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Abstract

The effect of a uniform (non-spatially varying) external field on the liquid-vapor interface of the

Stockmayer fluid (Lennard-Jones particles embedded with a point-dipole) has been investigated

by molecular dynamics simulations. The long-ranged parts of both the dipole and Lennard-Jones

interactions are treated using an Ewald summation, which removes the effects of the cutoff. The

direction of the field shifts the critical point and interfacial properties in different directions. For an

external field parallel to the interface, the critical temperature increases, while for a field applied

perpendicular to the interface, it decreases. The effects of the field on surface tension and interfacial

width are also investigated. For zero field, dipoles near the liquid-vapor interface show a weak

orientation parallel to the interface. For fields parallel to the interface, ordering in the liquid phase

is greater than the vapor, while for fields perpendicular to the interface, the opposite is true.
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I. INTRODUCTION

Dipolar fluids have many additional characteristics compared to simple liquids that have

important consequences in the statistical physics of these fluids. For large dipole moments,

the liquid can become ordered even in the absence of an external field [1]. The presence

of an external field brings an additional control that can be used to switch or modify the

statistical states of the fluid. Liquid-vapor coexistence is a key aspect of the phase diagram

of any liquid, and there has been much interest in liquid-vapor coexistence in dipolar systems

in an external field both experimentally [2–6] and theoretically [5, 7–21].

Experimental measurements of the change in the critical temperature in the presence of

an electric field on various dipolar molecular systems have produced varying results. Several

experiments have found that the presence of an electric field leads to a decrease in critical

temperature of binary mixtures [2, 3, 5]. Beaglehole found the change in critical temperature

for a mixture of cyclohexane/aniline depends on the field direction; the critical temperature

increases for the field perpendicular to the interface, and decreases with field parallel to the

interface [4]. However, Hegseth and Kamel found an increase in critical temperature for an

alternating current electric field applied to a spherical capacitor filled with pure SF6 at its

critical density [6].

Theoretical calculations of the change in critical temperature of dipolar fluids due to

an electric field depend on the boundary conditions. Landau and Lifsitz showed that the

electrostatic thermodynamic potential is different in the case of a constant surface charge

compared to a constant surface potential [7]. This difference leads to a reversal of the sign of

the predicted critical temperature shift. Samin and Tsori using van der Waal’s theory and

Onsager’s dieletric theory treated the vapor-liquid coexistence of polar and nonpolar fluids

in the presence of a nonuniform electric field [9]. They found for constant surface potential,

the surface tension and hence the critical temperature increases compared to the zero-field

case, while for constant surface charge, the critical temperature decreases. Mean field theory

predicts that the sign of the critical temperature shift also depends on the second derivative

of the dielectric constant with respect to composition (i.e. density for a pure fluid), which

for most fluids is positive [8]. This leads to an increase of critical temperature for constant

surface potential [5]. Stepanow and Thurn-Albrecht formulated a statistical mechanical

description of liquid systems for polar systems in an electric field with constant potential
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boundary conditions and also found that the field induced a postive shift of the critical

temperature for polar liquids [10]. Warshavsky and Zeng explicitly treated the liquid-vapor

interface using density functional theory [19] and found the critical temperature increases

for a field applied parallel to the interface, and decreases for a field perpendicular to the

interface. This suggests that a parallel field is equivalent to the constant surface potential

boundary condition.

Several simulations using a variety of methods and systems have been performed. A

canonical dipolar system to study has been the Stockmayer fluid, which is Lennard-Jones

particles with fixed point dipoles [22]. Many simulations of the critical behavior have used

the Gibbs ensemble method, which separately treats the liquid and vapor phases without an

interface. Consequently, the orientation of the field relative to the interface is not explicitly

defined. For both Stockmayer fluids and realistic fluids, the Gibbs ensemble simulations

found that the critical temperature is increased in the presence of an electric field [12, 14–

16, 18]. Srivastava et al., using molecular dynamics (MD) simulations, found that the critical

temperature of bulk water increased while for confined water it decreased in presence of

an electric field parallel to the interface [11]. Jia and Hentschke used single-phase MD

simulations and the Maxwell equal-area construction to obtain the critical point of the

Stockmayer fluid [21]. They used a reaction field method with an external field applied using

the two standard boundary conditions: constant potential and constant surface charge. As

in the above theories, they found the critical temperature increases in the constant potential

case and decreases for constant surface charge.

Our focus is on the most commonly treated dipolar system, the Stockmayer potential.

To the authors’ best knowledge, this work is the first to study the liquid-vapor interface

explicitly for a 3D Stockmayer fluid in a uniform external field. We calculate coexistence

curves, orientation profiles, surface tension, and interfacial width, and determine the effect

of the field strength and direction on these properties. We first present in the next section

an overview of the simulation methods, and then present results for the effect of different

field directions on the Stockmayer fluid for a range of dipole moments and field strength.
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II. SIMULATION METHODS AND THEORY

The Stockmayer fluid consists of Lennard Jones (LJ) interactions with a point-dipole.

The LJ potential is

ULJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (1)

where σ and ε are the LJ distance and energy parameters and r = rij = |ri − rj| is the

intermolecular distance between particles i and j. Note that we use a different epsilon

symbol, ε for the dielectric constant.

The dipolar potential is [23]

Udipole(r) =
µi · µj

r3
ij

− 3
(µi · rij) (µj · rij)

r5
ij

, (2)

where µi is the point-dipole of particle i. Expressions for the forces, torques, and pressure

of the Stockmayer fluid can be found in the literature [23–25]. LJ units are used throughout

this work and are denoted with a superscript asterisk. The LJ reduced dipole moment is

µ∗ = µ/
√
εσ3, and the LJ reduced external field is E∗ = E

√
σ3/ε.

In the presence of a uniform (non-spatially varying) external electric field Eext, an external

torque Text
i acts on the dipoles as

Text
i = µi × Eext , (3)

which tends to align the dipoles with the external field. Because the external field is uniform,

no net force is produced on the dipoles.

The long-ranged nature of the dipolar interaction can present computational challenges

in analytic methods and simulations [26]. The dipolar interactions decay as r−3 and are

therefore long-ranged and only conditionally convergent. To treat the r−3 interaction, we use

a lattice (Ewald) sum for point-dipoles [23–25, 27], along with conducting (tinfoil) boundary

conditions. It is also necessary to include a 2D slab correction [28, 29] for the case of a field

applied perpendicular to the interface (see Appendix A for more details). Alternatively,

one can use the reaction field method [30, 31] to treat the long-range dipole interactions,

which is computationally more efficient but less rigorous than the Ewald sum method. In

this work, the LJ dispersion (r−6) interaction is also treated using an Ewald sum [32–34]
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Figure 1. (Color online) Snapshot of the Stockmayer liquid-vapor interface for (a) µ∗ = 0.5,

T ∗ = 0.8, and E∗⊥ = 10.0, and for (b) µ∗ = 0.5, T ∗ = 1.0, and E∗‖ = 10.0. The direction of the

external field in relation to the interface is also shown. Dipoles are represented as dual colored

spheres, where the dipole points from blue to white.

which eliminates effects of a finite cutoff on the liquid-vapor coexistence curve and on the

interfacial properties such as the surface tension [35, 36]. For the Ewald sum, the real-space

cutoff for both LJ and dipoles was 7.5σ, and other parameters were adjusted to give a root

mean square (RMS) force error of approximately 10−4 based on formulas given in Ref. [23],

relative to a force of 1.0 in LJ units.

The simulation cell lengths were L∗x = L∗y = 10 and L∗z = 10L∗x. The number of particles

was 2992 for µ∗ = 2.0 and 3000 for all other values of µ∗. The liquid-vapor interface is in the

x-y plane, normal to the z direction. A snapshot of the liquid-vapor interface for µ∗ = 0.5

and E∗ = 10.0 is shown in Figure 1. The external field direction in relation to the interface

is also shown for the field parallel (E‖) and perpendicular (E⊥) to the interface.

For ease of post-processing, the density histogram was shifted until the liquid phase was

centered in the z direction at Lz/2. The density profile was fit using [36, 37]

ρ(z) = ρgas + 0.5 (ρliq − ρgas)

{
erf

[√
π

w
(z − 0.5Lz + z0)

]
−erf

[√
π

w
(z − 0.5Lz − z0)

]}
, (4)

which takes into account that two interfaces are formed. The parameters ρliq, ρvap, w, and z0

are obtained from the fit, where ρliq and ρvap are the liquid and vapor coexistence densities,

w is related to the interfacial width ∆ as [36]
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Figure 2. (Color online) Conceptual diagram of the polarization that occurs when an external field

is applied perpendicular to the interface.

∆2 =
w2

2π
, (5)

and z0 is the location of the interface. We note that while the density profile can be fit using

a hyperbolic tangent function (corresponding to the mean-field result), the error function is

more theoretically justified [36].

For a planar interface (normal to the z direction), the surface tension γ can be obtained

from the diagonal components of the pressure tensor P [36, 38] as

γ =
Lz

2

[
〈Pzz〉 − 1

2
(〈Pxx〉+ 〈Pyy〉)

]
, (6)

where 〈. . .〉 denotes the time average, and a factor of 1/2 is included because two interfaces

are formed.

For an external field applied perpendicular to the interface, polarization occurs due to

the change in density (in the z direction) of the liquid/vapor interface as shown in Figure

2. This polarization produces a field Epol that opposes the applied external field, and the

effective external field Eeff is less than the applied Eext, related to the dielectric constant ε:

Eeff = Eext − Epol = Eext/ε . (7)

Note that this definition of polarization is similar to that of a dielectric material inside

a parallel-plate capacitor. There are no induced dipoles in the Stockmayer system as all

point-dipoles are fixed magnitude (i.e. permanent).

The static dielectric constant of a polar fluid can be calculated as [27]
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ε = 1 + 4
3
π V −1 β

(〈
M2
〉
− 〈M〉2

)
, (8)

where V is the system volume, β = 1/ (kBT ), where kB is Boltzmann’s constant, T is the

system temperature, and M is the total dipole moment of the system:

M =
N∑
i=1

µi . (9)

We note that Eq. 8 assumes conducting (tinfoil) boundary conditions for the Ewald sum.

A position-dependent dipole orientation parameter cos θ(z) was calculated, where θ(z) is

the angle between the dipole moment at position z and the unit vector parallel to the field

(not the interface). Using the definition of the scalar product, one can express cos θ(z) for

the field applied perpendicular to the plane of the interface (i.e applied in the z direction)

as

cos θ(z) = Lz

N∑
i=1

µz,i

µi

δ(z − zi) , (10)

where δ is the Dirac delta and µz,i is the z component of µi. If all dipoles are aligned parallel

to the field, then cos θ(z) = 1. If all dipoles are aligned perpendicular to the field or are

randomly aligned, then cos θ(z) = 0. Similarly, for the field applied parallel to the plane of

the interface (i.e applied in the y direction)

cos θ(z) = Lz

N∑
i=1

µy,i

µi

δ(z − zi) . (11)

The second Legendre polynomial P2(z) of orientation [39–41] can also be calculated as

P2(z) = 1
2

〈
3 cos2 θ(z)− 1

〉
. (12)

If all dipoles are aligned parallel to the field, then P2(z) = 1. If all dipoles are aligned

perpendicular to the field, P2(z) = −1
2
, and if they are randomly aligned, then P2(z) = 0.

For simulations with zero field, cos θ(z) and P2(z) were computed using Eq. 10. We found

that an error function fit similar to Eq. 4 also worked well for cos θ(z) and P2(z) (i.e. replacing

density with orientation in Eq. 4), which gave the average orientation in the liquid and vapor

phases. In practice, ρ(z), cos θ(z), and P2(z) were calculated as histograms using 100 bins

in the z direction.
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The MD simulations were performed using LAMMPS [42]. The time step was t = 0.002.

A Langevin thermostat [43, 44] was used to control both the translational and rotational

temperatures, with a damping constant of 1.0. The liquid-vapor interface was formed by

placing a slab of liquid-like density on a face-centered cubic (fcc) lattice surrounded by slabs

of vapor-like density (also on an fcc lattice) in the z direction. The system was briefly

relaxed by minimizing the potential energy and then allowed to equilibrate by running with

dynamics. After equilibration, production simulations were then run 106 timesteps.

During the simulations, the center of mass of the system was held fixed to prevent the

interface from drifting, and the total linear and rotational momentum of the system were

zeroed every 10,000 timesteps. The LAMMPS option to zero-out the total force from the

Langevin thermostat was used.

III. RESULTS AND DISCUSSION

A. Coexistence in an external field

For dipole moments 0 ≤ µ∗ ≤ 2.5, a series of two-phase simulations were performed to

calculate the coexistence data for field strengths ranging from 0 ≤ E∗ ≤ 10.0. The density

profile at each temperature was fit using Eq. 4 to obtain coexistence densities ρgas and ρliq

and interfacial width ∆ as shown in Figure 3(a). Applying the external field parallel to the

interface lowers the liquid density and raises the vapor density, while the opposite happens

when the field is applied perpendicular to the interface.

The coexistence curve for µ∗ = 1.0 for zero field and for E∗ = 2.0 is shown in Figure 4.

The critical point was fit using the law of rectilinear diameters [45] and the universal Ising

critical exponent β = 0.326 [46]. For E∗ = 0 and µ∗ = 1.0, T ∗c = 1.415 and ρ∗c = 0.309, which

agree well with GEMC results reported by van Leeuwen and Smit [47]: T ∗c = 1.41±0.01 and

ρ∗c = 0.30 ± 0.01. Applying the external field parallel to the interface increases the critical

temperature, while applying the field perpendicular to the interface decreases the critical

temperature as shown in Figure 4, which is in agreement with DFT calculations [19].

Results for several different dipole moments µ∗ and external field strengths E∗ are shown

in Table I. Interestingly, for µ∗ = 1.0, the magnitude of the shift of the critical temperature

due to the two field directions is approximately equal as shown in Figure 4(a). For µ∗ > 1.0,
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Figure 3. (Color online) Density profiles of the Stockmayer fluid for µ∗ = 1.0, T ∗ = 1.25 for zero

field (black line, middle curve), external field parallel to the interface E∗‖ = 2.0 (red line, lower

curve in liquid phase), and external field perpendicular to the interface E∗⊥ = 2.0 (blue line, upper

curve in liquid phase). Solid lines represent the data and dashed lines represent a fit of the data

using Eq. 4.

the effect of the parallel field on Tc is greater than that of the perpendicular field as shown in

Figure 4(b), and for µ∗ < 1.0, the opposite is true as shown in Table I. The critical density

is increased for perpendicular field, while for parallel field, little change is seen as shown in

Figure 4 and Table I.

To quantify the uncertainty in the results, simulations to obtain the critical point shift

were repeated for a low dipole moment, low field strength point, and for a high dipole, high

field strength point: for µ∗ = 1.0 and E∗ = 1.0, and for µ∗ = 2.5 and E∗ = 3.2. These

simulations were run for 106 timesteps as described above, but were broken into 4 blocks

which were used to calculate 95% confidence intervals based on the Student’s t distribution.

For µ∗ = 1.0 and E∗‖ = 1.0, ∆T ∗c = 0.017 ± 0.010 and ∆ρ∗c = 0.001 ± 0.012, while for

E∗⊥ = 1.0, ∆T ∗c = −0.023 ± 0.011 and ∆ρ∗c = 0.001 ± 0.010. For µ∗ = 2.5 and E∗‖ = 3.2,

∆T ∗c = 0.427± 0.015 and ∆ρ∗c = 0.000± 0.008, while for E∗⊥ = 3.2, ∆T ∗c = −0.211± 0.032

and ∆ρ∗c = 0.082 ± 0.004. The direction of the shift in critical temperature is statistically

significant in all of these cases. The shift in critical density is typically so small and is

not statistically significant, except for the high field and dipole moment case of µ∗ = 2.5

and E∗⊥ = 3.2. We also note that while using the universal Ising critical exponent to fit

critical point data should give results that are not highly dependent on the finite size of the

system [27], a more sophisticated finite-size scaling method to obtain the critical point in
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Figure 4. (Color online) Phase coexistence curves of the Stockmayer fluid for (a) E∗ = 0 and 2.0

and µ∗ = 1.0 and (b) E∗ = 0 and 3.2 and µ∗ = 2.5

the thermodynamic limit (not used in this work) has been developed [48–51].

Our results for ∆T ∗c can be compared to other calculations for the Stockmayer fluid in

an external field. Figure 5 shows the field dependence for three values of µ∗. Most of the

data points are in agreement. There is more data with positive ∆T ∗c , because the data from

Monte Carlo simulations only yields the constant potential boundary condition, which has

∆T ∗c > 0. The agreement between our data with the field parallel to the interface and the

other data with constant surface potential boundary condition implies that the two cases

are equivalent. While there is less data for the perpendicular field and constant surface

charge, the data suggests that these two are equivalent. The foundation for this is in the

polarization of the dipoles as discussed below. For E∗ = 5.0, our results for ∆T ∗c are 19%

higher than those of Ref. [16] and 44% lower than the mean field result in Ref. [21], as shown

in 5(c). At this large dipole moment and field strength, it is not surprising that the mean
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Table I. Critical point data.

µ∗ E∗‖ E∗⊥ T ∗c ∆T ∗c ρ∗c ∆ρ∗c

0.5 0.0 0.0 1.309 — 0.311 —

0.5 6.0 0.0 1.352 0.043 0.302 -0.009

0.5 0.0 6.0 1.231 -0.078 0.319 0.008

0.5 10.0 0.0 1.369 0.060 0.309 -0.002

0.5 0.0 10.0 1.183 -0.126 0.312 0.001

1.0 0.0 0.0 1.415 — 0.309 —

1.0 1.0 0.0 1.430 0.015 0.312 0.003

1.0 0.0 1.0 1.390 -0.025 0.317 0.008

1.0 2.0 0.0 1.471 0.056 0.312 0.003

1.0 0.0 2.0 1.352 -0.063 0.327 0.018

1.0 2.0 2.0 1.423 0.008 0.323 0.014

2.0 0.0 0.0 2.066 — 0.285 —

2.0 1.5 0.0 2.243 0.177 0.289 0.004

2.0 0.0 1.5 2.016 -0.050 0.302 0.017

2.5 0.0 0.0 2.602 — 0.269 —

2.5 2.0 0.0 2.906 0.304 0.270 0.001

2.5 0.0 2.0 2.489 -0.113 0.314 0.045

2.5 3.2 0.0 3.026 0.424 0.266 -0.003

2.5 0.0 3.2 2.395 -0.207 0.355 0.086

2.5 5.0 0.0 3.224 0.622 0.266 -0.003

field approximation fails.

Jia and Hentschke used single-phase MD simulations and the Maxwell equal-area con-

struction to obtain critical points of the Stockmayer fluid [21]. This requires homogeneous

simulations at thermodynamically metastable and unstable conditions. With this method,

it is necessary to use small simulation sizes to prevent phase separation; the size of the

simulation box must be smaller than the spatial scale of density fluctuations [52]. Jia and

Hentschke found that for constant surface charge boundary conditions using a large field

led to inhomogeneities. Since we include the interface explicitly, we can simulate larger per-
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Figure 5. (Color online) Shift in critical temperature ∆T ∗c vs field strength E∗ for Stockmayer fluid

at (a) µ∗ = 0.5, (b) µ∗ = 1.0, and (c) µ∗ = 2.5. Black triangles represent simulation results from

this work, red squares and diamonds represent simulation and mean-field results, respectively from

Ref. [21], and additional simulation results are also shown as blue circles (Ref. [14]), green crosses

(Ref. [16]). Open triangles, diamonds, and squares represent perpendicular field (i.e. ∆T ∗c < 0) ,

while all other symbols represent parallel field.

pendicular fields. However, we note that for µ∗ = 2.5 with E∗⊥ = 5.0, we were also unable

to form a distinct liquid-vapor interface as the simulations consisted entirely of interfacial

region without a strong separation between the two phases.

For E‖, a relative critical temperature TE
c is defined as

TE
c,‖ =

Tc(E‖)

Tc(0)
, (13)

where Tc(E) is the critical temperature at field strength E, and Tc(0) is the critical point
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for zero field [16]. For E⊥, the critical point is decreased, so we define the relative critical

temperature as

TE
c,⊥ =

Tc(0)

Tc(E⊥)
, (14)

so that TE
c is always greater than one. The data in Table I collapses by using a dimensionless

field defined for parallel field as

ηE‖ =
µE‖
TE

c,‖
, (15)

and for perpendicular field as

ηE⊥ =
µE⊥
TE

c,⊥
. (16)

The effect of dipole strength and external field on Tc are shown in Figure 6. The results

for µ∗ ≥ 1.0 and parallel field roughly match the the results for µ∗ ≤ 1.0 and perpendicular

field when ηE‖ = ηE⊥ . Similarly, the results for µ∗ ≥ 1.0 and perpendicular field roughly

match the the results for µ∗ ≤ 1.0 and parallel field when ηE‖ = ηE⊥ , though the slope of the

solid line is 2.13 times greater than the slope of the dashed line. We note that the results

in Figure 6 for µ∗ ≥ 1.0 with parallel field can be directly compared to results for GEMC

simulations shown in Figure 5 of Ref. [16].

Another interesting case is when the external field has both a parallel and perpendicular

component, and there is a competing effect on the critical point; the parallel field increases

Tc and the perpendicular field decreases Tc. For µ∗ = 1.0 and E∗‖ = E∗⊥ = 2.0, this effect

is approximately equal, and there is little change on Tc as shown in Table I. However, the

phase coexistence curve is broadened relative to the zero field case.

B. Interfacial properties

Surface tension γ vs temperature is shown in Figure 7. For fixed temperature, surface

tension increases for parallel field, and decreases for perpendicular field. Interfacial width

vs temperature is shown Figure 8. We note that the interfacial width depends on the

interfacial area due to capillary waves [36]. The interfacial width decreases for parallel field

and increases for perpendicular field.
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Figure 6. (Color online) Relative critical temperature TE
c vs dimensionless field ηE for µ∗ = 0.5

(circles), µ∗ = 1.0 (diamonds), µ∗ = 2.0 (squares), and µ∗ = 2.5 (triangles). Blue open symbols

represent parallel field, and red closed symbols represent perpendicular field. The solid line is a

least-squares fit of the data including µ∗ ≥ 1.0 with parallel field, µ∗ ≤ 1.0 with perpendicular

field, and the zero field case. The dashed line is a least-squares fit to the data including µ∗ > 1.0

with perpendicular field, µ∗ < 1.0 with parallel field, and the zero field case.

0.9 1 1.1 1.2 1.3 1.4
0

0.2

0.4

0.6

0.8

T*

γ*

 

 

zero field
parallel
perpendicular

Figure 7. (Color online) Surface tension vs temperature for µ∗ = 1.0 and E∗ = 0 and 2.0. Lines

are included as a guide for the eye.

The orientation profiles cos θ(z) as calculated using Eqs. 10 and 11 for µ∗ = 1.0 are

shown in Figure 9. We remind the reader that orientation θ is calculated parallel to the

field direction (not the interface), so the magnitude of orientation can be directly compared

for different field directions. For a field applied parallel to the interface, the ordering in the
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Figure 8. (Color online) Interfacial width ∆∗ for A∗ = 100 vs reduced temperature T ∗ for µ∗ = 1.0

and E∗ = 0 and 2.0. Lines are included as a guide for the eye.

liquid phase is greater than that in the vapor phase, while for a field applied perpendicular

to the interface, the opposite is true. A similar trend was reported by Jia and Hentschke

[21], albeit for constant surface potential and charge boundary conditions.

To confirm these results, bulk liquid and vapor-phase simulations using coexisting densi-

ties from the previous two-phase simulations were performed with an applied external field

E∗ ext = 1.0 to obtain the average liquid and vapor orientation. Simulations for bulk liquid

and vapor-phase simulations with zero field were also run to obtain the dielectric constants

of the liquid and vapor phases, which gave ε = 7.92 for the liquid and ε = 1.06 for the

vapor. A third set of bulk liquid and vapor-phase simulations were then run using a reduced

external field (Eq. 7) of E∗ eff = 0.126 for the liquid and E∗ eff = 0.941 for the vapor to mimic

polarization. As seen in Figure 9, the orientation for the two-phase simulation with parallel

field E∗‖ = 1.0 is in excellent agreement with the bulk simulations for E∗ ext = 1.0. The

orientation for the two-phase system with perpendicular field E∗⊥ = 1.0 is also in excellent

agreement with the bulk systems and external field reduced by the dielectric constant E∗ eff ,

because of the polarization that occurs when the field is perpendicular to the interface.

The connection between these two boundary conditions and the external field direction

has not been made previously, but as noted above (cf. Fig. 5) the ∆T ∗c data implies that

constant surface potential boundary condition is equivalent to a parallel field and constant

surface charge boundary condition is equivalent to a perpendicular field. Further confirma-
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Figure 9. (Color online) Dipole orientation parameter cos θ(z) vs position z at T ∗ = 1.0, for

µ∗ = 1.0 and E∗ = 1.0. Dashed lines are for bulk liquid system and dot-dashed lines are for bulk

vapor system. The blue lines are for the parallel field, and the red lines are for perpendicular field.

For the bulk perpendicular case, the simulation field strength is E∗ = 1.0/ε.

tion of these equivalences is given by orientation data for different fields shown in Figure

9. These results are consistent with the parallel field direction resulting in no polarization

which is equivalent to the constant surface potential. Hence, simply applying an external

field in a GEMC simulation corresponds to a field applied parallel to the interface and to

a constant surface potential boundary condition. The connection between the boundary

condition and the direction of the applied field is the nature of the polarization as discussed

in the text concerning Eq. 7. When the field is applied perpendicular to the interface, the

density in the direction of the field changes at the interface, and the polarization occurs

at the interface. This polarization reduces the external field of the fluid by a factor equal

to the static dielectric constant (for the conditions shown in Figure 9) and corresponds to

a constant surface charge boundary condition. For this reason, a bulk simulations of the

dipolar liquid must use the reduced field to be equivalent to the case with an interface as

shown in Fig. 9. For the parallel field case, the density does not change in the direction of

the field and the field is not altered by polarization. Thus, this corresponds to the constant

potential boundary condition.

Even for zero external field, some ordering still occurs near the interface as shown in

Figure 10. This effect was also observed in simulations of Stockmayer fluids by Mecke et

al. [40]. The effect is small in magnitude, but the difference between the interface and bulk
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Figure 10. Orientation profile P2(z∗) vs position z∗ for E∗ = 0, µ∗ = 2.5, and T ∗ = 2.2. The

dashed line at P2(z∗) = 0 is included as a guide for the eye.

regions is clearly distinguishable in our simulations too.

Average orientation cos θ vs external field strength for µ∗ = 1.0, and T ∗ = 1.2 for both

liquid phase and vapor phases is shown in Figure 11. The difference in orientation for parallel

vs perpendicular fields for a given field strength is greater for the liquid than for the vapor.

The variation of the orientation cos θ(z) within the interfacial region vs density for µ∗ = 1.0

and T ∗ = 1.2 is shown in Figure 12. For parallel field, the orientation increases with density,

while it decreases for perpendicular field due to the density dependence of the dielectric

constant. A similar dependence of the orientation on the density was reported previously

for the corresponding boundary conditions (see Figure 9 of Ref. [21]).

IV. CONCLUSION

By performing molecular dynamics simulations explicitly treating the liquid-vapor inter-

face for a Stockmayer fluid, we determined the effect of an external field magnitude and

direction on the properties of the coexisting phases. In a field perpendicular to the inter-

face, we find that the critical temperature decreases, the surface tension decreases, and the

interfacial width increases. For the field parallel to the interface, the change is opposite to

the perpendicular case. The orientational order in the liquid and vapor phases depends on

the field direction and exhibits a polarization effect for perpendicular fields. The alignment

of the dipoles in the liquid is less than in the vapor phase for perpendicular fields, because

of the polarization which produces an alignment in the liquid phase equal to the alignment

17



0.0

0.1

0.3

0.4

0.6

0 0.5 1 1.5 2

co
s 
θ

parallel
perpendicular

0.0

0.1

0.3

0.4

0 0.5 1 1.5 2

co
s 
θ

E*

(a)

(b)

Figure 11. (Color online) Average orientation cos θ vs external field strength for µ∗ = 1.0 and

T ∗ = 1.2 for (a) liquid and (b) vapor phase. The lines are included as a guide for the eye.
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Figure 12. Orientation profile cos θ(ρ∗) vs ρ∗ for E∗ = 1.0, µ∗ = 1.0, and T ∗ = 1.2. The lines are

included as a guide for the eye.

in a bulk liquid with field E/ε (at least for the conditions shown in Figure 9). In the parallel

case, there is no polarization effect and the order in the liquid phase is larger than in vapor

phase.

These results help explain many of the differences found in previous theoretical works.
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Our results show that applying an external field to a GEMC simulation corresponds to a

field parallel to the interface resulting in an increase in Tc with field. Comparison with

simulations of Jia and Hentschke [21] show that their boundary conditions of fixed potential

and charge density, correspond to parallel and perpendicular field directions, respectively.

The results also lay a foundation to understand experimental data by treating a well defined

dipolar system. Insofar as the experimental system is well modeled by the Stockmayer

fluid, our results should agree with experimental data (e.g. the sign of the change in Tc),

such as for pure SF6 [6]. However, most experiments on polar liquids have been for liquid

mixtures [2–4, 8], and additional factor(s) can alter the sign of the change in Tc [53]. For

more complicated experimental systems, our results provide a base to understand the effect

of additional characteristics beyond the simple dipolar model.
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Appendix A: Ewald Slab Correction

To simulate a planar interface of the Stockmayer fluid, one could use a 2D Ewald sum

along with nonperiodic boundary conditions (for example, specular reflecting walls) in the

direction normal to the interface. However, the 2D Ewald sum is much more expensive than

the 3D Ewald sum [27], and using nonperiodic boundary conditions can lead to artifacts.

Mecke et al. studied the Stockmayer fluid in zero field and found that the 3D Ewald sum

is equivalent to the 2D Ewald sum if the spacing between slabs is sufficiently large [40].

However, for systems with a net dipole in the direction normal to the interface (i.e. when

an external field is applied perpendicular to the interface) periodically repeated slabs pro-

duce spurious electric fields, much like a stack of parallel plate capacitors [27], which can

erroneously influence the orientation of the point-dipoles. A slab correction [28, 29] can be

included to reduce this undesirable effect.

The correction term for an infinitely thin slab is [28, 29]

U c = −2π

V
M2

z , (A1)

where Mz is the total dipole moment in the z direction:

Mz =
N∑
i=1

µi . (A2)

The spurious field due to periodically repeated slabs is approximated by

Ec
z = − ∂U

c

∂µz,i

=
4π

V
Mz . (A3)

Because this field is uniform (non-spatially varying), there is no net force on the dipole, but

there is a torque:

Tc
i = µi × Ec , (A4)

and therefore T c
z,i = 0,

T c
x,i =

4π

V
Mz µy,i , (A5)

and
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Table II. Approximate size of vapor and liquid regions for the simulations.

Simulation Vapor Size Liquid Size

1 50 25

2 100 50

3 50 50

4 100 25

5 200 25

T c
y,i = −4π

V
Mz µx,i . (A6)

Subtracting the above corrections for energy and torque from the respective system energy

and torque is termed the Ewald slab correction in this work.

The slab correction term is a first-order correction that gives the correct limiting behavior

for an infinitely thin slab. However, it has been shown that including this lowest-order term

and inserting a layer of empty volume that makes the inter-slab spacing 3 to 5 times larger

than the thickness of the slab is sufficient [27]. In order to reduce artifacts from using a

reflecting wall, the thickness of the vapor region (which has a low density and acts similar

to a region of vacuum) was increased relative to that of the liquid, and periodic boundary

conditions were used instead. Simulations (see below) show this to be reasonable.

A series of simulations were run in which the thickness of the vapor and liquid phases

was varied as shown in Table II, with µ∗ = 1.0, T ∗ = 1.0, and E∗⊥ = 1.0. The simulation cell

size was L∗x = L∗y = 9 with L∗z given by summing the approximate liquid and vapor sizes in

Table II. The real space cutoff for the Ewald sum was rcut = 6.0σ, and Ewald parameters

were adjusted to give a relative RMS force error of approximately 10−5 as predicted by

formulas given in Ref. [23] relative to a force of 1.0 LJ units. Neglecting the slab correction

when there is a net dipole moment in the z direction (i.e. for perpendicular field) causes the

liquid phase orientation to be highly dependent on the system size, but including the slab

correction greatly reduces this dependence as shown in Figure 13 and also gives excellent

agreement with a bulk simulation at liquid density with with E∗ = 1.0/ε (cf. Figure 9). The

Ewald slab correction was therefore used for all other two-phase simulations shown in this

work.
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Figure 13. (Color online) Liquid orientation for varying size of liquid and vapor regions, with

µ∗ = 1.0, T ∗ = 1.0, and E∗⊥ = 1.0 with (blue squares) and without (red triangles) the Ewald slab

correction. Orientation for a bulk simulation at liquid density with E∗ = 1.0/ε (cf. Figure 9) is

also shown (solid black line).
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