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Theory of the corrugation instability of a piston-driven shock wave
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We analyze the two-dimensional stability of a shock wave driven by a steadily-moving corrugated
piston in an inviscid fluid with an arbitrary equation of state. For h ≤ −1 or h > hc, where h is
the D’yakov parameter and hc is the Kontorovich limit, we find that small perturbations on the
shock front are unstable and grow — at first quadratically and later linearly — with time. Such
instabilities are associated with non-equilibrium fluid states and imply a non-unique solution to the
hydrodynamic equations. The above criteria are consistent with instability limits observed in shock-
tube experiments involving ionizing and dissociating gases and may have important implications for
driven shocks in laser-fusion, astrophysical and/or detonation studies.

PACS numbers: 47.40.-x, 47.20.Ma, 51.30.+i

I. INTRODUCTION

A shock wave sustained by the steady motion of a pla-
nar piston in a fluid-filled channel is a classical problem of
hydrodynamics. This system is also a familiar paradigm
in other areas of physics for analyzing shocks driven by
a variety of complex mechanisms, including solar flares
[1], supernova ejecta [2], ablation surfaces in inertial-
confinement-fusion targets [3], moving repulsive dipole
beams in Bose-Einstein condensates [4] and flame fronts
in combustible fluid mixtures [5]. Of central importance
to the dynamics of this class of shock waves is the issue
of stability. It is well known that a piston-driven shock in
an ideal gas is unconditionally stable; even in the absence
of viscous damping, small disturbances on the surface of
the shock evanesce over time and the front eventually ac-
quires a planar shape [6]. For a fluid characterized by a
non-ideal equation of state (EOS), however, stability is
not guaranteed and under certain circumstances pertur-
bations to the zeroth-order flow conditions can amplify
over time and give rise to the formation of turbulent-like
states behind the shock [7]. Such unstable phenomena
have been observed in a number of gases undergoing ion-
ization and dissociation under shock compression [8–10]
and are seen almost universally in detonations [11–19].

The determination of the precise conditions that an
EOS must satisfy to admit unstable shock behavior has
been the subject of numerous theoretical investigations
over the last 60 years [20–25]. For the most part, those
studies reach the same conclusion regarding shock stabil-
ity and do so by adopting a common simplifying approx-
imation known as the “isolated wave model” in which
a steadily-propagating shock is treated as a standalone
discontinuity and conservation of mass and momentum
across the front constitute the sole boundary conditions
in the problem [26]. According to this approach, linear
corrugations on the shock front are unstable and grow
exponentially in time when either of the criteria

h < −1 or h > 1 + 2M1 (1)

is satisfied [27, 28]. Here, the parameterM1 = (U−V )/a1

is a downstream Mach number satisfying 0 < M1 < 1 and
the symbols U , V and a1 represent the shock, particle and
compressed-fluid sound speeds, respectively, in the labo-
ratory frame. The dimensionless quantity h that appears
in Ineq. (1) is known as the D’yakov parameter [20] and
is a measure of the inverse slope of the Hugoniot curve
in the plane of pressure P and mass density ρ ; it is de-
fined as h = −(U2/η2) (dρ/dP )H , where η = ρ1/ρ0 > 1
is the compression ratio across the front and subscripts
“0” and “1” denote upstream and downstream states,
respectively. In addition to the corrugation instability
described above, the isolated wave model also predicts
a special category of unstable shock behavior (known as
the D’yakov-Kontorovich instability) for values of h that
lie in the range

hc < h < 1 + 2M1, (2)

where hc = (1 − M2
1 − ηM2

1 )/(1 − M2
1 + ηM2

1 ) is the
so-called Kontorovich limit [21]. For isolated shocks sat-
isfying Ineq. (2), linear perturbations on the front remain
stationary over time and emit sound and entropy-vortex
waves in the downstream direction [27, 28].

In reality, of course, steady shocks are never truly iso-
lated waveforms; the sustainment of the front requires
the existence of a uniform driving agent such as a pis-
ton behind it — the removal of which leads to a decay
of the shock into acoustic waves [11]. It is perhaps not
surprising, then, that instability limits derived using the
isolated wave model do not closely match results from
driven-shock experiments [8, 29] and moreover, imply the
existence of multivalued solutions to projectile impact
problems [30, 31]. As suggested by Fowles and Swan,
these inconsistencies are almost certainly a consequence
of the failure of the theory to account for the influence
of the piston on the shock dynamics [32]. In this paper,
we perform for the first time a linear stability analysis
of a two-dimensional shock that takes into account its
acoustic interaction with the piston sustaining it. Per-
turbations are introduced through small corrugations on
the face of the piston, which is assumed to move im-
pulsively from rest into a stationary inviscid fluid and



2

thereafter maintain a constant speed V . The principal
conclusion of this study is that driven planar shocks obey
instability criteria that are somewhat different from the
widely-known conditions appearing in Ineqs. (1) and (2).

The majority of our analysis has already been pre-
sented in great detail in a previous publication [33].
In that work, it was shown that a shock driven by a
corrugated piston is stable provided that the condition
−1 < h < hc holds. For values of h within that range, lin-
ear perturbations on the front attenuate as t−3/2 asymp-
totically (or as t−1/2 as h → hc from below), where t
denotes time. Here, we derive the solution for all other
values of h. For such cases, we find that unstable shock
behavior results from linear perturbation amplitudes that
grow algebraically in time (in contrast to the exponen-
tial dependence predicted with the isolated wave model),
which occurs if

h ≤ −1 or h > hc . (3)

Comparison of these expressions with Ineq. (1) shows
that the second inequality above is a less stringent condi-
tion for the occurrence of the corrugation instability than
that derived using the isolated wave model. This find-
ing is supported by experimental observations reported in
Ref. [8], where the instability condition h > hc was postu-
lated for strong driven shocks in argon and carbon diox-
ide gases. It should also be noted that in the present the-
ory, the range of h-values in Ineq. (2) corresponds to a re-
gion of absolute growth so that the D’yakov-Kontorovich
instability evidently does not occur for driven planar
shocks perturbed at the piston boundary.

These results may have have important consequences
for driven shock fronts in fluids that are subject to
extreme thermodynamic conditions and thus not ad-
equately described by ideal-gas constitutive relations.
Such conditions occur, for example, in laser-fusion tar-
gets where perturbed strong shocks driven by non-
uniform ablation processes seed deleterious hydrody-
namic instabilities [34]. An understanding of how per-
turbed shock fronts evolve in these targets — and the
conditions for which those fronts behave stably— are
crucial considerations for achieving high fuel compres-
sion and significant fusion-energy gain. The theory de-
veloped in this paper may also provide insight into cer-
tain magnetohydrodynamic and astrophysical phenom-
ena in which the corrugation instability of shock fronts is
thought to play a key role; these include the generation
of strong magnetic fields in relativistically hot plasmas
[35], “noise” effects in the accretion of compact stellar
objects [36] and the acceleration of high-energy particles
in strongly-magnetized white-dwarf stars [37].

A third potentially-important application of this work
is in the investigation of the deflagration-to-detonation
transition in combustible fluid mixtures [38–43]. In that
process, a flame front — which is analogous to the piston
in the present study— suddenly accelerates and drives
a strong shock that may result in detonation of the fuel
[44]. Although this phenomenon has yet to be fully elu-

cidated, there is evidence to suggest that it is linked to
the development of turbulent states in the downstream
flow [39, 45] and the occurrence of the corrugation insta-
bility of shocks [15, 31]. Thus, by providing a hydrody-
namic framework for modeling the flame-shock system,
the analysis presented in this paper may help to clarify
the role that shock instabilities play in triggering deto-
nations.

II. LINEAR STABILITY ANALYSIS

Our approach to analyzing the stability of a shock
driven by a corrugated piston consists of first solving an
auxiliary problem — that of a shock created by the mo-
tion of a wedge-shaped piston [see Fig. 1(a)] — whose
solution can then be used to infer the result for a rip-
pled driving surface [6]. We assume that the wedge an-
gle δ is small and choose a co-moving system of coordi-
nates (X,Y ) in which the origin is at the vertex of the
piston. In front of the piston, a slightly-bowed shock
wave forms that propagates into a fluid with mass den-
sity ρ0 and pressure P0. At large distances on either side
of the origin, the front is straight and moves with con-
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FIG. 1: The wedge-shaped piston with wedge angle δ (as-
sumed to be small here). Region 2 in (a) becomes the rectan-
gle (to zeroth-order) in (b) with λ = 1

2
ln[(1 +M1)/(1−M1)]

after a change to canonical field variables, a Busemann trans-
formation and a conformal map. In the linear approximation,
the solution to this problem can be used to determine the evo-
lution of a shock front driven by a piston with a corrugated
surface.
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stant speed U − V in a direction perpendicular to the
piston’s surface. Behind the shock, a circular acoustic
wave with speed a1 emanates from the vertex and sepa-
rates the downstream fluid into two regions. Region 1 is
the area of compressed fluid ahead of the acoustic wave
with uniform mass density ρ1 and pressure P1. This re-
gion is bordered on each side of the X-axis by the straight
section of the shock across which mass and momentum
conservation give the relations V = U(1 − ρ0/ρ1) and
P1 = P0 + ρ0U

2(1− ρ0/ρ1). To first-order in δ, the fluid
has a velocity given by (0,±V δ), where the plus and mi-
nus sign correspond to Y > 0 and Y < 0, respectively.

Region 2 is defined as the area behind the acoustic
wave that is bounded by the piston and the shock front.
In this region, the perturbed fluid-velocity vector can be
expressed as q2 = V (u, v), where u and v are dimension-
less and of order δ. By linearizing the Euler equations,
one can then show that P2 satisfies the wave equation.
In terms of the conical-field variables x = X/(a1t) and
y = Y/(a1t), that equation becomes

(
x
∂

∂x
+ y

∂

∂y
+ 1

)(
x
∂p

∂x
+ y

∂p

∂y

)
= ∇2p, (4)

where we have introduced the dimensionless quantity p =
(P2−P1)/(a1V ρ1). We now look for a solution to Eq. (4)
in region 2 subject to the following boundary conditions.
On the surface of the piston, where x = 0 approximately,
the normal fluid velocity must be the same as that of the
piston itself; using the linearized momentum equation,
this implies ∂p/∂x = 0 when x = 0. On the boundary
with region 1, the pressure must be continuous, so that
P2 = P1 and p = 0 for x2 + y2 = 1. The other condition
to be specified is that on the part of the shock bounded
by the circular acoustic waves, which can be described
by the equation XS = (U − V ) t+ ξ, where ξ = a1t f(y)
is the deflection of the front from plane and f is of order
δ. The condition that p satisfies there (i.e., x = M1,
approximately) is [33]

(
1−M2

1

) ∂p
∂x

=
(
yM1 + yβ − ΓM2

1 y
−1) ∂p

∂y
, (5)

where

β =
1− h
2M1

and Γ =
(1 + h)η

2M1
. (6)

It should be noted that the calculation in Ref. [33] also
yields the conditions u = β p, y (∂v/∂y) = M1Γ(∂p/∂y)
and ∂ξ/∂t = a1M1Γ p on the surface x = M1.

Following Refs. [46, 47], the solution to Eq. (4) is ob-
tained by enlisting the following procedure. First, a
Busemann transformation [48] to the coordinates (r, θ)
is made using the relations x = 2r cos θ/(1 + r2) and
y = 2r sin θ/(1 + r2), which transforms Eq. (4) to
Laplace’s equation. Second, a conformal map in the
form z1 = x1 + i y1 = log [(1 + ζ)/(1 − ζ)] + i π/2,
where ζ = r exp(iθ), is employed. The result is that
region 2 becomes, approximately, the rectangle shown

in Fig. 1(b) with 0 ≤ x1 ≤ λ and 0 ≤ y1 ≤ π, where
λ = 1

2 ln[(1 +M1)/(1−M1)]. In the z1-plane, the shock
front ABC corresponds to the side of the rectangle given
by x1 = λ, 0 ≤ y1 ≤ π, the piston’s surface FED becomes
the segment x1 = 0, 0 ≤ y1 ≤ π and the arcs DC and FA
map to the edges 0 ≤ x1 ≤ λ, y1 = π and 0 ≤ x1 ≤ λ,
y1 = 0, respectively. The forms of the boundary con-
ditions on the latter three surfaces are not affected by
the transformation to the new coordinate system so that
∂ p/∂x1 = 0 on FED and p = 0 on FA and DC. Fur-
thermore, we have the additional condition that ∂p/∂y1
must vanish on the midline EB due to the symmetry of
the problem.

The remaining boundary condition is that on ABC,
for which y = −(1 −M2

1 )1/2 cos y1. The form of Eq. (5)
suggests it is useful to introduce the complex function

w(z1) =
∂p

∂x1
− i ∂p

∂y1
(7)

and look for a solution in terms of this quantity rather
than p directly. Note that w is imaginary on EFA and
EDC, and vanishes at E . On ABC, Eq. (5) implies [33, 47]

argw = tan−1 (µ+ tan y1) + tan−1 (µ− tan y1) , (8)

where

µ± =
1±

√
1− 4(Γ/α2)(β − Γ/α2)

2(β − Γ/α2)
(9)

and we have introduced the additional EOS parameter

α2 =
1−M2

1

M2
1

. (10)

For −1 < h < hc, the coefficients µ± are either both real
and positive, or both complex with positive real parts
(see Fig. 2). The solutions for those cases have already
been given in Ref. [33] and correspond to stable shock
behavior. For h < −1 or h > hc, the coefficients µ± are
purely real, but with opposite signs and this leads to a
different class of solutions, as we now demonstrate.

Let us first consider the case µ+> 0 and µ−< 0 (i.e.,
h<−1). For these conditions, Eq. (8) can be written [49]

argw(λ+ iy1) = −
∞∑

n=1

(b−n − an)n−1 sin 2ny1 , (11)

where a = (µ+− 1)/(µ+ + 1) and b = (µ−− 1)/(µ−+ 1).
We see that as y1 → 0 or π, the above expression tends to
zero. On FA and DC, however, the function w is purely
imaginary. Thus, argw is discontinuous at the points A
and C, which implies that w must have a zero or a pole
at each of those points. In what follows, a solution will
be found that is regular inside the rectangle in Fig. 1(b)
with simple zeros at the pointsA, C and E . It must be the
only regular solution with zeros at these points, because
if there were another with higher-order zeros, w̃(z1) say,
then the ratio w̃(z1)/w(z1) would be purely real on the
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FIG. 2: Qualitative plots of µ− (gray line) and µ+ (black
line) versus h. For −1 < h < hc, the shock front is stable
and µ± are either both real and positive or they are complex
conjugates of each other with positive real parts; see Ref. [33].
Outside of this range, the coefficients µ± have opposite signs,
which results in an unstable solution. The parameters h± in
this figure denote the roots of the discriminant in Eq. (9).

boundary and thus equal to a constant [50], which, as
shown below, can have only one determination in this
problem. Note also that the assumption of zeros at A
and C requires argw to be π/2 on EFA and 3π/2 on
EDC [51].

An analytic function that satisfies all of the boundary
conditions stated above is

w(z1) = iK
θ2(−iz1, q) θ4(−iz1, q)

θ 2
3 (−iz1, q)

× exp

{
−
∞∑

n=1

(b−n − an) cosh 2nz1
n sinh 2nλ

}
, (12)

where θ2, θ3 and θ4 denote Jacobi theta functions [52]
with q = exp (−2λ). Note that this function is reg-
ular inside the rectangular boundary of Fig. 1(b) and
has an integrable, second-order pole at B. The constant
K is determined by the fact that the change in velocity
V
∫

(∂v/∂y) dy along the shock is 2V δ, or equivalently

(b− a)K

2 δ q1/4
=
α

Γ

[∫ π

0

tan2 y1G(y1) dy1

]−1
, (13)

where

G(y1) =

∞∏

m=0

(1− 2 b−1q2m+2 cos 2y1 + b−2 q4m+4)

(1− 2 a q2m cos 2y1 + a2 q4m)

× (1− 2 q2m+2 cos 2y1 + q4m+4)

(1 + 2 q2m+2 cos 2y1 + q4m+4)2

× (1 + 2 q2m+1 cos 2y1 + q4m+2) . (14)

Since q < 1, the infinite product above converges rapidly.

Following Refs. [6, 33], we can now deduce the shape
of a shock launched by a corrugated piston with profile
ε exp(iωY ), where ω is a spatial frequency and the am-
plitude ε is small compared to ω−1. Consider a point
on the piston Y = Y ′ and another a distance dY ′

away. The change in slope between these two points
is −ε ω2 exp(iωY ′) dY ′. Thus, if we replace 2δ by this
quantity in the above analysis, we can write an expres-
sion for the contribution to ∂p/∂Y on the shock from an
infinitesimal section of the piston:

(
∂p

∂Y

)Y ′+ dY ′

Y ′
=
K1 ε ω

2 e iωY
′
tan y1G(y1)

a1t (1−M2
1 )1/2

dY ′ , (15)

where the constant K1 is given by the right side of
Eq. (13). Using Y − Y ′ = −a1t (1−M2

1 )1/2 cos y1, three
integrations can be performed on Eq. (15). The first is
over the infinite surface of the piston, the second is with
respect to the variable Y and the third is over time [6, 33];
the resulting expression for the shock-ripple amplitude is

ξ

εeiωY
=

∫ 1

−1 e
−iτz z−2

(
1− z2

)1/2
F (z) dz

∫ 1

−1 z
−2 (1− z2)

1/2
F (z) dz

, (16)

where

F (z) = G[cos−1(−z)]

=

∞∏

m=0

(1− 2 b−1q2m+2(2z2 − 1) + b−2 q4m+4)

(1− 2 a q2m(2z2 − 1) + a2 q4m)

× (1− 2 q2m+2(2z2 − 1) + q4m+4)

(1 + 2 q2m+2(2z2 − 1) + q4m+4)2

× (1 + 2 q2m+1(2z2 − 1) + q4m+2) (17)

and τ = ω a1t (1−M2
1 )1/2 is a dimensionless time. At τ =

0, we see that the shock has the shape of the piston, as
it should. Moreover, one can show that in the limit h→
−1, Eq. (16) and the solution derived in Ref. [33] yield the
same expression — as they must since µ− changes sign
continuously there; see Fig. 2. The solution for µ+ < 0
and µ− > 0 (i.e., h > hc) is obtained by interchanging
the parameters a and b in the above formulae.

The evolution of the shock-ripple amplitude ξ with
time can be determined by integrating the right side of
Eq. (16) by parts and then evaluating the resulting ex-
pressions numerically for particular values of the param-
eters η, M1 and h. Figure 3 shows a plot of the real
part of ξ /(ε eiωY ) obtained by following this procedure
for η = 3, M1 = 0.5 and h = −1.1. From this figure,
we see that in the linear approximation, the shock-ripple
amplitude grows (approximately) quadratically with τ
initially and then switches over to a linear dependence at
later times. Note that this behavior is considerably differ-
ent from the exponential growth predicted for unstable,
isolated shock fronts [20–25]. For comparison, Fig. 3 also
contains an example of a stable solution satisfying the
condition −1 < h < hc, which decays asymptotically as
τ−3/2. That class of driven shock waves was discussed
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FIG. 3: Plot of the real part of the normalized shock-ripple
amplitude in Eq. (16) versus dimensionless time τ for η = 3,
M1 = 0.5 and h = −1.1 (solid line). At late times, the growth
is essentially linear with τ . A stable solution is also shown
(dashed line) for η = 2.197, M1 = 0.4782, h = −0.1647 and
hc = 0.2111; see Ref. [33] for the derivation of that class of
solutions.

in detail in Ref. [33] and is not considered here, but in
passing, we note that the stable branch of the solution
has the form of Eq. (16) with F (z) replaced by

∞∏

m=0

[
1− 2q2m+2(2z2 − 1) + q4m+4

]

[1− 2aq2m(2z2 − 1) + a2q4m]

×
[
1 + 2q2m+1(2z2 − 1) + q4m+2

]

[1− 2bq2m(2z2 − 1) + b2q4m]

and the factors of z−2 omitted from the integrands. One
can show that at the upper limit of the stable regime
(i.e., as h → hc from below), the asymptotic behavior
changes to a τ−1/2 dependence due to the appearance of
a term (1−z2) in the denominator of the infinite product
above [53].

III. THERMODYNAMIC CONSIDERATIONS

We now demonstrate that the instability criteria de-
rived in this paper are associated with shocked fluid
states that are not in thermodynamic equilibrium. Much
of the basis for this conclusion has already been provided
by Fowles [31], who analyzed the shock stability problem
using a principle of irreversible thermodynamics that says
the approach to equilibrium of two disparate systems is
characterized by the conditions dS ≥ 0 and dE′ ≤ 0,
where S and E′ denote entropy and reduced internal
energy, respectively, with dE′ = dE − P0 dρ/ρ

2. (The
quantity E here is the conventional internal energy of
the fluid.) According to this principle, a shock transition
from an initial state to a given final state is thermody-
namically unstable if there exists an alternative point on
the Hugoniot curve for which the entropy is larger, or the

reduced internal energy is smaller, than that given state.
Fowles showed that the former situation arises whenever
h < −1, which is also a condition that ultimately leads to
the splitting of the front into a double shock-wave struc-
ture with a greater net increase in entropy [54, 55].

It is straightforward to see that satisfaction of the
condition h > hc also implies the existence of a non-
equilibrium fluid state from the equivalent inequality [56]

(
∂E′

∂S

)

H
= T

[
1−M2

1 (η − 1)(1 + γ)
]
< 0 , (18)

where γ is the Grüneisen parameter and H and T denote
enthalpy and temperature, respectively. Note that for a
shock in an ideal gas, the left side of the above inequal-
ity reduces to T P0/P , which is strictly positive. For
non-ideal fluids, however, it is possible that (∂E′/∂S)H
is negative at sufficiently high shock-compression. The
instability that develops in such a case effects a tran-
sition to an alternate (and likely turbulent) solution of
the hydrodynamic equations in which the reduced inter-
nal energy and particle velocity of the compressed fluid
are minimized [31]. We speculate that detonations are
related to corrugation instabilities of this variety.

IV. SUMMARY AND CONCLUSIONS

In summary, we have solved for the first time the prob-
lem of a two-dimensional, planar shock front created,
sustained and perturbed by a piston moving in a sta-
tionary inviscid fluid with an arbitrary EOS. Our theory
predicts both stable and unstable behavior, depending
on the value of h. For −1 < h < hc, we find that lin-
ear perturbation amplitudes on the shock front atten-
uate asymptotically as t−3/2 (or as t−1/2 as h → hc
from below). Outside of this range, they grow — at first
quadratically and later linearly — with time. It is im-
portant to notice that the upper stability limit found in
this study is smaller than that derived using the isolated
wave model and cited in standard fluid-dynamics text-
books (e.g., see Ref. [27]), but agrees precisely with ob-
servations in driven-shock experiments involving ionizing
and dissociating gases [8]. We should also remark that
the D’yakov-Kontorvich instability of isolated shocks —
which shares the same threshold condition h > hc, but is
characterized by a solution with stationary perturbations
[57–61] — evidently does not occur for fronts sustained
and perturbed by a moving piston. (Note that an ear-
lier study by Wouchuk and Cavada [62] reached a differ-
ent conclusion regarding the occurrence of the D’yakov-
Kontorovich instability for shocks driven by a corrugated
piston; this is perhaps not too surprising, though, since
their analysis neglected the homogenous solution to the
functional equation for the Laplace transform of the first-
order pressure and moreover, only considered values of h
in the limited range hc < h < 1 − 2M2

1 .) We have fur-
ther shown in this work that corrugation instabilities are
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associated with shock-compressed fluid states not in ther-
modynamic equilibrium — a condition that implies the
existence of a non-unique solution to the hydrodynamic
equations. In practice, the occurrence of such instabili-
ties signals a transition to an alternate, post-shock fluid

state in which the entropy is larger, or the reduced inter-
nal energy is smaller, than the original.

This work was performed under the aegis of the U.S.
Department of Energy.
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