supported region ψ = �. In the free stand-
ing part we need to solve the fourth order homogenous
O.D.E for ψ supplemented by the boundary conditions
ψ(±s0) = � (continuity of the sheet) and ψ�(±s0) = 0
(no kinks, finite bending energy). This leads to a family
of solutions:

ψ =
�

cot(as0) − a cot(s0)

� cos(as)

sin(as0)
− a

cos(s)

sin(s0)

�
. (2)

1 We may extend the validity of this approximation to small in-
compatibility −α/2π(2 + α/2π) − �2 � 1 in which case the per-
turbation will be performed about the conical isometry, whose
edge is a planar circle

The two parameters appearing above; a, defined through
a2 = 1 + Λ, and the takeoff point s0 are determined by
the total length of the curve (which corresponds to deter-
mining α), and the torque applied at the takeoff point,
τ0. The form of the above solution is unique povided that
a2 �= 1 and s0 �= π/2.

Assuming the normal force at the takeoff point can
be singular, but not worst than a delta function yields
τ0 = 0, which corresponds to ψ��(s0) = 0. Together with
the length restriction we obtain for s0 and a:2

δ

�2
= s0 − π +

s0 + tan(s0)
�
1 − 2a2 + a2s0 tan(s0)

�

2(a2 − 1)
,

tan(as0)/as0 = tan(s0)/s0.
(3)

Note that the incompatibility enters only through the ra-
tio δ/�2. This implies that the rescaled vertical displace-
ment ψ/� does not depend on the incompatibility and
confinement separately but only through the combination
δ/�2, which means that in the small slope approximation
confinement and incompatibility are interchangeable. In
two limiting cases this is not true. The first being a van-
ishing δ and a non vanishing �. This corresponds to the
well studied D-cone problem. The second is the limit
� = 0 where δ > 0. This limit corresponds to a conical
defect supported on a plane and will be discussed below.

IV. ANALYSIS OF THE TAKEOFF ANGLE

The takeoff angle, 2s0, measures the amount of mate-
rial in the free standing portion of the disc. An opening
angle of 2s0 measured on the disc corresponds to a com-
plementary angle of 2π−2s0+δ resting on the supporting
cone. Therefore the real space opening between the take-

2 This solutions yield infinitely many solutions for a. To be consis-
tent with experimental results, as well as to minimize the total
bending energy we chose the first non-trivial solution to the equa-
tion; i.e. the minimal value of 1 < a which solves the equation.
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FIG. 2. The takeoff angle: (a) For small values of δ/�2 the classic D-cone takeoff angle ∼ 139◦ is slightly perturbed. Increasing
(decreasing) the value of δ/ep2, increases (decreases) the value of s0. (b) For large values, 1 � δ/�2 an upper limit of 2s0 = π
is found. The approach to this limiting value is

Von-Kármán approximation of the exact isometry.1 We
consider a small deflection from a planar disc of the form

r = (r + R(r, θ))r̂(θ) + T (r, θ)θ̂(θ) + ζ(r, θ)ẑ.

For a conical deformation of the form ζ(r, s) = rψ(s) this
leads to radial and azimuthal deflections of the form

R = −r

2
ψ2, T =

r

2

� s0

0

�
ψ2(s�) − ψ�2(s�)

�
ds�.

� = 0

The normal curvature reads κ = (ψ + ψ��), which leads
to a linearized elastic energy functional:

E =

� �
(ψ + ψ��)2 − 2FN (s)ψ + Λ(ψ2 − ψ�2)

�
ds,

where the local Lagrange multiplier FN (s) represents the
normal force exerted by the confining impenetrable cone
and vanishes in the free standing portions of the sheet.
The global Lagrange multiplier Λ fixes the total length
of the curve, and through it the magnitude of the Gaus-
sian curvature condensation, α. We may solve the prob-
lem for the supported portion of the thin sheet and the
free standing portion matching their value at the takeoff
point.

In the supported region ψ = �. In the free stand-
ing part we need to solve the fourth order homogenous
O.D.E for ψ supplemented by the boundary conditions
ψ(±s0) = � (continuity of the sheet) and ψ�(±s0) = 0
(no kinks, finite bending energy). This leads to a family
of solutions:

ψ =
�

cot(as0) − a cot(s0)

� cos(as)

sin(as0)
− a

cos(s)

sin(s0)

�
. (2)

1 We may extend the validity of this approximation to small in-
compatibility −α/2π(2 + α/2π) − �2 � 1 in which case the per-
turbation will be performed about the conical isometry, whose
edge is a planar circle

The two parameters appearing above; a, defined through
a2 = 1 + Λ, and the takeoff point s0 are determined by
the total length of the curve (which corresponds to deter-
mining α), and the torque applied at the takeoff point,
τ0. The form of the above solution is unique povided that
a2 �= 1 and s0 �= π/2.

Assuming the normal force at the takeoff point can
be singular, but not worst than a delta function yields
τ0 = 0, which corresponds to ψ��(s0) = 0. Together with
the length restriction we obtain for s0 and a:2

δ

�2
= s0 − π +

s0 + tan(s0)
�
1 − 2a2 + a2s0 tan(s0)

�

2(a2 − 1)
,

tan(as0)/as0 = tan(s0)/s0.
(3)

Note that the incompatibility enters only through the ra-
tio δ/�2. This implies that the rescaled vertical displace-
ment ψ/� does not depend on the incompatibility and
confinement separately but only through the combination
δ/�2, which means that in the small slope approximation
confinement and incompatibility are interchangeable. In
two limiting cases this is not true. The first being a van-
ishing δ and a non vanishing �. This corresponds to the
well studied D-cone problem. The second is the limit
� = 0 where δ > 0. This limit corresponds to a conical
defect supported on a plane and will be discussed below.

IV. ANALYSIS OF THE TAKEOFF ANGLE

The takeoff angle, 2s0, measures the amount of mate-
rial in the free standing portion of the disc. An opening
angle of 2s0 measured on the disc corresponds to a com-
plementary angle of 2π−2s0+δ resting on the supporting
cone. Therefore the real space opening between the take-

2 This solutions yield infinitely many solutions for a. To be consis-
tent with experimental results, as well as to minimize the total
bending energy we chose the first non-trivial solution to the equa-
tion; i.e. the minimal value of 1 < a which solves the equation.
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FIG. 2. The takeoff angle: (a) For small values of δ/�2 the classic D-cone takeoff angle ∼ 139◦ is slightly perturbed. Increasing
(decreasing) the value of δ/ep2, increases (decreases) the value of s0. (b) For large values, 1 � δ/�2 an upper limit of 2s0 = π
is found. The approach to this limiting value is

Von-Kármán approximation of the exact isometry.1 We
consider a small deflection from a planar disc of the form

r = (r + R(r, θ))r̂(θ) + T (r, θ)θ̂(θ) + ζ(r, θ)ẑ.

For a conical deformation of the form ζ(r, s) = rψ(s) this
leads to radial and azimuthal deflections of the form

R = −r

2
ψ2, T =

r

2

� s0

0

�
ψ2(s�) − ψ�2(s�)

�
ds�.

δ

�2

The normal curvature reads κ = (ψ + ψ��), which leads
to a linearized elastic energy functional:

E =

� �
(ψ + ψ��)2 − 2FN (s)ψ + Λ(ψ2 − ψ�2)

�
ds,

where the local Lagrange multiplier FN (s) represents the
normal force exerted by the confining impenetrable cone
and vanishes in the free standing portions of the sheet.
The global Lagrange multiplier Λ fixes the total length
of the curve, and through it the magnitude of the Gaus-
sian curvature condensation, α. We may solve the prob-
lem for the supported portion of the thin sheet and the
free standing portion matching their value at the takeoff
point.

In the supported region ψ = �. In the free stand-
ing part we need to solve the fourth order homogenous
O.D.E for ψ supplemented by the boundary conditions
ψ(±s0) = � (continuity of the sheet) and ψ�(±s0) = 0
(no kinks, finite bending energy). This leads to a family
of solutions:

ψ =
�

cot(as0) − a cot(s0)

� cos(as)

sin(as0)
− a

cos(s)

sin(s0)

�
. (2)

1 We may extend the validity of this approximation to small in-
compatibility −α/2π(2 + α/2π) − �2 � 1 in which case the per-
turbation will be performed about the conical isometry, whose
edge is a planar circle

The two parameters appearing above; a, defined through
a2 = 1 + Λ, and the takeoff point s0 are determined by
the total length of the curve (which corresponds to deter-
mining α), and the torque applied at the takeoff point,
τ0. The form of the above solution is unique povided that
a2 �= 1 and s0 �= π/2.

Assuming the normal force at the takeoff point can
be singular, but not worst than a delta function yields
τ0 = 0, which corresponds to ψ��(s0) = 0. Together with
the length restriction we obtain for s0 and a:2

δ

�2
= s0 − π +

s0 + tan(s0)
�
1 − 2a2 + a2s0 tan(s0)

�

2(a2 − 1)
,

tan(as0)/as0 = tan(s0)/s0.
(3)

Note that the incompatibility enters only through the ra-
tio δ/�2. This implies that the rescaled vertical displace-
ment ψ/� does not depend on the incompatibility and
confinement separately but only through the combination
δ/�2, which means that in the small slope approximation
confinement and incompatibility are interchangeable. In
two limiting cases this is not true. The first being a van-
ishing δ and a non vanishing �. This corresponds to the
well studied D-cone problem. The second is the limit
� = 0 where δ > 0. This limit corresponds to a conical
defect supported on a plane and will be discussed below.

IV. ANALYSIS OF THE TAKEOFF ANGLE

The takeoff angle, 2s0, measures the amount of mate-
rial in the free standing portion of the disc. An opening
angle of 2s0 measured on the disc corresponds to a com-
plementary angle of 2π−2s0+δ resting on the supporting
cone. Therefore the real space opening between the take-

2 This solutions yield infinitely many solutions for a. To be consis-
tent with experimental results, as well as to minimize the total
bending energy we chose the first non-trivial solution to the equa-
tion; i.e. the minimal value of 1 < a which solves the equation.
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FIG. 2. The takeoff angle: (a) For small values of δ/�2 the classic D-cone takeoff angle ∼ 139◦ is slightly perturbed. Increasing
(decreasing) the value of δ/ep2, increases (decreases) the value of s0. (b) For large values, 1 � δ/�2 an upper limit of 2s0 = π
is found. The approach to this limiting value is

Von-Kármán approximation of the exact isometry.1 We
consider a small deflection from a planar disc of the form

r = (r + R(r, θ))r̂(θ) + T (r, θ)θ̂(θ) + ζ(r, θ)ẑ.

For a conical deformation of the form ζ(r, s) = rψ(s) this
leads to radial and azimuthal deflections of the form

R = −r

2
ψ2, T =

r

2

� s0

0

�
ψ2(s�) − ψ�2(s�)

�
ds�.

The normal curvature reads κ = (ψ + ψ��), which leads
to a linearized elastic energy functional:

E =

� �
(ψ + ψ��)2 − 2FN (s)ψ + Λ(ψ2 − ψ�2)

�
ds,

where the local Lagrange multiplier FN (s) represents the
normal force exerted by the confining impenetrable cone
and vanishes in the free standing portions of the sheet.
The global Lagrange multiplier Λ fixes the total length
of the curve, and through it the magnitude of the Gaus-
sian curvature condensation, α. We may solve the prob-
lem for the supported portion of the thin sheet and the
free standing portion matching their value at the takeoff
point.

In the supported region ψ = �. In the free stand-
ing part we need to solve the fourth order homogenous
O.D.E for ψ supplemented by the boundary conditions
ψ(±s0) = � (continuity of the sheet) and ψ�(±s0) = 0
(no kinks, finite bending energy). This leads to a family
of solutions:

ψ =
�

cot(as0) − a cot(s0)

� cos(as)

sin(as0)
− a

cos(s)

sin(s0)

�
. (2)

The two parameters appearing above; a, defined through
a2 = 1 + Λ, and the takeoff point s0 are determined by

1 We may extend the validity of this approximation to small in-
compatibility −α/2π(2 + α/2π) − �2 � 1 in which case the per-
turbation will be performed about the conical isometry, whose
edge is a planar circle

the total length of the curve (which corresponds to deter-
mining α), and the torque applied at the takeoff point,
τ0. The form of the above solution is unique povided that
a2 �= 1 and s0 �= π/2.

Assuming the normal force at the takeoff point can
be singular, but not worst than a delta function yields
τ0 = 0, which corresponds to ψ��(s0) = 0. Together with
the length restriction we obtain for s0 and a:2

δ

�2
= s0 − π +

s0 + tan(s0)
�
1 − 2a2 + a2s0 tan(s0)

�

2(a2 − 1)
,

tan(as0)/as0 = tan(s0)/s0.
(3)

Note that the incompatibility enters only through the ra-
tio δ/�2. This implies that the rescaled vertical displace-
ment ψ/� does not depend on the incompatibility and
confinement separately but only through the combination
δ/�2, which means that in the small slope approximation
confinement and incompatibility are interchangeable. In
two limiting cases this is not true. The first being a van-
ishing δ and a non vanishing �. This corresponds to the
well studied D-cone problem. The second is the limit
� = 0 where δ > 0. This limit corresponds to a conical
defect supported on a plane and will be discussed below.

IV. ANALYSIS OF THE TAKEOFF ANGLE

The takeoff angle, 2s0, measures the amount of mate-
rial in the free standing portion of the disc. An opening
angle of 2s0 measured on the disc corresponds to a com-
plementary angle of 2π−2s0+δ resting on the supporting
cone. Therefore the real space opening between the take-
off lines, to leading order in δ and �, reads

∆θ = 2s0 − δ − �2(π − s0).

2 This solutions yield infinitely many solutions for a. To be consis-
tent with experimental results, as well as to minimize the total
bending energy we chose the first non-trivial solution to the equa-
tion; i.e. the minimal value of 1 < a which solves the equation.

plane supported 

FIG. 5. Phase diagram showing how δ and ε affect the buck-
led shape: Configurations in the shaded region are not con-
strained. The solid blue line marks the marginally constrained
configurations satisfying δ/ε2 = −π and displaying a vanish-
ing takeoff angle. The horizontal dashed line where δ = 0
corresponds to the well studied d-cones displaying a takeoff
angle of about 139◦, whereas the vertical dashed line corre-
sponds to plane supported conical defects displaying a takeoff
angle of 180◦. Plotted in the δ, ε plane these three lines, cor-
responding to distinct behaviors, all meet at the origin. The
inset shows the same phase diagram with δ replaced by δ/ε2

on the vertical axis.

a = 3 and leads to the explicit linearized solution 3

ψ =

√
8δ

π
cos(s)3. (8)

Since the amplitude ψ is sublinear in δ, ψ can be sub-
stantial even with small δ, as illustrated in Fig. 4. These
regimes are summarized in Fig 5.

B. Analysis of the Takeoff angle

The takeoff angle, 2s0, measures the amount of ma-
terial in the free standing portion of the disk. Fig. 6
shows its dependence on δ/ε2. A takeoff angle of 2s0
measured on the disk corresponds to a complementary
angle (length at radius unity) of 2π + δ − 2s0 resting on
the supporting cone. Therefore the real space opening
between the takeoff lines, to leading order in δ and ε,
reads

2θ0 = 2s0 − δ − ε2(π − s0).

3 We note that to eliminate the torque on the supported disc,
the Eulerian takeoff angle (measured on the supporting plane)
must be π. Since in the present solution for the takeoff line the
Lagrangian coordinate s0 (measuring the amount of material n
the free standing portion) is kept constant, the vanishing torque
condition is satisfied only to leading order.

We consider a small but non-vanishing value of ε, and
a small δ such that the small slope approximation made
above remains valid, while obtaining a variety of values
for δ/ε2. Considering δ/ε2 � 1 we perturb the take-
off angle solution obtained for the d-cone (δ = 0) only
slightly. As seen in figure 6(a) increasing the value of
δ (adding material) increases s0, whereas decreasing the
value of δ (to assume negative values) lowers s0. One
may also consider cases in which 1 � δ/ε2. As this pa-
rameter tends to infinity the value of the takeoff angle
approaches π, the result obtained for plane supported
conical defects (ε = 0) above. The variation about this
limiting value scales with the square root of the param-
eter : π − 2s0 ∝ ε/

√
δ.

Considering negative values of δ, the takeoff angle di-
minishes as the parameter δ/ε2 becomes larger in abso-
lute value until it reaches the lower bound δ/ε2 = −π
beyond which the cone is unconstrained as its natural
radius (with a circular cross section) is smaller than that
of the confining cone. The takeoff angle reduces to zero
at δ/ε2 = −π and scales as s0 ∝ (π − δ/ε2)1/3.

In particular the above implies that the simultaneous
limit ε→ 0 and δ → 0 depends on the order of limits, or
more accurately on the value of δ/ε2. As seen in Figure
5 the three thick lines correspond to marginally confined
thin sheets (δ/ε2 = −π), d-cones (δ = 0), and plane sup-
ported conical defects, (ε = 0). These in turn correspond
to takeoff angles of 139◦ and 180◦, respectively.

VI. DISCUSSION

The derivations above suggest that thin sheets with
negative disclinations respond distinctively when con-
fined by planar boundaries. Such sheets are a limiting
case of generic disclinations confined by a cone. In all
these cases, stresses owing to the confinement cause the
sheet to buckle away from the confining surface. We
have shown that the generic sheet responds smoothly to
changes in the confining shape (i.e., the cone angle ε) or
the disclination charge (i.e., the wedge angle δ). Further,
these two changes are equivalent when perturbations are
small and the sheet is nearly flat. Only the combination
δ/ε2 affects the shape. When the confining surface be-
comes planar, this control parameter becomes infinite. In
this limit the takeoff angle approaches π, in agreement
with the specific analysis of Sec. III. However, the con-
trol parameter cannot predict the buckling amplitude in
this planar limit; a more delicate analysis is required to
obtain this amplitude.

Our predictions are based on an idealization of the
surface in which we neglect any tangential strain in the
sheet and thus take the sheet to be strictly isometric.
This assumption greatly simplifies our analysis: it allows
us to describe the sheet as a generalized cone [3, 4], whose
only degree of freedom is the reduced curvature κ(s). It is
natural to anticipate that any real sheet approaches the
conical shape as its thickness goes to zero. However, the



7

1 10 100 1000 104

150

155

160

165

170

175

180

1 10 100 1000 104

1

2

5

10

20

0.001 0.01 0.1 1

100

50

20

200

30

15

150

70

2
s 0

 

140 

145 

1 5 

(a) (b) (c) 

20 

5 

1  

1  10  104  102  

1
8

0
-2

s 0
 

2
s 0

 

180 

1  

100 

10-3  10-1  

15 

2
s 0

 

FIG. 6. The takeoff angle: Plots show behavior of takeoff angle s0 with parameter δ/ε2 in different ranges. Curves were
calculated by solving (7) numerically. The inset disks were obtained by numerically minimizing the quadratic energy functional
(e.g. Eq. 5 of Ref. [2]) that generates Eq. (5), replacing the Lagrange multipliers by appropriate (smooth and steep) potentials,
verifying that the details of the potential do not affect the resulting equilibrium. (a) Moderate δ/ε2. For small values of δ/ε2

the classic d-cone takeoff angle ∼ 139◦ is slightly perturbed. Increasing (decreasing) the value of δ/ε2, increases (decreases) the
value of s0. (b) Large δ/ε. (Inset shows global behavior.) For large values, 1 � δ/ε2 an upper limit of 2s0 = 180◦ is found.

The approach to this limiting value follows 180−2s0 ∝ ε/
√
δ. (c) Negative δ. When δ/ε2 < −180◦ the sheet is not constrained.

As this limiting value is approached, s0 ∝ (π − δ/ε2)1/3. Thus delicate tuning is needed to create small takeoff angles. Inset
shows global behavior.

nature of this convergence has not been fully established,
despite serious efforts [21, 22]. Poor convergence could
limit the applicability of our predictions to real sheets.

This planar case is unique because only here is the
width of the buckled region independent of its ampli-
tude. For this reason there is particular interest in ob-
serving this independence experimentally. We were able
to observe the contact line clearly through total internal
reflection imaging of thin translucent elastic sheets. The
takeoff angle we observed, while deviating from the ex-
pected value of π, is distinct from the value obtained for
simple d-cones. In particular the observed angle showed
no dependence on the amplitude or the opening angle.

In the experiment depicted in Fig. 3 the takeoff an-
gle showed high sensitivity to variations in the setup. In
particular, friction with the supporting surface, relative
shearing of the clamped edges of the disk as well as fi-
nite core effects all affect the takeoff angle. In general
we observed the takeoff lines forming an angle of about
160◦ that increased toward the predicted value of 180◦,
as the force applied to the stylus pushing the vertex of
the disc onto the supporting plane was increased. We
suspect that the large forces required to push the ver-
tex onto the plane likely stretch the sheet locally, so that
complete agreement with our isometric theory (valid for
the infinitely thin case) would not be expected. While
our numerical simulations allowed for nonzero stretching
(and deformability of the plane), they did not allow de-
viation from the conical shape. In order to control this
form of buckling and remain within the regime of negli-
gible stretching, some way to reduce the strong forcing
needed in the experiment seems necessary. For exam-
ple, one might allow the confining plane to approach the
vertex but not to touch it.

The buckling phenomena shown here greatly general-
ize the known cases of confinement-induced deformation.
Our analysis may thus may be of value in designing new

kinds of actuators. For example, the plane-confined de-
fect converts motion in a plane (via increasing δ) to am-
plified motion and forcing normal to that plane (via the
buckled region). As we have seen, opening the wedge
converts a flat sheet to a three-dimensional sheet that
subtends nonzero volume. Since these actuators don’t
require explicit molding or bending material, they may
prove especially useful for nanoscale devices made eg with
graphene or other molecular sheets [14]. The simple cases
shown here must have counterparts with more general
confining surfaces. Examples are developable surfaces
more general than cones, or those lacking circular sym-
metry.

An interesting implication of the planar-confined e-
cone studied above is that the confined shape does not
require an entire plane. We noted above that the flat re-
gion in contact with the sheet exerts no normal force on
it up to the take-off line. Thus this part of the plane may
be removed without consequence. It suffices to confine
the e-cone on a narrow wedge and on a perpendicular line
in the plane of the wedge (the takeoff line).

Finally, the generalizations of the confined defects
worked out here provide potential leverage to attack an
outstanding puzzle regarding the d-cone [9]. D-cones are
shown to have a core region governed by the thickness
of the sheet, and thence by tangential stress. However,
the nature of this stress and how it controls the size of
the core region remain a mystery. The nature of the core
region for marginally-confined cones with s0 approaching
zero would surely give insight into how the core arises.

VII. CONCLUSION

This study extends our knowledge of the relationship
between external and internal constraints on a thin sheet.
We find that under mild conditions the two forms of con-
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straint have equivalent effects. These findings add to our
flexibility in creating new forms of self-shaping materials.
They also raise the question of how far this equivalence
extends to stronger perturbations. Both subjects hold
promise for future study.

ACKNOWLEDGMENTS

The authors are grateful to William Irvine, Dustin
Kleckner, Sidney Nagel, and Shmuel Rubinstein for ex-

perimental advice. This work was supported by the Si-
mons Foundation, the NSF Materials World Network
program under Award Number DMR-0807012, and the
University of Chicago MRSEC program of the NSF under
Award Number DMR 0820054.

[1] C. Wolff, The Art of Manipulating Fabric, The Art of
Manipulating Fabric (Krause Publications, 1996).

[2] E. Cerda and L. Mahadevan, Physical Review Letters 80,
2358 (1998).

[3] E. Cerda and L. Mahadevan, Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sci-
ence 461, 671 (2005).

[4] M. M. Müller, M. B. Amar, and J. Guven, Physical
Review Letters 101, 156104 (2008).

[5] J. Guven, M. M. Müller, and P. Vázquez-Montejo,
Journal of Physics A: Mathematical and Theoretical 45,
015203 (2012).

[6] Y. Klein, E. Efrati, and E. Sharon, Science 315, 1116
(2007).

[7] J. Kim, J. A. Hanna, M. Byun, C. D. Santangelo, and
R. C. Hayward, Science 335, 1201 (2012).

[8] H. S. Seung and D. R. Nelson, Physical Review A 38,
1005 (1988).

[9] T. A. Witten, Rev. Mod. Phys. 79, 643 (2007).
[10] J. Guven, J. Hanna, O. Kahraman, and M. M. Müller,

The European Physical Journal E 36, 1 (2013).
[11] L. Pocivavsek, E. Efrati, K. Y. Lee, and R. D. Hurst,

Inflammatory Bowel Diseases 19, 704 (2013), cited by
0000.

[12] E. Sharon, B. Roman, M. Marder, G. Shin, and H. Swin-
ney, Nature 419, 579 (2002).

[13] E. Hamm, P. Reis, M. LeBlanc, B. Roman, and E. Cerda,
Nat Mater 7, 386 (2008).

[14] M. Blees, P. Rose, A. Barnard, S. Roberts, and P. L.
McEuen, Bulletin of the American Physical Society 59
(2014).

[15] I. McGregor, British journal of plastic surgery 9, 256
(1957).

[16] D. W. Furnas, Plastic and Reconstructive Surgery 35
(1965).

[17] J. Dervaux and M. Ben Amar, Phys. Rev. Lett. 101,
068101 (2008).

[18] S. M. Rubinstein, G. Cohen, and J. Fineberg, Nature
430, 1005 (2004).

[19] E. W. Weisstein, “Jacobi elliptic functions, from
mathworld–a wolfram web resource,”.

[20] N. Stoop, F. K. Wittel, M. B. Amar, M. M. Müller, and
H. J. Herrmann, Phys. Rev. Lett. 105, 068101 (2010).

[21] J. Gemmer and S. Venkataramani, Nonlinearity 25, 3553
(2012).

[22] J. Brandman, R. Kohn, and H.-M. Nguyen, Journal of
Elasticity 113, 251 (2013).


