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A bulk metallic glass forming alloy is subjected to shear flow in its supercooled state by compres-
sion of a short rod to produce a flat disc. The resulting material exhibits enhanced crystallization
kinetics during isothermal annealing as reflected in the decrease of the crystallization time relative to
the non-deformed case. The transition from quiescent to shear-accelerated crystallization is linked
to strain accumulated during shear flow above a critical shear rate 4. ~ 0.3 s~* which corresponds
to Péclet number, Pe ~ O(1). The observation of shear-accelerated crystallization in an atomic
system at modest shear rates is uncommon. It is made possible here by the substantial viscosity
of the supercooled liquid which increases strongly with temperature in the approach to the glass
transition. We may therefore anticipate the encounter of non-trivial shear-related effects during
thermoplastic deformation of similar systems.

PACS numbers: 81.05.Kf,61.43.Fs,61.25.Mv,64.70.pe

The ability of flow fields to modify the structure and
phase behavior of condensed matter has been well de-
scribed in a variety of systems. Plastic strain in solid
metals results in texture development [1] while steady or
reciprocating shear can orient microstructures in polymer
melts [2, 3], colloidal suspensions [4, 5], block copolymers
[6, 7] and lyotropic surfactant mesophases [8]. Likewise,
shear can suppress or enhance phase stability [9] and in
particular, shear enhanced crystallization has been ex-
perimentally observed in a broad range of materials.

The acceleration of crystallization in macromolecular
systems under shear is understood to originate from the
flow alignment of chains which reduces the entropy of
the melt and biases the system towards crystalization.
This effect is particularly acute during nucleation, and
the large relaxation time of entangled polymer melts al-
lows for this behavior at relatively low shear rates [10].
Similarly, shear-induced crystallization in colloidal sys-
tems occurs in regimes of flow where the suspension mi-
crostructure can be significantly perturbed by the flow
field. The transition to such a regime is described by the
dimensionless Péclet number, Pe = 47; which captures
the relative importance of advective and diffusive mass
transport, with 4 the shear rate and 74 the timescale for
particle diffusion. Ordered packed particle layers in hard
sphere suspensions are often observed at modest shear
rates where Pe > 1 [5, 11, 12]. Such structures may ac-
celerate nucleation, while the shear field can also enhance
the growth rate of existing nuclei. Conversely, excessive
shear flow can “shear melt” colloidal crystals.

As canonical examples, mesoscopic systems such as
polymer melts and colloidal suspensions highlight the
balance of timescales that defines the emergence of shear-
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influenced crystallization, and allow quantitative assess-
ment of this effect. By comparison, apart from recent
molecular dynamics studies [13-17], this topic has re-
mained largely unexplored in atomic systems. Experi-
mental progress has been impeded due to the practical
difficulties associated with the prohibitively high shear
rates needed to achieve Pe ~ O(1) for fast-relaxing
atomic liquids and melts. To date, shear-induced de-
viations of the crystallization of amorphous metals from
the quiescent case have not been observed.

Here, we present systematic, quantitative evidence
that shear accelerates crystallization of an atomic melt
at substantially lower shear rates. We consider a bulk
metallic glass (BMG) forming alloy and identify a critical
shear rate of 4=0.3 s~! above which substantial shear-
related effects can be observed in the kinetics of isother-
mal crystallization subsequent to flow, and below which
the material displays behavior similar to that of the qui-
escent case. Using the Volgel-Fulcher-Tammann (VFT)
form for the temperature dependence of the viscosity we
correlate this critical shear rate with Pe ~ O(1). The
ability to observe shear-induced effects at experimentally
accessible shear rates is linked to the highly viscous na-
ture of the melt in the supercooled state. The modest
shear rates at which flow influences crystallization sug-
gests that shear-accelerated crystallization must be prop-
erly accounted for in BMG forming operations.

The system under investigation here is a Pt-based al-
loy, Pt57.5Cu14.7Ni5 3P0 5. Samples were subjected to
shear via deformation during uniaxial compression from
a rod-like pellet to a thin disc. In a forming experiment,
a BMG rod is placed between two flat platens that are
maintained at a constant temperature of 270 °C as de-
picted in Fig. 1. For this alloy, this temperature is in the
supercooled liquid regime, which is bounded by the glass
transition temperature, Ty = 235 °C, and the crystalliza-
tion temperature, Ty = 305 °C. In the supercooled state,
the alloy is a sluggish liquid with a viscosity n ranging
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FIG. 1. (Color online) (a) A short BMG rod is pressed to a
flat disc using a loading rate of 15kN/min for 180s at 270 °C.
(b) Normalized compression as a function of time for selected
loading rates. h; is the final thickness of the disc.

’Sample‘Loading rate (N/min)‘hf (/Lm)‘taj (min)‘

1 0 2500 20
2 1.5 724 17.7
3 15 219 9.7
4 150 165 9.3
5 1500 106 7.7
6 15000 75 7.9

TABLE I. Loading rates, final thickness hy, and crystalliza-
tion times t,. Corresponding DSC data are in Fig. 2b.

from 10° — 1012 Pa.s [18]. A 3 minute load profile with
constant loading rate ranging from 1.5 to 15000 N/min
was applied. This resulted in a reduction in thickness
ranging from a factor of ~ 3X-30X depending on the
loading rate. In all cases the shear strain rates exceeded
the compressional strain rates for the majority of the
deformation, ¥ = €., > 4¢,, especially at the advanc-
ing interface of the BMG where the shear and, thereby,
shear-induced effects were the largest magnitude.

The crystallization kinetics were characterized by dif-
ferential scanning calorimetry (DSC), with heat flow
recorded during isothermal annealing at 270 °C. Data
were collected for different radial positions for a single
loading profile (15 kN/min, Fig. 2a) and for wedge-
shaped disc sections prepared at the different loading
rates in Table 1. In the first case, pressed discs were sec-
tioned into several circular annuli which were evaluated
separately. In the second case, wedge-sections were indi-
vidually characterized to provide a description of crystal-
lization behavior integrated over the radially-dependent
shear rates produced by each loading profile. For ex-
perimental convenience and more accurate detection, the
crystallization time t,, is defined as the time of maximum
heat flow. t, defined in this manner corresponds to the
time when the extent of crystallization is ~50% due to
the near-symmetric shape of the crystallization peak in
the thermogram.

The quiescent sample is exposed to the same thermal
treatment (180s at 270 °C) but not subjected to any de-
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FIG. 2. (Color online) Isothermal thermographs of pressed
discs. (a): Circular annuli from Sample 6 shownig radial de-
pendence (1: center; 7: edge). Reference quiescent sample
(v = 0) is also shown. (b): Wedge-shaped samples from discs
produced using different loading rates as indicated. Note that
samples in (a) were slightly thicker than those in (b) resulting
in lower maximum shear rates and therefore larger values of
the minimum (radially dependent) t.

formation and therefore provides a baseline for the crys-
tallization behavior. Data are shown in Fig. 2a for ¥ = 0.
Crystallization for the quiescent case occurs with a highly
reproducible ¢, of 20 minutes, consistent with published
data [18] after properly accounting for the 180s latent
period.[19] For the pressed disc, the ¢, for material sam-
pled from the center of the disc out to R/7, (where R
is the radius of the disc) is also 20 minutes (purple
trace in Fig. 2a), effectively indistinguishable from the
quiescent sample. Data taken from successive circular
annuli show a progressive decrease of ¢, to a minimum
of 10 minutes. The effects of different shear rates pro-
duced by varying the loading rate are shown in Fig. 2b.
t,= 18 minutes for samples pressed at the lowest loading
rate (1.5N/min) while material deformed with the high-
est rate (15 kN/min) crystallizes after only 7 minutes
of additional heating, about three times faster than the
quiescent case.

As discussed above, during deformation the sample ex-
periences different shear rates as a function of radial po-
sition and the applied loading rate. The data unambigu-
ously demonstrate that ¢, is a strong function of position
and loading rate and thus we can conclude that the crys-
tallization kinetics are accelerated by shear. One may
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FIG. 3. (Color online) Temperature dependent critical shear
rate, Eq. 1.

speculate that heat evolved during deformation of the
system could contribute; however the rate of heat trans-
port out of the material significantly exceeds the rate of
generation, excluding this effect (see Supplemental Ma-
terial [20]). We propose instead that crystallization is
accelerated due to local ordering in volume elements of
the material where the shear rate exceeds a critical shear
rate . where the structure of the liquid is dictated by
advection.

Under quiescent conditions, mass transport occurs by
diffusion alone, with the characteristic timescale 74 set
by the diffusivity D and the characteristic atomic length
scale a, 74 = a?/D. The advective timescale due to
shear is given by the inverse shear rate, 74 = ¥~! and
so Pe = 4a?/D. We define a critical shear rate 4. as
that at which the atomic transport by advection domi-
nates diffusive transport. For Pe ~ O(1) and 4 > A,
the microstructure of the melt is therefore dictated by
the advection and the crystallization kinetics become a
function of the shear rate. The critical shear rate can
be approximated in terms of the melt viscosity through
the Stokes-Einstein relation D = kgT/3mna. The melt
viscosity is assumed to exhibit a VFT temperature de-
pendence, n = ng exp[F*Ty /(T — Tp)] where F*, 1y and
Ty are fitted empirical constants. The temperature de-
pendence of the critical shear rate for flow-dominated
crystallization is then given by Eq. 1.

(1)

Ve

kpT F*T,
= exp |—
3mnoa’d L Ty

For Pt57_501114_71\H5.3P22.57 770=4X 10_5Pa.s, T0:336 K
and F* = 16.4 [18, 21]. Based on atomic radii of 177, 145,
149 and 98 pm for Pt, Cu, Ni and P, we calculate a vol-
ume weighted average atomic size (diameter) of ¢ = 0.32
nm, and calculate 4.(T), Fig. 3. For the experimental
temperature of 543 K 4, ~ 1.7.

Further consideration of the above treatment requires
establishing the relationship between the applied load-
ing rate and radially-dependent local shear rates, as the
strain accumulated above 7. should provide a strong cor-
relation with the kinetics. The spatial dependence of the

instantaneous shear rate in a disc subjected to compres-
sion by no-slip parallel plates can be written analytically
as a function of the compression rate and the original
dimensions (Supplemental Material [20]). A proper de-
scription however must account for the radially outward
physical transport of volume elements during flow as the
disc is flattened. We therefore use a finite element sim-
ulation (Supplemental Material [20]) to fully determine
the mechanical history of the samples. This allows the
radial dependence of accumulated strain during flow to
be quantitatively determined.

We calculate the volume-averaged accumulated strain
that fluid elements at a given radial position encountered
throughout their flow history. Specifically we consider
strain accumulated only when the fluid parcels experi-
ence strain rates larger than 4., Eq.2. Data from finite
element calculations employing simulated loading rates of
Sample 4 are used to determine 5. by performing a sensi-
tivity analysis. The distribution of accumulated strain is
shown in Fig. 4a. Although the instantaneous shear rates
are largest at the periphery of the disc, the accumulated
strain displays a different distribution as the volume ele-
ments at the peripheries are constantly refreshed due to
the generation of new surface during the deformation of
the disc. The maximum accumulated strain therefore oc-
curs slightly inward of the maximum in the instantaneous
shear rate.

We consider the dependence of ¢, on the strain 3¢ ac-
cumulated above a given rate ,, with accumulated strain
averaged over each of 4 annuli that collectively represent
the full radial extent of the sample consistent with the
experimental results. The gradient n(v, = dt,/d¥%¢ ex-
hibits a sigmoidal shape. 4. is defined as the point at
which there is a maximum in the rate of change of this
dependence as a function of 4,, signaling the point at
which the sensitivity of the dependence is greatest, that
is 4, for which dn/d%, exhibits a first (non-trivial) max-
imum. In this manner we estimate 4.=0.3 s~1, inset Fig.
4b (v%¢(r, z) in Supplemental Material [20]). ¢, shows a
marked dependence on v¢¢, with a linear decrease over a
broad range of accumulated critical strain after a sharp
decrease from the quiescent value, Fig. 4b.
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Our experimentally determined 4,=0.3 s~ differs from
the predicted value of 1.7 for Pe = 1 based on Eq.
1. The lack of exact agreement is not surprising how-
ever given the uncertainty associated with the param-
eters in the VFT description of the dynamics and the
exponential dependence on two of these parameters, F*
and Tp. Additionally, estimating the diffusivity using
the Stokes-Einstein equation may represent an oversim-
plification [22, 23]. The correlation between increasing
accumulated critical strain and rate of crystallization is
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FIG. 4. (Color online) (a) Accumulated strain from finite
element calculation. h = 0 corresponds to the mid-plane
of the disc. (b) Dependence of normalized crystallization

time ¢4 /t;0 on simulated volume-averaged accumulated crit-
ical strain v2¢ for 4.=0.3 s™! corresponding to Sample 4. tzo
is the crystallization time of the pristine material. Inset: ra-
dial dependence of v¢¢. Location (r) is normalized by the disc
radius, R. Lines are drawn as guides.

intuitive in the context of the earlier discussion. Simi-
lar observations have been made for polymer melts crys-
tallized during or subsequent to shear, with similarly
strong correlations between the normalized crystalliza-
tion rate and the accumulated strain or applied shear rate
[10, 24]. However, simple models which can correctly ac-
count for the observed behavior are not available. The
persistence of this situation despite the practical signif-
icance of flow-induced crystallization in melt-processed
commodity-scale polymers such as polyolefins reflects the
complexity of the underlying phenomena.

Consideration of crystallization and aggregation in col-
loidal systems may provide a useful framework for in-
terpreting our results however, by examining the role of
shear in effectively decreasing the activation barrier for
nucleation [25] or aggregation [26]. In the latter case, Za-
ccone et al. provide an expression for modification of ag-
gregation kinetics exp(—V/kT + aPe) that may reason-
ably be extended to atomic systems using the appropriate
potentials, where V represents an activation barrier for

nucleation and « depends on the flow geometry. In this
framework, the transition to a shear-dominated regime
occurs for Pe > (1/a)(V/kT). The exponential depen-
dence suggests a sharp transition to shear dominated ki-
netics though in the present case any such sharpness is
subject to smearing by the non-uniform shear history of
fluid elements as they are convected during deformation.
Experiments using a constant shear-rate geometry would
enable these arguments to be more rigorously evaluated
for the supercooled melts studied here.
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FIG. 5. (Color online) XRD of disc pressed at 15 kN/min
loading rate. Data offset vertically for clarity. (a) Sample
immediately after pressing. There is only one broad peak in-
dicating the material is amorphous. (b) Pressed disc after
isothermal crystallization. There are no discernable differ-
ences in grain size (peak widths) suggesting that no crystal-
lization occurs during deformation of the sample.

In the present case we have shown that an atomic melt
may also display strong shear-induced crystallization be-
havior, which we quantitatively link to flow above a crit-
ical shear rate corresponding to Pe ~ O(1). We pro-
pose that shear-driven local ordering is responsible for
this display, in much the same manner as observed in
mesoscopic systems such as colloidal suspensions [5]. X-
ray diffraction (XRD) of as-pressed discs reveals a broad
amorphous hump centered at 20 = 40° that is charac-
teristic of the glass, with no discernable differences in
the structure of the pressed discs as a function of ra-
dial position (Fig. 5). XRD of fully crystallized material
likewise does not display any significant differences radi-
ally of peak width, and therefore crystallite size as inter-
preted by Scherrer analysis. The difficulty of detecting
nanoscale crystallites in a bulk amorphous matrix pre-
vents us from concluding that there are no such crystal-
lites present. However from these XRD experiments as
well as cursory TEM investigations, we have no indica-
tion of crystallite formation during shear. This is con-
sistent with the enhancement of nucleation and growth
during subsequent isothermal annealing as being the re-
sult of subtle changes in the structure of the supercooled
liquid. We speculate that the multi-component nature
of the amorphous alloys may also play a role in this re-
gard. The complex composition that is often a prereq-
uisite for the suppression of crystallization in bulk glass
formers [27-29] requires non-polymorphic crystallization
in which the composition of the crystal is different than
that of its surrounding melt. In addition to local order-



ing driven by advection, for non-polymorphic crystalliza-
tion, shear flow may act to encourage local compositional
heterogeneities due to polydispersity in the size of the
constituent atoms. We note that accelerated crystalliza-
tion kinetics were also observed in another BMG-former,
Zr44Al10Ti11CuygNijgBess, as described in Supplemental
Material [20].

In conclusion, we observed enhanced crystallization ki-
netics in a metallic glass subsequent to shear flow in its
supercooled liquid state. We interpret this as a transi-
tion from diffusion to advection-dominated transport at a
critical shear rate. A pairing of finite element calculations
and experimental data permits estimation of the criti-
cal shear rate using a minimal set of assumptions, and
yields rough agreement with simple estimates based on
the Péclet number. The strain rates in our experiments
are comparable with deformation rates encountered dur-
ing thermoplastic forming [30]. We therefore anticipate
that significant shear-crystallization effects will be rele-

vant during BMG thermoplastic forming, particularly in
the vicinity of T,; where the strong divergence of viscosity
drives j. down to small values. This may assume added
significance in confinement where finite size effects come
into play [31, 32]. It is likely that crystallization in shear
bands during deformation of metallic glasses [33-35] oc-
curs subject to the same considerations detailed here. In-
deed, the comparison to shear induced crystallization in
polymers by enhanced atomic diffusivity through shear
has been advanced for this scenario [34].
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