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Passive particles exhibit unique properties when immersed in an active bath of self-propelling
entities. In particular, an effective attraction can appear between particles that repel each other
when in a passive solution. Here we numerically study the effect of hydrodynamics on an active-
passive hybrid system, where we observe qualitative differences as compared to simulations with
excluded volume effects alone. The results shed light on an existing discrepancy in pair lifetimes
between simulation and experiment, due to the hydrodynamically enhanced stability of coupled
passive particles.
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Introduction.—Active, self-propelling entities are ubiq-
uitous in biological and physical systems, comprising sus-
pensions of bacteria [1–5], eukaryotes [6], manufactured
nanomotors [7–9], zooplankton [10], and algae [11] to
name a few. These nonequilibrium systems exhibit in-
triguing collective behaviours such as self-assembly [12],
phase separation [13], and coherent, coordinated motions
[2–4, 14]. The presence of active matter also causes
unique properties to appear in suspensions of passive
particles, including enhanced diffusion (effective temper-
ature) [6, 15–18] and pair formation (effective interac-
tions) [19]. Improving our understanding of the complex
behaviors of these systems and the interplay between ac-
tive and passive bodies is vital to their application to such
problems as the targeted delivery of microscopic cargos
[20], the development of micromotors [21] and shuttles
[22], nanometer-scale mixing [23], and water remediation
[24].
As an active body propels itself through a medium, it

creates a fluid flow that extends toward other objects, fa-
cilitating both short and long range interactions [25, 26].
For example, the bacterium Escherichia coli produces a
dipole flow field as it swims (see Fig. 1), with fluid be-
ing forced out the front and back of its trajectory by its
head and flagella respectively. The role of these hydro-
dynamic effects in various forms of emergent behavior is,
however, a central, unresolved issue in the field of active
matter, with the impact being characterized as anywhere
from neglible and quantitative [21] to pivotal and qualita-
tive [27, 28]. This variation demonstrates the importance
in determining how hydrodynamic interactions influence
each emergent property of a system.
When passive colloidal particles are immersed along

with active particles, the off-equilibrium driving force of
the active matter leads to an effective attraction between
the passive elements [19]. The active matter in this case
can be seen as a fluctuating field around the passive par-
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ticles, where forces aligned along a pair’s connecting line
tend to reduce the separation between the particles. The
role of hydrodynamics on the stability and dynamics of
the resulting pairs, however, remains unknown, as previ-
ously the work in Ref. [19] evaluated only steric forces
between particles. While excluded volume collisions be-
tween particles can lead to pair formation, certain aspects
of the fluid flow (e.g., the entrainment of fluid perpendic-
ular to a bacterium’s trajectory) cause directional behav-
ior impossible to realize with steric interactions alone.

In this Letter, we computationally analyze the impact
of hydrodynamics on the diffusion and pair formation
of passive particles embedded in an active bacterial sus-
pension. The active bodies are run-and-tumble parti-
cles (representing E. coli) while the passive entities are
spheres (representing latex beads). Run-and-tumble dy-
namics (exhibited by some bacteria) cycles between a
period of straight propulsion at constant velocity v fol-
lowed by a (much shorter) period of tumbling, in which
the orientation of the object is randomized. This allows
the bacterium to explore its environment in a random
walk pattern over long time scales. While directly re-
lated to the motion of certain bacteria, this model can
also be mapped [29] onto active Brownian particles such
as self-phoretic Janus spheres [13, 30, 31]; therefore, the
results can be extended to a variety of systems beyond
simple run-and-tumble dynamics. We find that the pres-
ence of explicit hydrodynamics enhances the pair stabil-
ity of passive particles, evident in the shift of a peak in
the radial distribution function. Furthermore, the degree
of coordination and number of contacts is substantially
increased in simulations with hydrodynamics. We note
that this study concerns only so-called pushers, which
are the class of swimmers relevant to the referenced lit-
erature, and does not examine the dynamics of pullers
[26].

Method.—We simulate Np passive spheres of diameter
d and Na active rods of length l (along the swim direc-
tion) and width w in a 2D box of side length L. Typ-
ical experiments are quasi-2D [16, 19], and the effective
free-slip 3rd dimension in simulations is comparable to,
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FIG. 1. (color online). Fluid flow around a swimmer (green)
alongside a passive particle (red). Blue vectors indicate the
velocity of the fluid at each location, and the swimming direc-
tion is directly downward. The force centers of the swimmer
are also shown (black circles). The distance between field
vectors is 1 µm.

e.g., a suspended soap film [16]. A rod can be in either
the run or tumble phase (denoted with boolean θ, where
θ = 0 and θ = 1 correspond to run and tumble phases
respectively), with characteristic durations τr and τt re-
spectively (transitions between phases occur with rate
1/τr and 1/τt). The rods have an orientation unit vector
ê and have C = 3 force centers aligned with it (see Fig.
1). Given a position r, these centers are located at r and
r± êl/3 (the rods considered have a length to width ratio
of l/w = 3, suitable for E. coli [16]). Direct interaction
between particles is due to a pairwise excluded volume
force fE between force centers, given by

fE(r
p
i , r

q
j) = Amax(ai + aj − |rpi − r

q
j |, 0), (1)

where ai is the radius (w/2 for a rod) of the ith parti-
cle and r

p
i is the location of the pth force center of the

ith particle. A determines the magnitude, which is set
high enough to prevent appreciable overlap. For simula-
tions that include hydrodynamics, the fluid velocity field
is modelled via the lattice Boltzmann method [32], which
allows for a simple and powerful coupling of fluid and par-
ticle dynamics via the immersed boundary method [33]
and has previously been adapted to active matter simu-
lations [34, 35]. In this method, the fluid-particle force
fF takes place via a friction term evaluated at a series of
nodes across the particle’s surface, and takes the form

fF (r
j
i ) = γi(u(r

j
i )− v

j
i ), (2)

where r
j
i is the position of node j, γi is the friction co-

efficient, u is the (interpolated) fluid velocity, and v
j
i is

the velocity of the particle at node j. A force equal in
magnitude but opposite in direction is applied back onto
the fluid at each node, such that the total momentum of

the system is conserved. Brownian dynamics is neglected
in the present study because the velocity of active mat-
ter is orders of magnitude larger than that created by
thermal fluctuations, which would place a needless re-
striction on the timestep. The active nature of the bath
is the primary cause of the dynamics [19] in contrast to
thermal depletion effects [36]. A rod experiences a self-
propulsion force fR = B ê(1− θi) (with an equal and op-
posite force applied to the fluid) and a zero-mean, Gaus-
sian distributed random torque TR = ξRθi. The variance
of this torque determines the average rate of change in
orientation during a tumbling event. The self-propulsion
magnitude B determines the maximum swimming speed.
The total force and torque on rod i are thus

Fi =

Si∑
j

fF (r
j
i ) +

Na+Np∑
j 6=i

Ci,Cj∑
p,q

fE(r
p
i , r

q
j) + fR,

Ti =

Si∑
j

(rji − ri)× fF (r
j
i ) +

Ci∑
p

(rpi − ri)× f
p
E +TR,

(3)

where the ith particle has Si surface nodes and f
p
E is

the sum of the excluded volume forces on force center p.
These equations are integrated using a modified leapfrog
algorithm (since the force depends on velocity), given by

v(t +∆t) =
F∆t/m

1 + γ∆t/2m
+

1− γ∆t/2m

1 + γ∆t/2m
v(t),

r(t+ 3∆t/2) = r(t+∆t/2) + v(t+∆t)∆t,

(4)

with particle mass m, where the term F does not include
the v component of the friction, for clarity. This equation
follows from assuming the friction acts on the average
velocity of a particle during the time interval ∆t. These
equations mainly serve to smooth out the momentum
transfer with the fluid lattice, as the motion of particles
inevitably reduces to

v = F/γ, (5)

due to the low Reynolds number (low velocity, high
viscosity—no memory) of the system.
We simulate spheres of diameter d = 5 µm, and rods of

l = 3 µm and w = 1 µm. The self-propulsion magnitude
B is fixed such that the swimmers achieve a velocity of 30
µm/s (i.e., B/γ = v). The variance of ξR (the tumbling
torque) is set to be consistent with the experimentally ob-
served average change in orientation of E. coli during a
tumbling event (around 68°, see Table 1 of [37]), which is
sufficient to prevent any long term correlation in swim-
mer orientation. Here 〈ξR(t)ξR(t

′)〉 = 4kBTγδ(t − t′),
where γ is the swimmer friction coefficient, kB is Boltz-
mann’s constant, and T is the temperature (300 K).
This form was chosen to correspond to the thermal fluc-
tuations seen in Brownian Dynamics (BD), but there
is no temperature in these simulations. Friction coef-
ficients take the general form γ = φρνd where φ is a
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FIG. 2. (color online). Mean squared displacement of the
HDMD (red solid) simulation as a function of time, with
(∆r2 ∝ tα) ballistic (blue dashed) and simple diffusive (green
dotted) curves also shown. At short times the spheres exhibit
superdiffusive motion, owing to correlated interactions with
the swimmer fluid flows and collisions, but this eventually
transitions into simple diffusion for t >1 s (due to reduced
correlation). Inset: same plot for MD simulations, where the
same characteristics can be seen, but the shift occurs on a
shorter timescale, at a much lower magnitude.

constant, ρ is the fluid density (1000 kg/m3 for water),
and ν is the kinematic viscosity (10-6 m2/s for water).
We choose φsphere = 16/3 (suitable for a disk), and
φrod = 1.27φsphere (where the prefactor comes from the
aspect ratio). Different schemes of choosing φ tend to
yield the same order of magnitude, and different values
were not found to significantly impact the results (con-
sider that the swimming speed will remain unchanged,
so the value of φ mainly affects the value of B). The
box length L = 128 µm was chosen to reduce the error in
the fluid velocity field around a swimmer (caused by pe-
riodic boundary conditions) below 5%. We set Np = 33
and Na = 330, which corresponds to a coverage of 10%
of the area. Data for 60 simulations with hydrodynamics
and (mechanical) molecular dynamics (hereafter referred
to as HDMD) with timestep 1/6 µs and run time 28 s
and 60 simulations with molecular dynamics alone (here-
after referred to as MD) with timestep 1/6 x 102 µs and
run time 60 minutes were collected. The MD simulations
still have a friction force, but there is no fluid velocity
field. This distinction allows us to elucidate the contri-
bution of explicit hydrodynamics to the problem. The
difference in timestep comes from the need to propagate
the fluid field across the lattice at a suitable speed, but
the MD simulations progress very slowly in comparison
to the HDMD runs (as will be discussed below) such that
the two run times are comparable dynamically.

Results.—The mean squared displacement (MSD) of
spheres in HDMD simulations is given in Fig. 2 as a func-
tion of time. Spheres exhibit superdiffusive (near ballis-
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FIG. 3. (color online). Radial distribution function g(r) for
HDMD (red solid) and MD (blue dashed) simulations, with
the distance in units of sphere diameter d. Adjacent graph-
ics indicate the typical formation leading to the shown peaks.
MD peaks are narrow due to the relatively low rate of colli-
sions for a close pair. It takes a long time for particles to get
knocked out of the tightly bound state, and they are gener-
ally pushed directly out to the secondary peaks upon splitting.
The two separate MD peaks at 1.2d are due to different angles
and local rod formations when a swimmer splits a pair, and
the distinction is not significant. Inset: same plot zoomed out
to see the full range.

tic) motion at short time scales, due to the driving mo-
tion of nearby swimmers (which increases velocity corre-
lation from one time to the next). At long timescales the
spheres transition into a simple diffusive motion, since
the field of swimmers leads to random impulses (a well-
known result, see [16] for example). The timescale of
the transition from superdiffusive to simple diffusive mo-
tion is comparable to the typical duration of a swimmer’s
run period. This can be interpreted as the time scale of
constant-direction force being applied to a particle, prior
to the onset of random impulses. The inset of Fig. 2
also gives the diffusion for MD simulations, which shows
a similar behavior; however, the transition occurs at a
shorter timescale and reduced magnitude. This can be
understood when considering that the MD swimmers in-
teract with the spheres only for the short duration where
they physically collide, while the HDMD swimmers in-
teract with spheres on approach, during physical colli-
sion, and through the wake upon departure. The HDMD
swimmers also cause an impact when they avoid a sphere
and pass by the side, an interaction entirely missing with
MD swimmers. Quantitatively, the value of the MSD at
25 s is 8 × 103 µm2 for HDMD, 17 µm2 for MD, and 16
µm2 for a BD control (isolated sphere, D = kBT/γ).
While the HDMD case yields values comparable with
the experimental results in Fig. 2 of [16], the MD case
(without BD) is nearly indistinguishable from an isolated
sphere experiencing thermal fluctuations.
The radial distribution function g(r) between spheres
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is given in Fig. 3. The only explicit interaction between
spheres defined in the mechanics is a steric repulsion, and
an ideal case would lead to a nearly flat g(r) (outside the
excluded volume region) indicating no organization (the
spheres here have a packing fraction of only 0.04). Here
we see a characteristic peak at d, indicating the formation
of pairs and the existence of effective attraction between
spheres, and a secondary peak at 1.2dwhich is the separa-
tion caused when a swimmer moves between two spheres
and splits them apart. When a pair gets into a tightly
bound state at d, most forces acting on the pair will ei-
ther cause it to rotate or translate (preserving distance).
One can imagine the bath of active matter representing
a fluctuating field of forces (including both collisions and
hydrodynamic effects) acting on the pair, and only a high
degree of local variability (along the connecting axis) will
cause the pair to split. This typically occurs due to direct
physical contact from an approaching swimmer, although
it is possible for swimmers moving parallel to the side of
a pair to produce a field which increases the distance be-
tween the spheres (since the front and back velocity fields
are in opposing directions). This reflects the work done
in [19], but there is an important qualitative distinction.
While the MD peak occurs strictly at 1.2d and to the
right of it, the HDMD peak is entirely contained to the
left of 1.2d, indicating that the act of a swimmer pass-
ing between a pair of spheres causes some post-collision
stabilization. We can understand this in terms of the
swimmer’s flow field, as given in Fig. 1. The fluid to the
sides of a swimmer is entrained inward, so that a swim-
mer draws nearby spheres towards it if it passes between
them. While this force is weak at long distances, the ef-
fects are clearly visible at short distances. This type of
interaction is impossible to achieve in the (purely-steric)
MD simulations. This leads to the conclusion that pair
stability is enhanced by fluid dynamics (since the primary
originator of pair separation is the action of a swimmer
passing directly between two spheres). However, the dy-
namical timescales are so widely separated between MD
and HDMD simulations that it is difficult to definitively
make this claim. Recall that the MSD is orders of mag-
nitude apart, so that pair lifetimes are an order of mag-
nitude longer in MD simulations (typically 18 s for MD
and 2 s for HDMD on average), but this does not mean
the pairs are more stable. Still, this helps to explain a
discrepancy uncovered in [19], where the (MD) simula-
tions yielded more intermittent pair behavior as opposed
to that observed in experiment. That is, when a pair
experiences a potential break, the typical separation in-
curred is much smaller for the case with hydrodynamics,
so that any simulation without hydrodynamics will see
pairs break more easily. Another feature of this plot is
the general reduction in magnitude for the interpeak re-
gion in MD simulations. Data for contact numbers will
help to elucidate the result of this distinction.

Table I shows the likelihood of spheres to form contacts
at any time (where a contact is defined by a pairwise dis-
tance less than 2d). A variety of different pair formation

TABLE I. Percent likelihood of number of sphere contacts
(with other spheres) for HDMD and MD simulations. Pairs
and triplets are significantly more likely to form in the HDMD
case, and likewise the number of lone spheres is reduced. The
standard error of the mean is shown.

Contacts MD % HDMD %
0 70.3± 0.2 61.4± 0.5
1 26.0± 0.2 31.6± 0.3
2 3.5± 0.1 6.4± 0.2
3 0.2± 0.0 0.6± 0.1
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FIG. 4. (color online). Average number of spheres (coordina-
tion number) within a distance r of a given sphere (units in
terms of sphere diameter d) for HDMD (red solid) and MD
(blue dashed) simulations. Inset: HDMD results divided by
MD results, showing significant changes close to the sphere.

cutoffs and alternative pair definitions were tested, and
the results were found to be robust and insensitive to the
method used. The HDMD spheres are much more likely
to form pairs (20% more) and triplets (85% more). This
result is echoed and clarified in Fig. 4, which shows the
coordination number,

N(r) =

r∫

0

2πr′g(r′)dr′, (6)

around a sphere as a function of distance. The number
of spheres within w for HDMD is approximately 5 times
(see inset) that seen in the MD case, indicating a signifi-
cant increase in the number of tightly bound pairs. This
is likely due to the effective stabilization caused by the
fluid flow of an impinging swimmer, which tends to keep
the pair within 1.2d rather than force the pair outside
that distance as in the MD case. While the symmetry of
the hydrodynamic field would yield both attraction and
repulsion in equal amounts after a swimmer splits a pair,
there is an asymmetry invoked by the reorientation of the
swimmer: attractive fluid flows occur immediately after
the split, but the full extent of repulsive flow will never
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TABLE II. Data as in Table I, but showing the difference be-
tween NOS/NOT and HDMD simulations (where a plus sign
indicates a higher percentage for NOS/NOT). While the trend
for both is an increase in contact numbers, the changes are
relatively small (and in some cases statistically insignificant).
The error shown is the sum of the errors for NOS/NOT and
HDMD values.

Contacts NOS △% NOT △%
0 −2.1± 1.2 −3.8± 1.0
1 +1.4± 0.8 +1.7± 0.8
2 +0.6± 0.6 +1.8± 0.6
3 +0.1± 0.2 +0.3± 0.2

occur (which would require a straight run by the swim-
mer over a large distance and time, without tumbling,
collisions, or torque due to local variations in fluid veloc-
ity). One can also consider the fact that the quantity and
duration of interactions between swimmers and passive
particles is increased in the HDMD simulations (because
the number of interactions is not restricted to mechanical
collisions), so that the likelihood of experiencing an effec-
tive attraction at any given time is much higher. Quali-
tatively, the HDMD simulations contain many instances
where pairs or triplets (and higher orders) move and ro-
tate as a unit rather than as constituent individuals. This
is because the fluid velocity field allows swimmers to in-
teract simultaneously with multiple passive particles. In
contrast, MD simulations are nearly incapable of exhibit-
ing concurrent movements (at the density studied) except
in cases where the spheres are in direct physical contact
(which is less likely in the MD case).
In order to assess the effect that certain system ele-

ments have on the aforementioned results, two additional
control simulations were performed under identical con-
ditions to the HDMD runs, with one difference each. In
the first, steric interactions between swimmers and pas-
sive spheres were removed (hereafter referred to as NOS).
Steric interactions between two swimmers and between
two spheres still exist, but a swimmer can only push a
sphere indirectly, through its hydrodynamic field. The
second simulation has no tumbling (hereafter referred
to as NOT), so swimmers only reorient due to torques
caused by the hydrodynamic field or direct collisions with
other swimmers or spheres. While both NOS and NOT
runs see an increase in contact numbers, the magnitude
of these changes (seen in Table II) is relatively small. For
the NOS simulation, this can be seen as the removal of
the pair-splitting collision described above. Since the hy-
drodynamic field tends to restore the pair after this, the
change is somewhat insignificant. Nevertheless, it is clear
that steric collisions do not play a significant role in this
system when it comes to contact numbers. The effect is
somewhat more pronounced for the NOT system, and is
most likely due to the overall increase in the attractive
interaction between spheres. With no swimmers in the
tumble phase, there are effectively more swimmers in the
run phase, which means the magnitude of the fluctuat-
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FIG. 5. (color online). NOS (red solid) and NOT (blue
dashed) coordination number (see Fig. 4) divided by HDMD
results. NOS lacks a g(r) peak at 1.2d (since no steric colli-
sion gives rise to it), which gives it a much higher coordination
number at low r. NOT is higher around 2d, signifying some-
what greater mid-range interaction between passive spheres.
Inset: NOS coordination number divided by NOT results,
showing the relative areas of higher and lower coordination.

ing force that impacts a pair is increased. The number
of tumblers in the HDMD system is ≈10% only, which
explains why the increase is not too significant. This
data can also be seen in a comparison of the coordina-
tion numbers of NOT, NOS, and HDMD simulations, as
given in Fig. 5. While the NOS simulation naturally
has a higher degree of coordination at low r, the effect
diminishes quickly with increasing r. This is effectively
the absence of the peak at 1.2d seen in HDMD/NOT
simulations (since it is a direct result of steric collisions).
In contrast, the NOT N(r) experiences a more gradual
decline toward NHDMD at large r. This is a result of the
range of interaction between spheres increasing as a re-
sult of the greater strength of the fluctuating field. The
force acting on a pair must overcome friction in order
to bring the spheres closer together; accordingly, as the
driving force increases in magnitude, the range at which
it can impact pair distance becomes longer. Plots of g(r)
for these systems have been omitted since they carry the
same information but in a less easily interpreted fashion,
as well as being structurally similar to the HDMD plot
already given above (although without a peak at 1.2d
for the NOS case). Fig. 6 shows the relation between
the MSD of the NOT and HDMD systems. The HDMD
and NOS systems are indistinguishable in this measure-
ment, indicating that the importance of steric collisions
with swimmers in the diffusion of passive spheres is minor
(this is clear when looking at the magnitudes of difference
in Fig. 2). In contrast, the removal of tumbling gives a
noticeable increase in the MSD. The effect at short times
can be seen as the increase in the driving field acting
on the spheres due to a greater number of swimmers in
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FIG. 6. (color online). Ratio of the MSD of the NOT case to
the NOS/HDMD case. At short times, the absence of tum-
bling means a net increase in the strength of the fluctuating
field (more swimmers swimming), yielding greater diffusion.
The lack of tumbling also causes the system to take longer to
change, thus giving a larger increase at longer times. Inset:
MSD for NOS/HDMD (red solid) and NOT (blue dashed)
conditions.

the run phase. Near and beyond the transition region
in the MSD, the NOT system yields yet larger relative
MSD, which can be seen as the effect of reduced decor-
relation and reorientation of the system’s constituents.
At these times in the HDMD simulations, one expects
more and more swimmers to have entered the tumbling
phase, thus changing the direction of the forces acting
on passive particles. Even without tumbling, the swim-
mers in the NOT simulation still reorient over time due
to torques in the fluid field as well as direct collisions, so
the effect does not increase forever, but rather levels out
at long times. There is also the natural saturation that
comes from the impact of a given swimmer diminishing
with distance; i.e., even with no reorientation there would
still be a limit to how long a passive sphere experiences a
similar driving force. Thus while there is a quantitative
difference (increase in MSD and more gradual transition
between regions), the qualitative nature of the plot re-
mains unchanged. That is to say that there is enough
native reorientation (of the field acting at a particular
region of space) in this system that the qualitative im-
pact of a system having decorrelated directionality over

time exists whether tumbling is included or not.
Conclusions.—We have used numerical simulations to

determine the qualitative and quantitative impact of
adding fluid dynamics to active-passive hybrid systems.
Quantitatively, HDMD simulations exhibit dramatically
higher mean squared displacements (by orders of magni-
tude) that yield significantly better agreement with ex-
periment than the MD simulations. Furthermore, the
relevant timescales in MD runs are reduced, and the
characteristic super to simple diffusion transition is less
pronounced. Additionally, HDMD spheres have a higher
propensity to form contacts and these contacts appear to
have a heightened stability once formed. Qualitatively,
the typical pair separation procedure of a swimmer mov-
ing directly between two spheres and moving them apart
by direct contact has a post-collision stabilization when
fluid dynamics are added to the system, caused by the
fluid velocity field around a swimmer. Pair and triplet
dynamics couple more strongly in HDMD simulations,
where correlated translation and rotation occurs due to
the fluid field interacting with the spheres, an effect com-
pletely missing in the MD simulations. Furthermore, the
importance of steric interactions between swimmers and
passive spheres and swimmer reorientation by tumbling
has been assessed. No qualitative difference in the results
was observed for the NOT case. The system has enough
reorientation through fluid torques and direct collisions
to make the change merely amount to an increase in the
magnitude of the driving force of the system. The ab-
sence of direct collisions in the NOS case certainly alters
the radial distribution function, but both the MSD and
the contact number probabilities see little change, indi-
cating the quantitative impact of direct collisions is rel-
atively low. While the results of this work provide clear
evidence of the important impact of hydrodynamics on
the effective interactions in hybrid systems, the depen-
dence of the conclusions on system properties such as
density and swimmer velocity remain poorly understood,
and will be the target of future endeavors.
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C. Bechinger, and T. Speck, Phys. Rev. Lett 110, 238301
(2013).

[14] T. Ishikawa and T. J. Pedley, Phys. Rev. Lett 100,
088103 (2008).

[15] P. T. Underhill, J. P. Hernandez-Ortiz, and M. D. Gra-
ham, Phys. Rev. Lett 100, 248101 (2008).

[16] X.-L. Wu and A. Libchaber, Phys. Rev. Lett 84, 3017
(2000).

[17] C. Valeriani, M. Li, J. Novosel, J. Arlt, and D. Maren-
duzzo, Soft Matter 7, 5228 (2011).

[18] D. T. N. Chen, A. W. C. Lau, L. A. Hough, M. F. Islam,
M. Goulian, T. C. Lubensky, and A. G. Yodh, Phys.
Rev. Lett. 99, 148302 (2007).

[19] L. Angelani, C. Maggi, M. L. Bernardini, A. Rizzo, and
R. Di Leonardo, Phys. Rev. Lett. 107, 138302 (2011).

[20] N. Koumakis, A. Lepore, C. Maggi, and R. Di Leonardo,
Nat. Commun. 4, 2588 (2013).

[21] L. Angelani, R. Di Leonardo, and G. Ruocco, Phys. Rev.
Lett. 102, 048104 (2009).

[22] L. Angelani and R. Di Leonardo, New J. Phys. 12, 113017
(2010).

[23] P. H. Colberg and R. Kapral, EPL 106, 30004 (2014).
[24] L. Soler, V. Magdanz, V. M. Fomin, S. Sanchez, and

O. G. Schmidt, ACSNano 7, 9611 (2013).
[25] L. H. Cisneros, R. Cortez, C. Dombrowski, R. E. Gold-

stein, and J. O. Kessler, Exp. Fluids 43, 737 (2007).
[26] D. L. Koch and G. Subramanian, Annu. Rev. Fluid Mech.

43, 637 (2011).
[27] E. Lushi, H. Wioland, and R. E. Goldstein, Proc. Natl.

Acad. Sci. U. S. A. 111, 9733 (2014).
[28] A. Furukawa, D. Marenduzzo, and M. E. Cates, Phys.

Rev. E 90, 022303 (2014).
[29] M. E. Cates and J. Tailleur, EPL 101, 20010 (2013).
[30] O. Pohl and H. Stark, Phys. Rev. Lett. 112, 238303

(2014).
[31] T. Bickel, G. Zecua, and A. Würger, Phys. Rev. E 89,

050303 (2014).
[32] S. Succi, The Lattice Boltzmann Equation for Fluid Dy-

namics and Beyond (Oxford University Press, 2001).
[33] C. S. Peskin, Acta Numerica 11, 479 (2002).
[34] D. J. Earl, C. M. Pooley, J. F. Ryder, I. Bredberg, and

J. M. Yeomans, J. Chem. Phys. 126, 064703 (2007).
[35] R. W. Nash, R. Adhikari, J. Tailleur, and M. E. Cates,

Phys. Rev. Lett. 104, 258101 (2010).
[36] C. N. Likos, Phys. Rep. 348, 267 (2001).
[37] H. C. Berg and D. A. Brown, Nature 239, 500 (1972).


