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An open problem in evolutionary game dynamics is to understand the effect of peer pressure on cooperation

in a quantitative manner. Peer pressure can be modeled by punishment, which has been proved to be an effective

mechanism to sustain cooperation among selfish individuals. We investigate a symmetric punishment strategy,

in which an individual will punish each neighbor if their strategies are different, and vice versa. Because of

the symmetry in imposing the punishment, one might expect intuitively the strategy to have little effect on

cooperation. Utilizing the prisoner’s dilemma game as a prototypical model of interactions at the individual

level, we find, through simulation and theoretical analysis, that proper punishment, when even symmetrically

imposed on individuals, can enhance cooperation. Besides, we find that the initial density of cooperators plays

an important role in the evolution of cooperation driven by mutual punishment.

PACS numbers: 02.50.Le, 87.23.Kg, 87.23.Ge

I. INTRODUCTION

Cooperation is ubiquitous in biological, social and econom-

ical systems [1]. Understanding and searching for mecha-

nisms that can generate and sustain cooperation among selfish

individuals remains to be an interesting problem. Evolution-

ary game theory represents a powerful mathematical frame-

work to address this problem [2, 3]. Previous theoretical [4–

11] and experimental [12–19] studies showed that, for evo-

lutionary game dynamics in spatially extended systems, pun-

ishment is an effective approach to enforcing the cooperative

behavior, where the punishment can be imposed on either co-

operators or defectors. The agents that get punished bear a

fine while the punisher pays for the cost of imposing the pun-

ishment [20, 21]. In existing studies, individuals who hold a

specific strategy (usually defection) are punished.

In realistic situations, punishment can be mutual and the

strategy would typically depends on the surrounding environ-

ment, e.g., on neighbors’ strategies. An example is “peer

pressure.” Previous psychological experiments demonstrated

that, an individual tends to conglomerate (fit in) with others

in terms of behaviors or opinions [22]. Dissent often leads to

punishment either psychologically or financially, or both, as

human individuals attempt to attain social conformity modu-

lated by peer pressure [22–24]. To understand quantitatively

the effect of peer pressure on cooperation through developing

and analyzing an evolutionary game model is the main goal of

this paper. In particular, we propose a mechanism of punish-

ment in which an individual will punish neighbors who hold

the opposite strategy, regardless of whether they are coopera-

tors or defectors.

Differing from previous models where additional strategies

of punishment were introduced, in our model there are only

two strategies (pure cooperators and pure defectors). More

importantly, the punishment is mutual in our model, i.e., indi-
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vidual i who punishes individual j is also punished by j, so

the cost of punishment can be absorbed into the punishment

fine. Because of this symmetry at the individual or “micro-

scopic” level, intuitively one may expect the punishment not

to have any effect on cooperation. Surprisingly, we find that

symmetric punishment can lead to enhancement of coopera-

tion. We provide computational and heuristic arguments to

establish this finding.

II. MODEL

Without loss of generality, we use and modify the classic

prisoner’s dilemma game (PDG) [25] to construct a model to

gain quantitative understanding of the effect of peer pressure

on cooperation by incorporating our symmetric punishment

mechanism. In the original PDG, two players simultaneously

decide whether to cooperate or defect. They both receive pay-

off R upon mutual cooperation and payoff P upon mutual de-

fection. If one cooperates but the other defects, the defector

gets payoff T while the cooperator gains payoff S. The payoff

rank for the PDG is T > R > P > S. As a result, in a single

round of PDG, mutual defection is the best strategy for both

players, generating the well-known social dilemma. There are

different settings of payoff parameters [26, 27]. For computa-

tional convenience [28], the parameters are often rescaled as

T = b > 1, R = 1, and P = S = 0, where b denotes the

temptation to defect.

In their pioneering work, Nowak and May included spa-

tial structure into the PDG [28], in which individuals play

games only with their immediate neighbors. In the spatial

PDG, cooperators can survive by forming clusters in which

mutual cooperation outweigh the loss against defectors [29–

32]. In the past decade, the PDG has been extensively stud-

ied for populations on various types of network configura-

tions [33–35], including regular lattices [36–39], small-world

networks [40, 41], scale-free networks [42–45], dynamic net-

works [46–49], and interdependent networks [50].

Our model is constructed, as follows. Player x can take



2

one of two strategies: cooperation or defection, which are de-

scribed by

sx =

(

1
0

)

or

(

0
1

)

, (1)

respectively. At each time step, each individual plays the

PDG with its neighbors. An individual will punish the neigh-

bors that hold different strategies. The accumulated payoff of

player x can thus be expressed as

Px =
∑

y∈Ωx

[sTxMsy − α(1 − sTx sy)], (2)

where the sum runs over the nearest neighbor set Ωx of player

x, α is the punishment fine, and M is the rescaled payoff ma-

trix given by

M =

(

1 0
b 0

)

. (3)

Initially, the cooperation and the defection strategies are

randomly assigned to all individuals in terms of some prob-

abilities: the initial densities of cooperators and defectors are

set to be ρ0 and 1 − ρ0 respectively. The update of strategies

is based on the replicator equation [51] for well-mixed popu-

lations and the Fermi rule [52] for structured populations.

III. RESULTS FOR WELL-MIXED POPULATIONS

In the case of well-mixed populations, i.e., a population

with no structure, where each individual plays with every

other, the evolutionary dynamics is determined by the repli-

cation equation of the fraction of the cooperators ρ in the pop-

ulation [51]:

dρ

dt
= ρ(1− ρ)(Pc − Pd), (4)

where Pc = ρ−(1−ρ)α is the rescaled payoff of a cooperator

and Pd = ρb − ρα is the rescaled payoff of a defector. The

equilibria of ρ can be obtained by setting dρ/dt = 0. There

exists a mixed equilibrium

ρe =
α

2α+ 1− b
, (5)

which is unstable. Provided that the initial density of cooper-

ators ρ0 is different from 0 and 1, the asymptotic density of

cooperators ρc = 1 if ρ0 > ρe, and ρc = 0 if ρ0 < ρe.

Figure 1 shows the asymptotic density of cooperators ρc as

a function of the punishment fine α for different values of the

initial density of cooperators ρ0 when the temptation to defect

b = 1.5. From Eq. (5), we note that the mixed equilibrium

ρe definitely exceeds 0.5. As a result, for ρ0 ≤ 0.5, ρc is

always zero regardless of the values of the temptation to defect

and the punishment fine. However, for 0.5 < ρ0 < 1, there

exist a critical value of the punishment fine (denoted by αc),
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FIG. 1: (Color online) Asymptotic density of cooperators ρc as a

function of the punishment fine α for different values of the initial

density of cooperators ρ0. The temptation to defect b = 1.5.
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FIG. 2: (a) The critical value of the punishment fine αc as a function

of the temptation to defect b. The initial density of cooperators ρ0 =
0.6. (b) The dependence of αc on ρ0. The temptation to defect

b = 1.5.

below which cooperators die out while above which defectors

become extinct. According to Eq. (5), we obtain αc as

αc =
(b− 1)ρ0
2ρ0 − 1

. (6)

For example, αc = 1.5 when ρ0 = 0.6 and b = 1.5. From Eq.

(6), one can find that αc increases as the temptation to defect b
increases but it decreases as the initial density of cooperators

ρ0 increases, as shown in Fig. 2.

IV. RESULTS FOR STRUCTURED POPULATIONS

In a structured population, each individual plays the game

only with its immediate neighbors. Without loss of general-

ity, we study the evolution of cooperation on a square lattice,

which is the simple and widely used spatial structure. In the
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FIG. 3: (Color online) Fraction of cooperators ρc as a function of b,

the temptation to defect, for different values of the punishment fine

α.

following, we use a 100 × 100 square lattice with periodic

boundary conditions. We find that the results are qualitatively

unchanged for larger system size, e.g., 200× 200 lattice.

In the following studies, we set the initial density of co-

operators ρ0 = 0.5 without special mention. Players asyn-

chronously update their strategies in a random sequential or-

der [52–54]. Firstly, player x is randomly selected who ob-

tains the payoff Px according to Eq. (2). Next, player x
chooses one of its nearest neighbors at random, and the cho-

sen neighbor y also acquires its payoff Py by the same rule.

Finally, player x adopts the neighbor’s strategy with the prob-

ability [52]:

W (sx ← sy) =
1

1 + exp[−(Py − Px)/K]
, (7)

where parameterK characterizes noise or stochastic factors to

permit irrational choices. Following previous studies [52–54],

we set the noise level to be K = 0.1. (Different choices of K ,

e.g., K = 0.01 and K = 1, do not affect the main results.)

The key quantity to characterize the cooperative behavior

of the system is the fraction of cooperators ρc in some steady

state. All simulations are run for 30000 time steps to ensure

that the system reaches a steady state, and ρc is obtained by

averaging over the last 2,000 time steps. Each time step con-

sists of on average one strategy-updating event for all players.

Each data point is obtained by averaging the fraction over 200

different realizations.

Figure 3 shows the fraction of cooperators ρc as a func-

tion of b, the temptation to defect, for different values of the

punishment fine α. We observe, for any given value of α,

a monotonic decrease in ρc as b is increased. In addition, we

find that ρc can never reach unity in the whole range of b when

the punishment fine is zero. However, for certain values of α,

e.g., α = 0.5 and α = 0.8, cooperators can dominate the

whole system for b below some critical value.

Figure 4 shows ρc as a function of α for different values of

b. We see that, for relatively small values of b (e.g., b = 1.01),
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FIG. 4: (Color online) Fraction of cooperators ρc as a function of the

punishment fine α for different values of b. The results in (a) and (b)

from simulation and theoretical analysis, respectively.
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FIG. 5: (Color online) Color coded map of the fraction of cooperators

ρc in the parameter plane (α,b).

ρc increases with α. However, for larger values of b (e.g.,

b = 1.1 or b = 1.2), there exists an optimal region of α in

which full cooperation (ρc = 1) is achieved. For example, the

optimal region in α is approximately [0.3, 0.8] and [0.4, 0.6]
for b = 1.1 and b = 1.2 respectively. The optimal value of

α is moderate, indicating that either minor or harsh punish-

ment does not promote cooperation. The dependence of ρc on

α can be qualitatively predicted analytically through a pair-

approximation analysis [52, 55], the results from which are

shown in Fig. 4(b).

To quantify the ability of punishment fine α to promote co-

operation for various values of b more precisely, we compute

the behavior of ρc in the parameter plane (α, b), as shown in

Fig. 5. We see that, for b < 1.02, ρc increases to unity as α
is increased. For 1.02 < b < 1.27, there exists an optimal

region of α in which complete extinction of defectors occurs

(ρc = 1). The optimal region of α becomes narrow as b is

increased. For b > 1.27, there also exists an optimal value of
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FIG. 6: (Color online) For b = 1.01, time series of the fraction of

cooperators, ρc(t), for different values of α. The inset presents the

convergence time tc versus α.

α that results in the highest possible level of cooperation for

the corresponding b values, albeit ρc < 1.

To gain insights into the mechanism of cooperation en-

hancement through punishment, we examine the time evolu-

tion of ρc for a number of combinations of the parameters α
and b. Figure 6 shows the time series ρc(t) for different val-

ues of α and a relatively small value of b (e.g., b = 1.01).

In every case, ρc(t) decreases initially but then increases to a

constant value. The similar phenomenon was also observed

in Refs. [56, 57]. For small values of α (e.g., α = 0 or

α = 0.05), ρc(t) cannot reach unity. For relatively large val-

ues of α (e.g., α = 0.15, α = 0.5 or α = 1.5), at the end

defectors are extinct and all individuals are cooperators. We

define the convergence time tc as the number of time steps

required for complete extinction of defectors. In the inset of

Fig. 6, we show tc as a function of α and observe that tc is

minimized for α ≈ 0.5.

Figure 7 shows the time series ρc(t) for different values of

α when there is strong temptation to defect (e.g., b = 1.2).

We observe that cooperators gradually die out for either small

(e.g., α = 0) or large (e.g., α = 1.5) α values. A remarkable

phenomenon is that, asymptotically, the fraction of cooper-

ators decreases exponentially over time for small or large α
values: ρc(t) ∝ e−t/τ , where the value of τ depends on α, as

shown in the inset of Fig. 7. For moderate values of α (e.g.,

α = 0.5), ρc(t) decreases initially and then increases to unity.

How the cooperators and defectors are distributed in the

physical space when a steady state is reached? Figure 8 shows

spatial strategy distributions for different values of the punish-

ment fine α in the equilibrium state. By varying the value of

b, we produce the same fraction of cooperators (ρc = 0.8) for

each value of α. We see that, defectors spread homogeneously

in the whole space when α is small (e.g., α = 0.02), while the

same amount of defectors are more condensed for the higher

value of α (e.g., α = 0.4). Such condensation of defectors

prevents them to reach competitive payoffs.
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FIG. 7: (Color online) For b = 1.2, time series ρc(t) for different

values of α. Inset shows that the fraction of cooperators decays ex-

ponentially for α = 0 and α = 1.5.

(c)(b)(a)

FIG. 8: (Color online) For a number of values of α, snapshots of

typical distributions of cooperators (blue) and defectors (red) in the

steady state. The fraction of cooperators in the equilibrium state is

set to be ρc = 0.8 for different values of α. The values of α and b are

(a) α = 0.02, b = 1.001; (b) α = 0.2, b = 1.116 and (c) α = 0.4,

b = 1.245.

How does the distribution of cooperators and defectors

evolve with time? Figure 9 shows the distribution of coopera-

tors and defectors at different time steps for a large value of b
(e.g., b = 1.2) and a moderate value of α (e.g., α = 0.5). Ini-

tially, cooperators and defectors are randomly distributed with

equal probability [Fig. 9(a)]. After a few time steps, coopera-

tors and defectors are clustered, and the density of cooperators

is lower than that associated with the initial state [Fig. 9(b)].

With time the cooperator clusters continue to expand and the

defector clusters shrink [Fig. 9(c)]. Finally, the whole pop-

ulation is cooperators [Fig. 9(d)]. From Fig. 9, one can also

observe that interfaces separating domains of cooperators and

defectors become smooth as time evolves. As illustrated in

Refs. [58, 59], noisy borders are beneficial for defectors, while

straight domain walls help cooperators to spread.

In the above studies, we set the initial density of cooperators

ρ0 to be 0.5. Now we study how different values of ρ0 affect

the evolution of cooperation. From Fig. 10(a), one can find

that for the small value of ρ0 (e.g., ρ0 = 0.2), the cooperation

level reaches maximum at moderate punishment fine when the

temptation to defect b is fixed. However, for the large value of
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FIG. 9: (Color online) For α = 0.5 and b = 1.2, snapshots of typical distributions of cooperators (blue) and defectors (red) at different time

steps t.
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FIG. 10: (Color online) Fraction of cooperators ρc as a function of

the punishment fine α for different values of the temptation to de-

fect b. The initial density of cooperators ρ0 is (a) 0.2 and (b) 0.8,

respectively.

ρ0 (e.g., ρ0 = 0.8), the cooperation level increases to 1 as the

punishment fine increases [Fig. 10(b)].

V. CONCLUSIONS AND DISCUSSIONS

To obtain quantitative understanding of the role of peer

pressure on cooperation, we study evolutionary game dynam-

ics and propose the natural mechanism of mutual punishment

in which an individual will punish a neighbor with a fine if

their strategies are different, and vice versa. The mutual pun-

ishment can be interpreted as a term modifying the strength

of coordination type interaction [60]. Because of the symme-

try in imposing the punishment between the individuals, one

might expect that it would have little effect on cooperation.

However, we find a number of counterintuitive phenomena.

In a well-mixed population, if the initial density of coop-

erators is no more than 0.5, cooperators die out regardless of

the values of the punishment fine and the temptation to de-

fect. If the initial density of cooperators exceeds 0.5, for each

value of the temptation to defect, there exists a critical value

of the punishment fine, below (above) which is the full defec-

tion (cooperation). The critical value of the punishment fine

increases as the temptation to defect increases but it decreases

as the initial density of cooperators increases.

For structured population, our main findings are as follows.

(i) If the initial density of cooperators is small (e.g., 0.2), there

exists an optimal value of the punishment fine, leading to the

highest cooperation. Too weak or too harsh punishment will

suppress cooperation. Similar phenomenon was also observed

in Refs. [9, 61]. (ii) If the initial density of cooperators is

moderate (e.g., 0.5), for weak temptation to defect, the final

fraction of cooperators increases to 1 as the punishment fine

increases. For strong temptation to defect, the cooperation

level can be maximized for moderate punishment fine. (iii) If

the initial density of cooperators is large (e.g., 0.8), for each

value of the temptation to defect, the final fraction of cooper-

ators increases to 1 as the punishment fine increases.

In the present studies, we use the prisoner’s dilemma game

to understand the role of peer pressure in cooperation. It

would be interesting to explore the effect of mutual punish-

ment on other types of evolutionary games (e.g., the snow-

drift game and the public goods game) in future work. By

our mechanism, an individual can be punished least by tak-

ing the local majority strategy. In fact, following the majority

is an important mechanism for the formation of public opin-

ion [62]. As a side result, our work provides a connection

between the evolutionary games and opinion dynamics.
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[52] G. Szabó and C. Tőke, Phys. Rev. E 58, 69 (1998).

[53] M. H. Vainsteina, A. T. C. Silvab, and J. J. Arenzon, J. Theor.

Biol. 244, 722 (2007).

[54] D. Helbing and W. Yu, Advs. Complex Syst. 11, 641 (2008).
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