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Statistics of Conserved Quantities in Mechanically Stable Packings of Frictionless
Disks Above Jamming
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We numerically simulate mechanically stable packings of soft-core, frictionless, bidisperse disks in
two dimensions, above the jamming packing fraction φJ . For configurations with a fixed isotropic
global stress tensor, we compute the averages, variances, and correlations of conserved quantities
(stress ΓC, force-tile area AC, Voronoi volume VC , number of particles NC , and number of small
particles NsC) on compact subclusters of particles C, as a function of the cluster size and the global
system stress. We find several significant differences depending on whether the cluster C is defined
by a fixed radius R or a fixed number of particles M . We comment on the implications of our
findings for maximum entropy models of jammed packings.

PACS numbers: 05.40.-a, 45.70.-n, 46.65.+g

I. INTRODUCTION

As one increases the density of deformable granular
particles above a critical jamming packing fraction, φJ ,
the system undergoes a transition from a liquid-like to
a solid-like state [1]. For large and massive particles,
thermal fluctuations are irrelevant, and in the absence
of any mechanical agitation, the dense system relaxes
into a mechanically stable rigid but disordered configu-
ration. Numerous works have considered how the global
properties of such static packings scale as one approaches
the jamming transition from above, φ → φJ [1–5]. Here
we consider the statistical properties of conserved quan-
tities defined on finite sized subclusters of particles of
the total system. By “conserved quantity” we mean an
extensive observable which is additive over disjoint sub-
clusters of the system, and for which the total system
has a fixed value in the ensemble of configurations being
considered. Such conserved quantities have played an im-
portant role in making maximum entropy models [6] for
the non-uniform distribution of various properties of the
disordered packings [7–13]. Recent experiments [14–16]
have sought to test such statistical models.

We consider here a bidisperse system of soft friction-
less disks in two dimensions (2D). We will consider two
different ensembles of circular clusters. One in which the
radius R of the cluster is fixed and the number of parti-
cles in the cluster fluctuates; and the other in which the
number of particles M in the cluster is fixed and the ra-
dius fluctuates. We find that there are several significant
differences between these two ensembles: (i) For fixed
R, averages defined on the cluster are simply related to
the corresponding global parameter for any R; for fixed
M , however, such averages only approach the naively ex-
pected value algebraically as the cluster size increases.
(ii) For fixed R, correlations between many variables de-
crease as the cluster size increases; for fixed M , however,
we find that correlations appear to be constant as the
cluster size increases. We believe that these differences
may have important consequences for the development
of maximum entropy models to describe the statistical

behavior of such jammed packings.
The conserved quantities we consider are the Voronoi

volume V (in our 2D system, “volume” will be used to
mean area), which has played an important role in Ed-
wards’ [7] statistical ensemble for jammed packings, the
extensive stress Γ, which Henkes and co-workers [8, 9]
have used to define the stress ensemble, the Maxwell-
Cremona force-tile area A, which Tighe and co-workers
[10–12] have argued plays an important role in the dis-
tribution of pressure, as well as the number of particles
N and the number of small particles Ns.

II. MODEL

A. Soft-Core Disks

Our system is a bidisperse mixture of equal numbers of
big and small circular, frictionless, disks with diameters
db and ds in the ratio db/ds = 1.4 [2]. If vb,s = π(db,s/2)2

is the volume of the big and small disks respectively, then
the packing fraction of a system with N disks in a total
volume V is

φ =
N

V

(vs + vb)

2
. (1)

Disks i and j interact only when they overlap, with a
soft-core repulsive harmonic interaction potential,

V(rij) =

{
1
2ke(1− rij/dij)

2, rij < dij
0, rij ≥ dij .

(2)

Here rij is the center-to-center distance between the par-
ticles, and dij = (di + dj)/2 is the sum of their radii. We
will measure energy in units such that ke = 1, and length
in units so that the small disk diameter ds = 1.

Our numerical system consists of N = 8192 disks. The
geometry of our system box is characterized by three pa-
rameters, Lx, Ly, γ, as illustrated in Fig. 1; Lx and Ly are
the lengths of the box in the x̂ and ŷ directions, while
γ is the skew ratio of the box. We use Lees-Edwards
boundary conditions [17] to periodically repeat this box
throughout all space.
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FIG. 1. Geometry of our system box. Lx and Ly are the
lengths in the x̂ and ŷ directions, and γ is the skew ratio.
Lees-Edwards boundary conditions are used.

B. Packings With Isotropic Stress

For this work we consider only packings with an
isotropic total stress tensor,

Σ
(N)
αβ = ΓNδαβ , where ΓN = pV, (3)

p is the system pressure, and V = LxLy is the total
system volume. Here α, β denote the spatial coordinate
directions x, y.

To construct such isotropic packings, in which the
shear stress vanishes, we use a scheme in which we vary
the box parameters Lx, Ly and γ as we search for me-
chanically stable states [18]. We introduce a modified

energy function Ũ that depends on the particle positions
ri, as well as Lx, Ly, γ,

Ũ ≡ U + Γ0
x lnLx + Γ0

y lnLy, U =
∑
i<j

V(rij). (4)

Here Γ0
x and Γ0

y are fixed constants representing the di-
agonal components of the desired diagonal stress tensor.
Noting that the interaction energy U depends implicitly
on the box parameters Lx, Ly, γ via the boundary condi-
tions, we get the relations,

Lx
∂U

∂Lx
= −Σxx + γΣxy,

∂U

∂γ
= −Σxy,

Ly
∂U

∂Ly
= −Σyy − γΣxy.

(5)

Starting with randomly positioned particles within a
square box of length L determined by the packing frac-
tion φ ≈ φJ , we then minimize Ũ with respect to both
particle positions and box parameters. The resulting lo-
cal minimum of Ũ gives a mechanically stable configu-
ration with force balance on each particle and a stress
tensor that satisfies

Σxx = Γ0
x, Σyy = Γ0

y, Σxy = 0. (6)

For isotropic states we choose Γ0
x = Γ0

y = ΓN . For mini-
mization we use the Polak-Ribiere conjugate gradient al-
gorithm [19]. We consider the minimization converged
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FIG. 2. Average packing fraction 〈φ〉 vs total system stress
per particle p̃ ≡ ΓN/N . Error bars represent the width of the
distribution rather than the statistical error in the average.

when we satisfy the condition (Ũi − Ũi+50)/Ũi+50 <

10−10, where Ũi is the value at the ith step of the mini-
mization. Our results are averaged over 10000 indepen-
dently generated isotropic configurations.

In this work we consider the range of ΓN = 6.4 to 18.4
in increments of 0.8. Since our simulations fix both N
and ΓN , we will parameterize our results by the inten-
sive, pressure-like, variable, p̃ ≡ ΓN/N = p(V/N), the
total system stress per particle. Since our method varies
the system volume LxLy so as to achieve the desired to-
tal stress ΓN , the packing fraction φ for fixed ΓN varies
slightly from configuration to configuration. In Fig. 2 we
plot the resulting average 〈φ〉 as a function of p̃. Error
bars represent the width of the distribution of φ; the rel-
ative width is roughly 0.03− 0.04%. The values of p̃ we
consider here are all close above the jamming transition,
which for our rapid quench protocol is φJ ≈ 0.842 for an
infinite system [20].

C. Cluster Ensembles

Fixed radius: To define our clusters of particles with
fixed radius R, we pick a point in the system at random
and draw a circle of radius R about that point. All par-
ticles whose centers lie within this circle are considered
part of the cluster. For a fixed R, the number of parti-
cles in the cluster fluctuates. We consider here clusters
of radii R = 2.8 to 8.2, small enough compared to the
total system size so that effects due to the finite system
size are negligible. The average number of particles in
these cluster ranges roughly from 〈NR〉 ≈ 18 to 150.

Fixed number of particles: To define our clusters with
fixed number of particles M , we again pick a random po-
sition in the system, draw a circle about that point, and
then continuously increase the radius of the circle until
we have exactly M particles whose centers lie within the
circle. For such clusters, the number of particles is fixed,
but the volume fluctuates. We consider here clusters with
M = 18 to 153.
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D. Conserved Quantities

Stress: The stress tensor for a finite cluster of particles
C is given by [8],

Σ
(C)
αβ =

∑
i∈C

∑
j

′
sijαFijβ , Fij = −∂V(rij)/∂rj . (7)

Here sij is the displacement from the center of particle i
to its point of contact with j, and Fij is the force on j
due to contact with i. The first sum is over all particles
i in the cluster C. The second, primed, sum is over all
particles j in contact with particle i. The sum over all
particles i in the total system just gives the total stress

tensor Σ
(N)
αβ = ΓNδαβ . Since Σ

(C)
αβ is clearly additive over

disjoint clusters, and its total for the entire system is con-
strained by ΓN , the stress tensor is a conserved quantity.

Although the total system stress is isotropic, the stress

on any particular cluster Σ
(C)
αβ in general is not. However

the stress averaged over many independent clusters will
be isotropic. If we define

ΓC ≡
1

2
Tr[Σ

(C)
αβ ], then 〈Σ(C)

αβ 〉 = 〈ΓC〉δαβ . (8)

Force-tile area: For particles in a two dimensional me-
chanically stable packing, the Maxwell-Cremona force-
tile for particle i is obtained by rotating all its contact
forces 90◦ and lying them tip to tail. Force balance then
requires these to form a closed loop [21]. The area Ai of
this loop is the force-tile area. It can be shown that such
force-tiles tile space with no gaps or overlaps [11]. The
tile area of a cluster of particles C is then just the sum
over tile areas for each member particle, AC =

∑
i∈C Ai.

The sum over all particles gives the total force-tile area
AN for the entire system. The force-tile area is thus also
a conserved quantity.

For a system of N particles with periodic boundary
conditions, the total force-tile area AN of a particular
jammed packing is predicted [11] to be exactly deter-
mined by the total system stress ΓN , via the relation,

AN =
Γ2
N

V
= p2V. (9)

As we sample different mechanically stable configurations
at fixed ΓN , the total system volume V fluctuates slightly.
Averaging over these different configurations, the above
becomes, 〈AN 〉 = Γ2

N

〈
1
V

〉
. In Fig. 3 we plot the result-

ing [〈AN 〉/(Γ2
N

〈
1
V

〉
)] − 1 vs the total system stress per

particle p̃. From Eq. (9) we expect this quantity to van-
ish. Our numerical results show that 〈AN 〉/(Γ2

N

〈
1
V

〉
) is

indeed equal to unity within roughly 2×10−6. The small
discrepancy is presumably due to the failure to achieve
perfect force balance in our minimization of Ũ .

Because our total system is sufficiently large, the rela-
tive fluctuations in the total system volume V from con-
figuration to configuration are roughly only 0.03-0.04%.
In the following we will therefore view V ≡ 〈V 〉 and
AN ≡ 〈AN 〉 as fixed values.
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FIG. 3. [〈AN 〉/(Γ2
N

〈
1
V

〉
)]− 1 vs p̃ ≡ ΓN/N , where AN is the

total force-tile area, ΓN the total system stress, and V the
total system volume. We expect this quantity to vanish at all
p̃. Our system has a total of N = 8192 particles.

Voronoi Volume: The Voronoi volume of a particle,
Vi, is defined as the region of space closer to particle i
than to any other particle. Since every point in space is
closest to some particle, the volumes Vi tile all of position
space with no gaps or overlaps. The Voronoi volume of
a cluster is just VC =

∑
i∈C Vi, and the sum over all

particles is just the total volume of the entire system V .
The Voronoi volume is thus a conserved quantity. We use
the Voro++ software package to determine the Voronoi
volumes of our particles [22].
Number of Particles: The total number of particles

NC in a cluster is clearly also a conserved quantity. For
a bidisperse system, such as we study here, so is the
number of small particles NsC contained in the cluster.

III. CLUSTERS WITH FIXED RADIUS R

We consider first the clusters with a fixed radius R,
and fluctuating number of particles NR.

A. Averages

Because of the additive nature of the conserved quanti-
ties, we expect that the average value of such a quantity
X defined on a cluster will be related to the fixed value
of the entire N particle system XN according to the frac-
tion of the total system occupied by the cluster. For the
quantity XR defined on clusters of radius R we therefore
expect

〈XR〉 = XN

(
πR2

V

)
⇒
(
〈XR〉
πR2

)(
V

XN

)
= 1. (10)

If Eq. (10) holds, then knowledge of the global system
parameters gives knowledge about the expected values
on clusters within the system. This is what makes such
quantities useful for formulating a maximum entropy
model of fluctuating quantities on subsets of the total
system.

In Fig. 4 we plot (〈XR〉/πR2)(V/XN ) vs R for XR =
ΓR, AR, VR, NR and NsR, at three different values of the
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total system stress per particle p̃ = ΓN/N . We see that
the deviations from the expected value of unity are very
small (less than 0.1% for ΓR, AR, and NsR, and less than
0.02% for VR and NR) and are all within the estimated
statistical error. In particular, these results confirm that
the average Voronoi volume of the cluster is just the area
of the circle, 〈VR〉 = πR2.
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FIG. 4. (color online) Ratio of intensive quantities defined on
a cluster of radius R, (XR/πR

2), to the corresponding quan-
tity defined on the total system, (XN/V ), vs cluster radius
R for X equal to the (a) stress Γ; (b) force-tile area A; (c)
Voronoi volume V ; (d) number of particles N ; (e) number of
small particles Ns. Three different values of the total system
stress per particle p̃ are shown, represented by three different
symbol shapes. Our system has a total of N = 8192 particles.

B. Variances

Now we consider the fluctuations away from the aver-
age, and compute the variances of the conserved quan-
tities, var(XR) ≡ 〈X2

R〉 − 〈XR〉2. In Fig. 5 we plot
var(XR)/πR2, vs R for XR = ΓR, AR, VR, NR, and NsR,
at three different values of the total system stress per
particle p̃. The solid lines in Figs. 5 are fits to the form
c1 + c2/R.

For ΓR, AR, NR and NsR we find that the scaled vari-
ances all approach a finite constant as R increases, i.e.
c1 > 0. Thus the variances of these quantities scale pro-
portional to the cluster volume. Since, from Fig. 4, the
averages of these quantities also scale proportional to the
volume, we conclude that their relative fluctuations de-
cay as, √

var(XR)

〈XR〉
∝ 1

R
∝ 1√

〈NR〉
. (11)

Such behavior, resulting from the variances being exten-
sive quantities, is just what one would expect if the clus-
ter variable XR was the sum of independent random vari-
ables Xk representing the value of X on subunits of the
cluster. This result therefore suggests that there are, on
average, no spatial correlations of XR on length scales
larger than our smallest value of R = 2.8 [23].

The Voronoi volume VR, however, behaves differently.
The solid line in Fig. 5c is a fit to c2/R (i.e. taking
c1 = 0), showing that the variance of VR scales propor-
tional to the perimeter ∼ R of the cluster, rather than
its volume. This is reasonable as only changes in the po-
sitions of the particles at the surface of the cluster will
effect the Voronoi volume [24]. The relative fluctuations
of VR therefore scale as√

var(VR)

〈VR〉
∝ 1

R3/2
∝ 1

〈NR〉3/4
. (12)

From Fig. 5 see that only the scaled variances of ΓR
and AR show a dependence on p̃, with increasing fluc-
tuations as p̃ increases. In Fig. 6 we plot the large R
limiting value of var(XR)/πR2 for these two quantities,
vs p̃. The solid lines in Fig. 6 are power law fits; we
find var(ΓR)/πR2 ∼ p̃1.9, while var(AR)/πR2 ∼ p̃3.9 [25].
Since by Eqs. (9-10) 〈ΓR〉/πR2 = ΓN/V = p̃(N/V ), and
〈AR〉/πR2 = AN/V = (ΓN/V )2 = p̃2(N/V )2, we con-

clude that the relative fluctuations,
√

var(ΓR)/〈ΓR〉 and√
var(AR)/〈AR〉 both scale as c/R, with a constant c

that is only weakly dependent on the total stress per
particle p̃.

C. Correlations Between Conserved Quantities

Finally we consider the correlations between the con-
served quantities. Since the stress and the Voronoi vol-
ume have been the variables previously used to construct
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FIG. 5. (color online) Variance of quantities defined on a clus-
ter of radius R, var(XR)/πR2 vs R, for X equal to the (a)
stress Γ; (b) force-tile area A; (c) Voronoi volume V ; (d) num-
ber of particles N ; (e) number of small particles Ns. Three
different values of the total system stress per particle p̃ are
shown, represented by three different symbol shapes. Solid
lines are fits to the form c1 + c2/R; for VR, c1 = 0. Our
system has a total of N = 8192 particles.

maximum entropy models of the statistics of jammed
packings, we focus here on the correlations between ΓR
and the other conserved variables, and then on the cor-
relations between VR and the remaining conserved vari-
ables. To compare quantities on similar scales, we con-
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FIG. 6. (color online) var(ΓR)/πR2 and var(AR)/πR2, in the
large R limit, vs total stress per particle p̃. Solid lines are fits
to power laws and give ∼ p̃1.9 and ∼ p̃3.9, respectively. Our
system has a total of N = 8192 particles.

sider here the rescaled variables,

X̂R ≡
(XR − 〈XR〉)

σXR

, (13)

where σXR
is the standard deviation of XR. To highlight

the quadratic relation between ΓR and AR, instead of AR
we consider here A

1/2
R , which is linearly related to ΓR.

We consider first the correlations with the stress ΓR.
In Fig. 7 we show scatter plots of the configuration spe-
cific values of Γ̂R vs the other variables, for the particular
case of R = 5.4 and p̃ = 0.00078. From the scatter plots
we see qualitatively the very strong linear correlation be-

tween Γ̂R and Â
1/2
R . The correlation between Γ̂R and

V̂R is in comparison considerably weaker, the correlation
between Γ̂R and N̂R is even weaker, and the correlation
between Γ̂R and N̂sR is almost non existent. To quantify
this, we plot in Fig. 8 the covariances between Γ̂R and
the other variables vs cluster radius R, for three differ-
ent values of the total system stress per particle p̃. We
see that the covariances are essentially independent of p̃.

The covariance of Γ̂R with Â
1/2
R is very large, increasing

towards the maximum value of unity as R increases. The
next strongest correlation is with the Voronoi volume V̂R,
then the number of particles N̂ . The covariance with the
number of small particles N̂s is very small, about 1%.
Moreover, we see that the covariance of Γ̂R with V̂R and
N̂R is decreasing as R increases. We do not have a large
enough range of R to determine whether these correla-
tions vanish as R→∞, or saturate to a finite value.

Although the correlation of Γ̂R with V̂R, at 20% for
our largest R, is perhaps not insignificant, recall that
this is the correlation of the rescaled variables. If we
consider instead the correlation of the relative fluctua-
tions, [cov(ΓR, VR)/(〈ΓR〉〈VR〉)]1/2, the suppressed rela-
tive fluctuations of VR given by Eq. (12) will mean simi-
larly suppressed relative fluctuations of the correlations,
which will decay as ∼ 1/R5/4, faster than the ∼ 1/R
decay of other relative correlations.

The effect of correlations between stress and Voronoi
volume on the statistical description of jammed packings
has recently been considered by Blumenfeld et al. [26],



6

who argue that these correlations preclude the use of ei-
ther a volume-only, or a stress-only statistical ensemble.
Our result here, that the stress-volume correlation de-
creases as the cluster size increases, suggests that the
effects of such correlations may become less significant
on longer length scales, for clusters of fixed radius.

FIG. 7. Scatter plots showing configuration specific values of
(ΓR − 〈ΓR〉)/σΓR vs (XR − 〈XR〉)/σXR for XR equal to the

(a) square root of the force-tile area A
1/2
R ; (b) Voronoi volume

VR; (c) number of particles NR; (d) number of small particles
NsR. Here σXR is the standard deviation of variable XR and
results are for the specific case R = 5.4 and p̃ = 0.00078.
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FIG. 8. (color online) Covariance between rescaled stress Γ̂R

and other variables vs cluster radius R, for three different
values of total system stress per particle p̃. The rescaled vari-
ables are defined by X̂R ≡ (XR − 〈XR〉)/σXR , with σXR the
standard deviation of XR, and the plot shows results for XR

equal to the square root of the force-tile area A
1/2
R , Voronoi

volume VR, number of particles NR, and number of small
particles NsR. Our system has a total of N = 8192 particles.

We turn now to the correlations with the Voronoi vol-
ume VR. In Fig. 9 we show scatter plots of the config-

uration specific values of V̂R with Â
1/2
R , NR, and NsR,

for the particular case of R = 5.4 and p̃ = 0.00078. In
Fig. 10 we plot the covariance between V̂R and the other

variables vs cluster radius R, for three different values of
the total system stress per particle p̃. We see that the
covariances are essentially independent of p̃. For V̂R, the
strongest correlation is with N̂R. Again, we see that the
correlations decrease as the cluster size R increases.

FIG. 9. Scatter plots showing configuration specific values
of (VR − 〈VR〉)/σVR vs (XR − 〈XR〉)/σXR for XR equal to

the (a) square root of the force-tile area A
1/2
R ; (b) number of

particles NR; (c) number of small particles NsR. Here σXR is
the standard deviation of variable XR and results are for the
specific case R = 5.4 and p̃ = 0.00078.
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FIG. 10. (color online) Covariance between rescaled Voronoi

volume V̂R and other variables vs cluster radius R, for three
different values of total system stress per particle p̃. The
rescaled variables are defined by X̂R ≡ (X − 〈XR〉)/σXR ,
with σXR the standard deviation of XR. We shows results for
XR equal to the stress ΓR, square root of the force-tile area

A
1/2
R , number of particles NR, and number of small particles

NsR. Our system has a total of N = 8192 particles.
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IV. CLUSTERS OF FIXED NUMBER OF
PARTICLES M

In this section we consider the second of our two cluster
ensembles, clusters which contain a fixed number of par-
ticles M . We will see some striking differences between
the statistical behavior of these clusters and the previ-
ously discussed clusters of fixed radius R. Such fixed M
clusters have been used in some earlier numerical works
[8, 9].

A. Averages

One might expect that averages of conserved quantities
on such clusters XM would just be equal to the fraction
of total particles (M/N) contained in the cluster times
the corresponding total system quantity, XN . In Fig. 11
we plot (XM/M)(N/XN ) vs M , for XM = ΓM , AM , VM ,
and NsM , for three different values of the total system
stress per particle p̃. However, in contrast to the corre-
sponding quantities defined for clusters of fixed R which
are equal to unity at all R (see Fig. 4), here we find that
these quantities only approach unity algebraically as M
increases. The solid lines in Fig. 11 are fits to the form
1 + c/M . The behavior of (XM/M)(N/XN ) is indepen-
dent of p̃, and appears to be identical, decreasing towards
unity, for XM = ΓM , AM , and VM ; for NsM the effect is
about double, and has the opposite sign, increasing to-
wards unity as M increases. Thus, for clusters of fixed
number of particles, unlike the clusters of fixed radius R,
the averages of the conserved quantities are not simply
fixed by the global average value XN/N , but rather de-
pend on the cluster size M in a way that is not apriori
known (i.e. the coefficient c must be determined from
other information).
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0.00146
0.00225(<
X M

>/
!

)(N
/X

N
)

M

p~

"M, AM, VM

NsM
1 + c/M

FIG. 11. (color online) Ratio of intensive quantities defined
on a cluster of fixed number of particles M , (XM/M), to the
corresponding quantity defined on the total system, (XN/N),
vs M for X equal to the stress Γ, force-tile area A, Voronoi
volume V , and number of small particles Ns. Three different
values of the total system stress per particle p̃ are shown,
represented by three different symbol shapes. Solid lines are
fits to the form 1 + c/M . Our system has a total of N = 8192
particles.
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FIG. 12. (color online) Variance of quantities defined on a
cluster of fixed number of particles M , var(XM )/M vs M ,
for X equal to the (a) stress Γ; (b) force-tile area A; (c)
Voronoi volume V ; (d) number of small particles Ns. Three
different values of the total system stress per particle p̃ are
shown, represented by three different symbol shapes. Solid
lines are fits to the form c1 + c2/

√
M . Our system has a total

of N = 8192 particles.

B. Variances

We can also look at the variance of the conserved
quantities on clusters of fixed number of particles M .
In Fig. 12 we plot var(XM )/M vs M for XM =
ΓM , AM , VM , and NsM . We show results for three dif-
ferent values of p̃. The results are qualitatively similarly
to what was seen in Fig. 5 for the clusters of fixed radius
R. Only the behavior of the Voronoi volume VR is dif-
ferent; instead of var(VR) ∼ R growing as the perimeter
of the cluster, we now have var(VM ) ∼ M , i.e. growing
proportional to the cluster volume, just like the other
quantities.
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We again find that only var(ΓM )/M and var(AM )/M
vary significantly with the total stress per particle p̃.
Plotting the large R limiting value of var(ΓM )/M and
var(AM )/M vs p̃ in Fig. 13, we find that they have the
same behavior as was found previously for clusters of
fixed radius R, var(ΓM )/M ∝ p̃1.9 and var(AM )/M ∝
p̃3.9 [25].
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FIG. 13. (color online) var(ΓM )/M and var(AM )/M , in the
large M limit, vs total stress per particle p̃. Solid lines are fits
to power laws and give ∼ p̃1.9 and ∼ p̃3.9, respectively. Our
system has a total of N = 8192 particles.

C. Concentration of Small particles

Our observation in Fig. 11 implies that the average
concentration of small particles in a cluster, xs(M) ≡
〈NsM 〉/M , is not fixed at the global value Ns/N = 1/2,
but varies algebraically with the cluster size, approaching
1/2 only as the cluster grows large. We believe it is this
that effects the dependence of all the other variables on
M .

For clusters of fixed radius R, our results in Fig. 4
imply that the ratio x̄s ≡ 〈NsR〉/〈NR〉 = 1/2 for all
cluster sizes R. However, the average concentration of
small particles in such clusters is more properly computed
as,

xs(R) =

〈
NsR
NR

〉
. (14)

We can now show that xs(R) has the same algebraic be-
havior as xs(M). Defining δNsR so that NsR = 〈NsR〉+
δNsR, with 〈δNsR〉 = 0 and 〈(δNsR)2〉 = var(NsR), and
similarly defining δNR, we can write,

xs(R) =
〈NsR〉
〈NR〉

〈
1 + δNsR/〈NsR〉
1 + δNR/〈NR〉

〉
. (15)

Expanding for small δNR and δNsR, we get to second
order,

xs(R) = x̄s

(
1 +
〈δN2

R〉
〈NR〉2

− 〈δNsRδNR〉
〈NsR〉〈NR〉

)
. (16)

Writing 〈NsR〉 = x̄s〈NR〉 and NbR ≡ NR −NsR, for our

particular case of x̄s = 1/2 we get,

xs(R) =
1

2

(
1 +
〈δN2

bR〉 − 〈δN2
sR〉

〈NR〉2

)

=
1

2

(
1 +

var(NbR)− var(NsR)

〈NR〉2

)
.

(17)

Now using the observation that var(NsR) and var(NbR)
both scale proportional to the cluster volume πR2, and
that 〈NR〉 does as well, we conclude that,

xs(R) =
1

2

(
1 +

c̄

R2

)
=

1

2

(
1 +

c

〈NR〉

)
, (18)

thus showing the same algebraic dependence on the aver-
age number of particles 〈NR〉 in the cluster as was found
in the clusters with fixed number of particles M .

In Fig. 14 we plot 2xs(R) vs 〈NR〉, for clusters with
fixed radius R, for three different values of p̃. We com-
pare the values from a direct computation of xs(R) from
Eq. (14) (open symbols) with the prediction of Eq. (17)
(solid symbols) and find excellent agreement. There is
no dependence on p̃. In the same figure we also show
2〈NsM 〉/M vs M for the clusters with fixed number of
particles M . Both show a decay to the large cluster limit
of unity that is proportional to the inverse number of
particles, however the results are quantitatively some-
what different, presumably due to the different effects of
fluctuations in the two ensembles.

We note that if the particles were positioned purely at
random, then the concentration xs(R) of small particles
within a circle of radius R would be uniform and equal
to the global concentration x̄s for any R. The algebraic
variation with R that we find here is therefore a conse-
quence of the structural details of how the particles are
arranged in the jammed packing.

D. Correlations Between Conserved Quantities

Finally we consider the correlations between the differ-
ent conserved quantities in the clusters with fixed number
of particles M . We use the rescaled variables X̂M defined
similarly as in Eq. (13). First we consider the correlations

with the stress Γ̂M . In Fig. 15 we show scatter plots of
the configuration specific values of Γ̂M vs the other vari-
ables, for the particular case of M = 66 (with average
cluster radius 〈R〉 ≈ 5.4) and p̃ = 0.00078. In Fig. 16 we

plot the covariance between Γ̂M and the other variables
vs M , for three different values of the total system stress
per particle p̃. As was observed for the clusters of fixed
radius R, we see that the covariances are essentially in-

dependent of p̃. The correlation of Γ̂R with Â
1/2
R is again

very close to the maximum value of unity. Correlations
with VM and NsM are both roughly 50%, but of opposite
sign. But the most striking result is that the correlations
now stay essentially constant as M increases, rather than
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FIG. 14. (color online) Concentration of small particles
xs(〈NR〉) and xs(M) for clusters of fixed radius R and
fixed number of particles M , respectively. In the first case,
xs(〈NR〉) is plotted vs 〈NR〉, the average number of parti-
cles in the cluster. For xs(〈NR〉) we show results from the
direct computation of Eq. (14) (open symbols) as well as the
prediction of Eq. (17) (solid symbols). Solid lines are fits to
the forms shown. Three different values of the total system
stress per particle p̃ are shown, represented by three different
symbol shapes.

decreasing with increasing cluster size as was observed for
the clusters of constant radius R in Fig. 8.

FIG. 15. Scatter plots showing configuration specific values
of (ΓM − 〈ΓM 〉)/σΓR vs (XM − 〈XM 〉)/σXM for XM equal

to the (a) square root of the force-tile area A
1/2
M ; (b) Voronoi

volume VM ; (c) number of small particles NsM . Here σXM is
the standard deviation of variable XM and results are for the
specific case M = 66 and p̃ = 0.00078 (a cluster with M = 66
has an average radius of 〈R〉 ≈ 5.4).

We now consider the correlations with the Voronoi vol-
ume V̂M . In Fig. 17 we show scatter plots of the configu-
ration specific values of V̂M vs the other variables, for the
particular case of M = 66 and p̃ = 0.00078. In Fig. 18 we
plot the covariance between V̂M and the other variables
vs M , for three different values of the total system stress
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FIG. 16. (color online) Covariance between rescaled stress

Γ̂M and other variables vs the number of particles in the
cluster M . Results are shown for three different values of
total system stress per particle p̃, as indicated by differ-
ent symbol shapes. The rescaled variables are defined by
X̂M ≡ (XM − 〈XM 〉)/σXM , with σXM the standard devia-
tion of XM , and the plot shows results for XM equal to the

square root of the force-tile area A
1/2
M , Voronoi volume VM ,

and number of small particles NsM . Our system has a total
of N = 8192 particles.

per particle p̃. The covariances are again essentially in-
dependent of p̃. The correlation of V̂R with N̂sM is the
strongest, close to the maximum magnitude of unity, but
with negative sign (anti-correlated). Again, the correla-
tions stay essentially constant as M increases.

FIG. 17. Scatter plots showing configuration specific values
of (VM − 〈VM 〉)/σVR vs (XM − 〈XM 〉)/σXM for XM equal to

the (a) square root of the force-tile area A
1/2
M ; (b) number of

small particles NsM . Here σXM is the standard deviation of
variable XM and results are for the specific case M = 66 and
p̃ = 0.00078 (a cluster with M = 66 has an average radius of
〈R〉 ≈ 5.4).

V. DISCUSSION

In this work we have considered mechanically stable
packings of soft-core, frictionless, bidispersive disks in
2D, above the jamming transition. Our packings are re-
stricted to those having an isotropic total stress tensor.
We measure the statistical behavior of conserved quanti-
ties defined on clusters C of fixed radius R, and clusters
of fixed number of particles M . For conserved quantities
we have considered the stress ΓC , defined as 1/2 the trace
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FIG. 18. (color online) Covariance between rescaled stress

V̂M and other variables vs the number of particles in the
cluster M . Results are shown for three different values of
total system stress per particle p̃, as indicated by differ-
ent symbol shapes. The rescaled variables are defined by
X̂M ≡ (XM − 〈XM 〉)/σXM , with σXM the standard devia-
tion of XM , and the plot shows results for XM equal to the

stress ΓM , square root of the force-tile area A
1/2
M and number

of small particles NsM . Our system has a total of N = 8192
particles.

of the stress tensor, the Maxell-Cremona force-tile area
AC , the Voronoi volume VC , the total number of parti-
cles NC and the number of small particles NsC . We have
computed their averages, variances, and the correlations
between them as a function of cluster size and the stress
per particle of the total system p̃ = ΓN/N .

We find striking differences in the behavior of the two
different ensembles of clusters. For clusters with fixed ra-
dius R, average values of quantities defined on the clus-
ter are simply determined from the corresponding known
value for the entire system, 〈XR〉 = XN (πR2/V ), for
all values of R. In particular, the average Voronoi vol-
ume 〈VR〉 is just the circle volume πR2, and the relative
fluctuations of VR are suppressed, scaling as 1/R3/2, in
comparison the relative fluctuations of the other quan-
tities, which scale as 1/R. Correlations are very strong
between stress ΓR and force-tile area AR, but correla-

tions between ΓR and the other variables decay as the
cluster size R increases.

For clusters with fixed number of particles M , how-
ever, the average 〈XM 〉 only algebraically approaches the
naively expected value XN (M/N) as the cluster size M
increases. The average on a finite cluster, therefore, is
not apriori known without obtaining further information
about the system beyond the values of its global param-
eters. More strikingly, correlations between all pairs of
conserved quantities appear to remain constant as the
cluster size M increases.

These results lead to our main conclusion, that for de-
scribing the stress distribution within such jammed pack-
ing, the cluster ensemble at fixed radius R appears much
more promising for use with maximum entropy models;
one need only consider the two strongly correlated vari-
ables ΓR and AR, as correlations with other variables
will decrease as the cluster size increases. Indeed, we
have recently carried out just such an analysis [13] and
have found good results. For analyses based on clusters
with a fixed number of particles M , it may be necessary
to keep track of all conserved quantities, since correla-
tions do not seem to decay with increasing cluster size,
and these correlations are not in general small.

We have further shown that, in our bidisperse system,
the average concentration of small particles in a cluster
is not uniform, but rather approaches the global value
algebraically as the cluster size increases. We find this
for both clusters of fixed radius, and clusters of fixed
number of particles.
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