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Abstract

Here we characterize the low noise regime of a stochastic model for a negative self-regulating

binary gene. The model has two stochastic variables, the protein number and the state of the gene.

Each state of the gene behaves as a protein source governed by a Poisson process. The coupling

between the the two gene states depends on protein number. This fact has a very important im-

plication: there exist protein production regimes characterized by sub-Poissonian noise because of

negative covariance between the two stochastic variables of the model. Hence the protein numbers

obey a probability distribution that has a peak that is sharper than those of the two coupled

Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein

number occurs when the switching of genetic state is more rapid than protein synthesis or degra-

dation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in

prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes

in a negative covariance regime might be a widespread mechanism for noise reduction.
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Intrinsic fluctuations are an inherent feature of the intracellular environment of both

prokaryotic and eukaryotic cells because critical regulatory molecules are present in very

small numbers. The importance of such fluctuations and the Poissonian stochastic pro-

cesses which govern them were pointed out over 70 years ago by Delbrück [1]. More recently

nondeterministic biological processes of fundamental importance such as infection by phage

lambda [2] and bacterial chemotaxis [3] have been treated by direct simulation of the mas-

ter equation [4]. Intrinsic fluctuations have been directly observed experimentally in both

prokaryotic [5, 6] and eukaryotic [7, 8] cells by fluorescence techniques. Nevertheless, a full

understanding of the control of intrinsic fluctuations remains elusive, particularly in the

metazoa.

The level of intrinsic fluctuations (or “noise”) for a stochastic process is frequently de-

scribed in terms of the ratio between the variance and the mean, referred to as the Fano

factor

F =
〈n2〉 − 〈n〉2

〈n〉 , (1)

where n indicates the number of molecules. A Poissonian (or Fano) distribution has variance

equal to the mean and hence a Fano factor of one. More dispersed distributions, such as

the geometric, have F > 1 and are referred to as super-Fano. In prokaryotes the reaction

mechanisms governing transcription and translation are reasonably well understood, such

that transcription initiation is governed by a Poisson distribution and translation by a

geometric distribution. These facts together with a wide variety of numerical simulations

have established a widespread belief that fluctuations of gene products are typically super-

Fano, with a Fano process as the lower limit. This picture is difficult to reconcile with the

fact that developing organisms, such as D. melanogaster, exhibit strikingly precise spatio-

temporal patterns of gene expression in the face of intracellular molecular numbers on the

order of several hundred per cell [9–11]. In these organisms the detailed chemical reaction

mechanisms underlying transcription and translation are complex and poorly understood,

and a direct stochastic simulation at the mechanistic level is not possible.

In this paper we probe the possible reduction of intrinsic fluctuations using a simple model

[12] in which the master equation has exact solutions [13]. The loss of direct representation

of chemical mechanism is compensated for by the existence of analytical solutions. These

solutions reveal non-intuitive regimes of behavior far from equilibrium which have been

overlooked in numerical experiments or theoretical analysis in the neighborhood of a steady
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FIG. 1. A binary negative self-regulating gene. The white (gray) circle represents the gene

at on (off) state, also indicated by α (β). The arrows indicate the chemical reactions of protein

synthesis, protein degradation, off-on and on-off gene switching with rates as indicated in kinetic

scheme (3). Protein molecules are represented by the rounded rectangles, their number by n, and

their destruction by ∅. The bar-terminated line denotes repression.

state [14]. We will show that a simple model of a self-repressing gene [13] can function in

a sub-Fano regime where F ≈ 0.5 over a wide range of parameter values and an infra-Fano

regime where F can approach 0 arbitrarily closely in a particular intracellular situation.

We have previously shown that the equations used in this work have super-Fano, Fano, and

sub-Fano regimes for particular parameter values [15], but these parameter values lacked a

biological interpretation. Here we supply such an interpretation and further show that the

low noise behavior is a consequence of negative correlation between two Poisson processes

together with very rapid switching between the activated and repressed states of the gene.

Stochastic model. We consider a stochastic model for a gene under negative self-

regulation with transcription and translation treated as a single process. The state of

the system is described by a joint probability distribution

Π(αn, βn), n = 0, 1, . . . , (2)

where αn and βn denote, respectively, the probability of the gene being on (repressor not

bound to the operator) and off (repressor bound to the operator) when there are n molecules
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of gene product present. This corresponds to the kinetic scheme

∅
k→ P

P
ρ→ ∅

P + O
h→ PO

PO
f→ P + O,

(3)

where the first equation describes the synthesis of a single molecule of the product P of gene

P with rate k. Without loss of generality we refer to P as a protein in what follows, but the

kinetic scheme (3) could also describe an autorepressing gene that only synthesized RNA.

The second equation describes the annihilation of P by a first order process of rate ρ. The

third equation describes the binding of protein P to the operator O with rate h while the

fourth equation describes the unbinding of P from O with rate f .

Given this kinetic scheme, the joint probability Π(αn, βn) and the probability of finding

n molecules in the system φn = αn + βn can be found by solving the master equation

dαn

dt
= k(αn−1 − αn) + ρ[(n + 1)αn+1 − nαn]− hnαn + fβn, (4)

dβn

dt
= ρ[(n + 1)βn+1 − nβn] + hnαn − fβn, (5)

where n, αn, βn, k, ρ, h, f are as defined above. The term hnαn indicates the repressive action

of the protein P.

At the steady state limit φn is given by [15]

φn = C
(a)n
(b)n

(N1z0)
n

n!
M(a + n, b+ n,−N1z

2

0), (6)

where M indicates the confluent hypergeometric function [16]. The symbol (a)n represents

the Pochhammer function defined as (a)n = a(a + 1) . . . (a + n − 1) and (a)0 = 1. The

constants a, b, N1, z0 are expressed in terms of the rate constants as

z0 =
ρ

ρ+ h
, N1 =

k

ρ
, a =

f

ρ
,

b =
f

ρ+ h
+

hk

(ρ+ h)2
. (7)

C is a normalization constant with C−1 = M(a, b, N1z0(1 − z0)). The mean number of

molecules is given by,

〈n〉 = CN1(az0/b)M(a + 1, b+ 1, N1z0(1− z0)). (8)
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Biological interpretation. We now elucidate the biological significance of the exact solu-

tions by considering specific values for the kinetic rates. Previously, we demonstrated that

sub-Fano, Fano, and super-Fano regimes correspond to a > b, a = b, and a < b respectively

where a and b are given in Eq. (7). A biologically realistic example of an autorepressing

gene when a = b is the synthesis of lambda Cro protein from the PR promoter under the

control of an OR3
−OR2

− operator. Reasonable estimates for the parameters considered here

can be obtained from a much more detailed biophysical model, which implies values of about

h = 108 min−1; f = 0.4 min−1; ρ = 0.01 min−1; k = 4 × 109 min−1 [17]. For this set of

values the Fano factor is equal to one and the mean number of proteins is 40. This appears

to conform to the expectation that gene regulation processes have F ≥ 1.

The sub-Fano regime. A cell with lac operon in a repressed state contains approxi-

mately 20 molecules of lac repressor. A set of parameters corresponding to this mean protein

number is given by h = 108 min−1; f = 4×103 min−1; ρ = 0.01 min−1; k = 1.0×105 min−1.

For this set of values the variance is 10.0 indicating a Fano factor of 0.5 and a signal to

noise ratio 6.3 compared to a signal to noise ratio for a Poisson process of 4.5, an increase

of
√
2 over the Poisson case. With respect to the parameters, ρ has a reasonable value, but

k appears to be unbiologically large. In fact, the actual synthesis rate is much less than k.

h and f describe very rapid transitions between the on and off states, but because h >> f ,

the on state has a very low probability of occurring. For this combination of parameters the

expectation of finding the gene on is
∑∞

n=0
αn = 2× 10−6, a high level of repression.

This sub-Fano behavior is quite generic. Fig. (2) shows that as 〈n〉 increases, F tends to

an asymptotic value of 0.5 for a wide variety of parameter values which obey the condition

a > b.

The infra-Fano regime. We have discovered a regime, called infra-Fano, in which F
can be arbitrarily small. Inspection of Fig. 2 reveals a minimum value for F when 〈n〉 = 1.

A set of parameters resulting in 〈n〉 = 1.0 and F = 5.0 × 10−3 is given by h = 1010 min−1;

f = 3 min−1; ρ = 0.01 min−1; k = 1.0 × 105 min−1. This represents a situation in which a

single protein molecule is bound to the operator and there are no protein molecules in the

cytosol. On those rare occasions when the protein molecule dissociates from the operator

it immediately binds again, or, if it degrades, new protein is rapidly synthesized and binds.

Note that ρ and k have the same value as the previous example with 〈n〉 = 20 and F = 0.5.

The cause of the infra-Fano behavior is the ratio between f and h. At a thermodynamic
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FIG. 2. “(Color online)” Fano factor versus the mean protein number. Here we fixed a = 500

with different colors standing for fixed values of b as indicated by the key. Each curve corresponds

to a fixed value of b and variation of z0. For fixed a and b, 〈n〉 depends only on z0.

level, this ratio is equal to the equilibrium binding constant K and represents extremely

tight binding of the protein.

Mechanism of sub- and infra-Fano behavior. In order to understand the theo-

retical basis of sub-Fano and infra-Fano behavior, it turns out to be useful to consider the

covariance between the state of the gene and the number of protein molecules present. The

Fano factor can be written in a simple way using this covariance, and the covariance can in

turn be written in the terms of the exact solution. We do this by first defining the discrete

two-valued random variable N = {N1, 0}, with N1 given by Eq. (7). N1 and 0 represent

the asymptotic mean protein number if the gene were entirely on or off respectively. The

probability that N = N1 is given by p1 =
∑∞

n=0
αn. This probability coincides with the

probability of the gene being on (or off). Hence, the mean value of N is

〈N〉 = p1N1. (9)

The covariance of n and N is

ξ = 〈nN〉 − 〈n〉〈N〉. (10)

In the Supplemental Material [18] we show that

F = 1 +
ξ

〈n〉 . (11)

〈n〉 is a strictly positive quantity and ξ may be positive, zero, or negative causing F to be

greater than, equal to, or less than one; that is, super-Fano, Fano, or sub-Fano. We further
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show in the Supplemental Material [18] that the covariance can be written in terms of the

exact solutions of the model as

ξ = az0
N1 − 〈n〉
1− z0

− 〈n〉2, (12)

where the formula for 〈n〉 is given in (8). The set of parameters of the example for the

sub-Fano regime results in a covariance ξ of –10.0 while ξ is –0.995 for the set of values of

the parameters resulting in an infra-Fano regime.

Fast on-off switching. We pointed out above that infra-Fano behavior arises in the

case where a single repressor is bound to the operator. A further reason that sub- and infra-

Fano behaviors arise can be seen by considering the switching rates of the gene between

active and repressed states. The switching rates are high compared to the decay rate of

the protein. Were that not the case, the repressor could bind for a period comparable to

or longer than the protein half-life, resulting in an appreciable decline in protein number

during the repressor’s dwell time at the operator. The opposite is also true. In the sub-Fano

example given above, k = 1.0 × 105 min−1, but the average expression rate was less than

10−6 of k. If the repressor was unbound for a period comparable to the protein half life,

large spikes of protein concentration would result, greatly increasing F .

The biological interpretation of the sub- and infra-Fano behavior can be understood in

terms of the values of the rate parameters for which the sub- Fano regime occurs. The value

of the binding rate h is increased so that p1 approaches 0. During the small fraction of

time when the gene is on, little protein synthesis occurs. As the degradation rate is also

very small, the net variation in protein number is also small and its probability distribution

becomes very sharp.

The reduction of the variance is shown in Fig. (3), where we have plotted the probability

of finding n proteins inside the cell. It is evident that the variance of these distributions

decreases greatly as switching rate increases over the sequence of curves from A to E. A, B,

and C are super-Fano, D is Fano, and E is sub-Fano.

For dimensional reasons, noise is often characterized by the ratio of the variance to the

squared mean, a quantity known as the coefficient of variation CV 2 = F/〈n〉. Our findings

apply to CV 2 as well as F . Inspection of Eq. (11) shows that for small values of 〈n〉 and for

ξ ∼ −〈n〉 one may still obtain low values for CV 2. Because lim〈n〉→+∞ CV 2 = 0, for large

values of 〈n〉 the Fano and sub-Fano regimes are rendered indistinguishable by the onset of
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FIG. 3. “(Color online)” Probability distribution of the protein number. The probability

distribution φn is shown for increasing levels of coupling. The curves A to E show probability

distributions corresponding to increasing values of f and h. As the coupling gets stronger the

variance of the distribution decreases. The parameter values (a, b, z0) for each curve are: A=

(1., 2., 0.99), B= (1., 15., 0.95), C=(14., 70., 0.5), D= (50., 50., 0.5), and E= (5× 103, 1., 10−4). Eq.

(7) shows that f is linearly dependent on a while h is inversely proportional to z0.

deterministic behavior.

Coupling. Equations (4) and (5) are a coupling of two different Poissonian processes,

each of them related to one of the gene states. Hence, we analyze the Fano factor in terms of

the covariance between n and N . One Poisson process is the protein synthesis/degradation

when the gene is on while the other represents the same process when the gene is off. The

second random variable is the gene state, which is the variable that couples the two processes.

The sub-Poissonian regime is the result of the combination of two, noisier, Poisson pro-

cesses with negative ξ. One may conclude that negative covariance induces noise reduction

in the composition of stochastic processes. This coupling regime may be the mechanism

underlying the higher precision of the negative self-regulating gene [19, 20].

Experimental Implications. The kinetic scheme (3) leading to Eqs. (4) and (5) is

a coarse-graining of a more complex set of elementary reactions. In both prokaryotes and

eucaryotes, all reactions taking place between the initiation of transcription and the binding

of the repressor are coarse-grained away. In a prokaryote both elongation and translation are

neglected. The well known geometric distribution of the initiation of bacterial translation

will greatly alter the statistics of the sub-Fano regime reported here in a real system. Coarse-

graining does not affect the interpretation of the infra-Fano regime in prokaryotes, however,
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because with a single protein bound to the operator translation and transcription do not

take place. Moreover, the equilibrium constant K = f/h = 3 × 10−11 M implied by the

infra-Fano parameter set is well within the range of affinities for reversible binding reactions

involving proteins [21]. For this reason we expect that real prokaryotic systems exist with

operators which function in the infra-Fano regime.

With respect to the control of transcription initiation in eukaryotes, particularly the meta-

zoa, the equations may have predictive value. In these organisms the elementary chemical

reactions underlying transcription are not well understood because they are “vectoral” in

that the spatial arrangement of reactants is important; they occur far from equilibrium; and

they involve at least 58 polypeptides [22]. There is evidence [10] that Drosophila promoters

have discrete on/off states as in the system considered here, and that miRNA/protein com-

plexes reduce noise in a manner not mechanistically well understood [23, 24]. Suppose the

substance P in kinetic scheme (3) were such a noise-reducing gene product, and the chemical

species “P + O” and “OP” were interpreted as two allosteric states of a transcription com-

plex, the former permitting and the latter forbidding initiation. Then the low level of noise

seen in the sub-Fano and infra-Fano regimes described here would be a consequence of rapid

state changes in the transcription complex that occur far from equilibrium. This amounts

to a mechanism of “stochastic focusing” of gene expression, in which fast fluctuations in the

state of a transcription complex reduce fluctuations in the synthesis of gene product.

Compared with prokaryotes, in eukaryotes many more steps occur between transcription

initiation and the binding of repressor that are not represented in (4) and (5). These

processes include RNA splicing, capping, and polyadenylation, as well as the transport of

molecules between the nuclear and cytoplasmic compartments. This point is relevant to the

interpretation of the results presented here. The sub- and infra-Fano regimes occur in the

limit where the transition from on to off state is much faster than the transition from off

to on. As a result, the gene spends most of its time in the off state with a small effective

synthesis rate which, when combined with slow protein degradation, reduces fluctuations.

We point out that this low synthesis rate could also arise from any post-initiation event

in protein synthesis, including translation. The decrease of noise with decreased rates of

transcription or translation has previously been predicted and experimentally confirmed in

yeast [7].

Theoretical implications. Our discovery of the Infra-Fano regime demonstrates the
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importance of exact solutions in providing physical insight into the behavior of stochas-

tic systems far from equilibrium. Exact solutions of the Fokker-Planck equation provided

important insights into the bistability of lambda lysogens [25, 26]. These approaches did

not reveal the infra-Fano regime because the Langevin/Fokker-Planck approximation breaks

down as molecular numbers approach one [27]. A seminal work exploring the relative noise

contributions of transcription and translation used exact solutions of a system in which reg-

ulation is represented as a linear dependence on the synthesis rate [14]. Here we represent

regulation as an inducer of the switching from the on to the off state of protein synthesis.

This formulation permits multiple transitions of the gene state without significant changes

of protein numbers. Rapid switching alone is not sufficient to ensure noise reduction without

negative correlation. Peccoud’s approach [28], based on a model similar to ours but with

external regulation, did not produce a low noise regime because this regulation caused the

covariance between the protein number and the gene state to obey ξ ≥ 0.
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