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Abstract. It has been observed that dynamo action occurs in the von-Kármán-

Sodium (VKS) experiment only when the rotating disks and the blades are
made of soft iron. The purpose of this paper is to numerically investigate the

role of soft iron in the VKS dynamo scenario. This is done by using a mean

field model based on an axisymmetric mean flow, a localized permeability dis-
tribution, and a localized α-effect modeling the action of the small velocity

scales between the blades. The action of the rotating blades is modeled by

an axisymmetric effective permeability field. Key properties of the flow giving
to the numerical magnetic field a geometric structure similar to that observed

experimentally are identified. Depending on the permeability of the disks and

the effective permeability of the blades, the dynamo that is obtained is either
oscillatory or stationary. Our numerical results confirm the leading role played

by the ferromagnetic impellers. A scenario for the VKS dynamo is proposed.

1. Introduction

Nearly a century after Larmor hypothesized that the solar magnetic field is the
result of a magnetohydrodynamic (MHD) instability in the conducting plasma (dy-
namo action), the exact dynamical processes leading to MHD flows in astrophysical
objects remain rather obscure. For instance, whether dynamo action can occur in
a fully turbulent homogeneous flow without large scale structures remains an open
question. After a considerable amount of observational, theoretical and numerical
evidences, the first successful experimental fluid dynamos have been built in the
early 2000’s. At the present time, only three experiments have produced fluid dy-
namos. The first two experiments (Riga [1], Karlsruhe [2]) had a relatively low
turbulence level and produced an equatorial dipolar magnetic field in agreement
with the theoretical and numerical kinematic dynamo models assuming axisym-
metric velocity fields. In contrast, the third one (von Kármán Sodium experiment
located in Cadarache [3], henceforth referred to as VKS) was highly turbulent and
produced a magnetic field which was mainly axisymmetric and dipolar on average.

It is reported in [4] that a necessary condition for dynamo action to occur in the
VKS experiment is that at least one of the two counter-rotating impellers be made
of soft iron. Moreover, this requirement applies to both the disks and the blades.
More precisely, threshold estimates based on decay relaxation times and induction
experiments show that adopting steel for one of these two elements moves the crit-
ical magnetic Reynolds number for dynamo action above 1251 (using the definition
of the magnetic Reynolds number from [4]), which is well above the largest value
that can be reached in the experiment, see [4, Table 1]. It thus appears instruc-
tive to examine the role of soft iron compared to steel: Is it that soft iron simply

190 using the definition of the magnetic Reynolds number from [3].
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helps to lower the critical magnetic Reynolds number that can be reached in the
VKS experiment, or does this material lead to a specific dynamo mechanism? The
measurements in the VKS experiment cannot discriminate between the above two
hypotheses. One important obstacle that prevents experimentalists to elucidate
this dilemma is that the flow field in the liquid sodium cannot be observed, and
even if it could (by replacing liquid sodium by water for instance) the flow between
the blades is difficult to measure. This conundrum cannot be unequivocally re-
solved numerically either, yet, since simulating numerically the whole Cadarache
experiment, including the rotating impellers, is not feasible with the numerical tools
currently available. Some teams are working in this direction though, [5], including
ours, and it is reasonable to think that numerical simulations of the VKS exper-
iment at moderate kinetic and magnetic Reynolds numbers could be done in the
near future.

The objective of the present paper is to propose a possible scenario for the VKS
dynamo involving primarily the magnetic permeability of the impellers. We propose
to investigate a kinematic dynamo model of the VKS experiment based on two
simplifying assumptions about the blades: (i) the action of the small scales of the
flow trapped between the blades is modeled by a localized α-effect; (ii) the eight soft
iron blades of the real impellers are modeled by using an axisymmetric distribution
of effective relative magnetic permeability. The kinematic approach is certainly not
capable of explaining all the details of the VKS experiment, but we posit that the
essential characteristics of the VKS dynamo (critical magnetic Reynolds number
around 30, axisymmetric geometry of the magnetic field, dynamo action only with
soft iron impellers) can be captured by kinematic models close to the dynamo
threshold. For instance the kinematic approach gave satisfying descriptions of the
dynamo process in the Karlruhe and Riga experiments.

The paper is organized as follows. The problem under investigation and the
numerical methods used to solve it are presented in section 2. Section 3 presents
numerical axisymmetric induction experiments that help to identify an expulsion
mechanism that is detrimental to the dynamo effect. The range of parameters
where dynamo action is achieved is examined in section 4 and some comparisons
between the numerical model and the VKS experiment are attempted. It is shown
in this section that it is possible to find a realistic range of values of α that triggers
dynamo action provided the effective relative magnetic permeability in the region
swept by the blades is large enough. It is also shown that in this range of values
for α, the dynamo vanishes when the effective relative magnetic permeability of the
impellers is that of steel. Concluding remarks are reported in 5; key similarities
between the VS dynamo and our kinematic model are listed in Section 5.1 and,
finally, a tentative scenario for the VKS dynamo is proposed in Section 5.2.

2. Physical and numerical settings

2.1. Geometry. We model the VKS device as a vessel composed of two concen-
tric cylindrical containers closed at their extremities by two thin lids. (The exact
configuration of the VKS experiment is described in [4, 6].) The radius of the inner
cylinder is henceforth defined to be the length unit, say L. The non-dimensional
radius of the external cylinder is Re = 1.4 and the nondimensional height of the
vessel is L = 2.6. Using the cylindrical coordinates (r, θ, z), with the convention
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that the z-axis is aligned with the axis of the cylindrical vessel, the computational
domain, 0 ≤ r ≤ Re, 0 ≤ θ ≤ 2π, |z| ≤ L/2, is denoted D, see Figure 1.
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Figure 1. Bottom half of the meridian section of the VKS nu-
merical model.

The vessel is assumed to be filled with liquid sodium, and the sodium enclosed
between the inner and outer cylinders is kept stagnant at all times. The two
impellers mounted at the extremities of the inner cylinder are each composed of a
disk equipped with eight blades. The thickness and radial extension of the disks
is 0.1 and 0.9, respectively, i.e., the region occupied by the disk is 0 ≤ r ≤ 0.9,
0 ≤ θ < 2π, 0.9 ≤ |z| ≤ 1, see the shaded region labeled “Disk” in Figure 1. The
relative magnetic permeability of the disks is denoted µd. When rotating, the eight
blades sweep a volume of height 0.2 and radius 0.9, i.e., the region occupied on
average by the blades is 0 ≤ r ≤ 0.9, 0 ≤ θ < 2π, 0.7 ≤ |z| ≤ 0.9, see the region
with diagonal pattern labeled “Blades” in Figure 1. The magnetic action of the
blades is modelled by assigning an axisymmetric distribution of effective relative
magnetic permeability to this volume, µb. The fluid enclosed between the two blade
regions is free to move about in the inner cylinder. The vertical extension of this
column of liquid sodium is denoted 2h. Two sets of simulations will be done using
either h = 0.7 or h = 0.9 as explained in Section 3.

2.2. Velocity field. Denoting by U the reference velocity, the non-dimensional
velocity field in the region 0 ≤ r ≤ 1, 0 ≤ θ < 2π, |z| ≤ h is modeled by an
analytical approximation of the averaged flow measured in a water model [7]:

(2.1)

ur(r, z) = −(π/2h)r(1− r)2(1 + 2r) cos(πz/h) ,

uθ(r, z) = −4εr(1− r) sin(πz/2h),

uz(r, z) = (1− r)(1 + r − 5r2) sin(πz/h).


0 ≤ r ≤ 1,

0 ≤ θ < 2π,

|z| ≤ h.
This vector field is henceforth called the MND flow in reference to the authors
(Marié-Normand-Daviaud) of [7]. The parameter ε measures the ratio between the
toroidal and poloidal components of the velocity field. We choose ε = 0.7259 in the
rest of the paper since this ratio has been shown in [8, Figs. 9, 10] to minimize the
dynamo threshold. The maximum of the Euclidean norm of the field (2.1) is equal
to 1, hence the reference velocity U is equal to the maximum of the Euclidean norm
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of the velocity field. We discuss the cases h = 0.7 and h = 0.9 in Section 3; the
volume swept by the blades is not included in the MND flow in the first case but it
is included in the second case. The velocity in the volume 0 ≤ r ≤ 1, 0 ≤ θ < 2π,
h ≤ |z| ≤ 1, which is either the blade and disk region if h = 0.7 or only the disk
region if h = 0.9, is assumed to be purely azimuthal and equal to the azimuthal
component of the flow at z = ±h, i.e., upon defining sgn(z) = z/|z|, we set

(2.2)

ur(r, z) = 0,

uθ(r, z) = −4 sgn(z)εr(1− r),
uz(r, z) = 0.


0 ≤ r ≤ 1,

0 ≤ θ < 2π,

h ≤ |z| ≤ 1.

A lid-layer flow is also assumed to be established behind each impeller (i.e., in the
domain 0 ≤ r ≤ 1, 0 ≤ θ < 2π, 1 ≤ |z| ≤ L/2, see “Lid layer” in Figure 1) and the
corresponding velocity field is modeled by setting

(2.3)

ur(r, z) = 0,

uθ(r, z) = −4 sgn(z)εr(1− r)(L− 2|z|)/(L− 2),

uz(r, z) = 0.


0 ≤ r ≤ 1,

0 ≤ θ < 2π,

1 ≤ |z| ≤ L/2.
The MND flow (2.1) is a reasonable divergence-free approximation of the mean
axisymmetric velocity field measured in water experiments using the same driving
mechanisms as in the VKS experiment [8, 7]. The velocity fields (2.2) and (2.3)
are simple analytical extensions of the MND flow that describe the rotation in
the blade region and the decay of the velocity behind the impellers. It is showed
in [9] that the way the flow is extended becomes less important when the magnetic
permeability of the impeller disks is large.

2.3. The mean field model. Since no measurement of the average flow between
the blades is available, and the action of the blades is only accounted for in av-
erage, we must appropriately model the induction effect of the vortices that are
trapped between the blades. We have chosen for this purpose to use the so-called
mean-field dynamo theory, see e.g. [10, 11]. Denoting by u′ the small scale flow
and by b′ the induced small scale magnetic induction, the mean field approach
consists of assuming that the mean electromotive force induced by the small scales
of the velocity field is a linear function of the mean magnetic induction and its first
derivative, i.e., 〈u′×b′〉i = aijBj + βijk∂jBk where the tensors aij and βijk are
a priori anisotropic since the flow between the blades is strongly anisotropic. The
simplest model for the β-effect consists of setting βijk∂jBkei = −β∇×B which just
amounts to a change of electrical conductivity, see e.g. [11, p. 194]. The α-effect is
the simplest mechanism that couples the poloidal and toroidal components of the
magnetic field, which is the main requirement for a dynamo. In the following, in an
effort to minimize the number of modeling parameters, we neglect the β-effect and
assume that a is diagonal. The components of the tensor a can be estimated by
evaluating the interaction between the mean field B and the jets trapped between
the blades, which we assume to flow outward in the radial direction (see [5, 12]).
As explained in Figure 2, applying an azimuthal or axial mean magnetic induction
generates an electromotive force 〈u′×b′〉 that is opposite to the applied mean field,
and this electromotive force is zero in average if the mean field is radial. This
heuristic arguments suggests that the dominant coefficients of the tensor a are azz
and aθθ and these coefficients should be non-positive. We have performed a series
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Figure 2. Heuristics for the α-model: The jet between the blades
(top and bottom left) expels the fluid outward (thin arrow and out-
ward symbol for u′) and deforms the azimuthal component of the
mean magnetic induction B (thick arrow) resulting in small scale
perturbations b′ (top and bottom center panel) which in turn gen-
erate an electromotive force u′×b′ (top and bottom right). Note
that u′×b′ is opposite to B. The same argument holds for a verti-
cal mean magnetic induction. This argument shows also that the
radial component of B yields an electromotive force that is zero in
average, thereby implying that arr can be neglected.

of tests (data not shown) using either azz = aθθ 6= 0 or azz = 0 with aθθ 6= 0.
These simulations have led us to conclude that using azz 6= 0 does not significantly
change the dynamo threshold. Hence, in an effort to reduce the number of free
parameters, we set azz = 0 in the rest of this paper and only keep aθθ. The term
aθθ(B·eθ)eθ is alone sufficient to close the dynamo loop; i.e., it converts toroidal
energy into poloidal energy, see (2.6). The coefficient aθθ, henceforth denoted α, is
additionally assumed to be uniform in the cylindrical volume swept by the blades
(0.7 ≤ |z| ≤ 0.9, r ≤ 0.9) and to be zero outside this domain, i.e., we restrict the
action of the α-effect to the blade region only. A realistic upper bound on α is
the root-mean-square velocity of the turbulent fluctuations of the velocity in the
impeller region. Since the characteristic velocity is of the same order as that of
the impellers (see (2.1)-(2.2)-(2.3)), we shall consider that computational estimates
of α are realistic provided they remain much smaller than the typical flow speed,
i.e., reasonable values of α should be in the range of a few percents. The above
model is coherent with the RANS simulations done in [13] on the VKS configura-
tion. Using the CFD finite-volume solver code FLUENT 6.3 together with a k − ε
RANS model, it is observed therein “that the helicity is mainly concentrated in
the impellers” and, assuming that a is proportional to the helicity tensor, it is also
observed that “the largest component of the tensor in the rotating impeller is aθθ,”
and that it is negative. This is further substantiated by direct measurements of α
in a toroidal screw flow leading to an estimate for α in liquid sodium of the order
of 10−3..., 10−2 of the mean flow [14].
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Recalling that the characteristic length L is the radius of the inner vessel and the
characteristic velocity U is the maximum amplitude of the MND flow, we define the
advection time T = L

U and introduce the magnetic Reynolds numberRm = σ0µ0LU .
The parameters σ0 and µ0 are the electrical conductivity of liquid sodium and the
magnetic permeability of the vacuum, respectively. Our definition of the magnetic
Reynolds number is the same as in [3] assuming that the maximum velocity in the
bulk of the flow is about 60% of the velocity at the rim of the blades; the 60%
factor is the impeller efficiency estimated in [3]. Our magnetic Reynolds number is
about 1.4 times smaller than that used in [4]. Using the above length, velocity and
time scales, the non-dimensional mean field equation is

(2.4) ∂tB = ∇×
(
(u×B) + α(B·eθ)eθ

)
− 1

Rm
∇×

(
1

σr
∇×

(
B

µr

))
,

where σr and µr are the relative electrical conductivity and magnetic permeability
fields, respectively; these parameters are not constant since the impellers may be
composed of copper, steel or soft iron. Since we have shown in [9, Fig. 7] that
the magnetic permeability is the key material property that controls the ability of
the impellers to store toroidal magnetic energy in the impellers, we assume in the
rest of the paper that the conductivity is constant everywhere (σr = 1) in order to
minimize the number of free parameters. The relative permeability in the disks is
chosen to be µd = 60, which is a value close to that measured in [15] for the soft
iron impellers used in the VKS experiment. The permeability in the axisymmetric
domain swept by the blades (0.7 ≤ |z| ≤ 0.9, r ≤ 0.9) is modeled by a uniform,
effective, relative permeability in the range 1 < µb < µd to take into account
the partial filling of the volume by the blades. Note that owing to the identity
∇×(u×B) = B·∇u− u·∇B, (2.4) can also be rewritten

(2.5)
dB

dt
+

1

Rm
∇×

(
1

σr
∇×

(
B

µr

))
= B·∇u +∇×

(
α(B·eθ)

)
,

where dB

dt
:= ∂tB + u·∇B is the material derivative. Note that when the field B is

axisymmetric the production term B·∇u +∇×
(
α(B·eθ)

)
takes the following form

in cylindrical coordinates

(2.6) B·∇u +∇×
(
α(B·eθ)

)
=


(Br∂r+Bz∂z)ur − ∂z(αBθ)[
Br
(
∂r − r−1

)
+Bz∂z

]
uθ

(Br∂r+Bz∂z)uz + r−1∂r(rαBθ),

which clearly shows that the α-effect couples the poloidal components of B to its
toroidal component, and the differential rotation couples the poloidal components
to the toroidal one (this is the so-called Ω-effect).

To avoid ambiguities, in the rest of the paper we call H the magnetic field and
B := µH the magnetic induction. The mean field equation (2.4) is supplemented
with the so-called pseudo-vacuum boundary condition H×n = 0 at the walls of the
vessel, which corresponds to assuming that the exterior of the computational do-
main is a perfect ferromagnetic material. Preliminary computations (not reported
here) done with either the vacuum or the pseudo-vacuum boundary conditions have
shown that the impact of the boundary conditions on the growth rates is not sig-
nificant when the magnetic permeability of the impeller disks is large, (see also
[16, 17, 9]). We henceforth restrict ourselves to the pseudo-vacuum condition since
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the computations with this boundary condition use less resources than with the
vacuum condition.

The resulting system of partial differential equations is solved using two inde-
pendent codes, SFEMaNS and FV/BEM, presented in [9]. The continuity of the
normal component of the magnetic induction B and that of tangential component of
the magnetic field H are ensured in SFEMaNS by using an interior penalty method
at the various interfaces. The jump conditions across material interfaces are en-
forced in FV/BEM by applying simple and robust averaging rules which amount
to smoothing the discontinuities.

Since it is reported in [3] that the critical magnetic Reynolds number of the
VKS dynamo with soft iron impellers is about 32, we henceforth fix Rm = 30.
In the remainder of the paper, we numerically determine the values of the two
phenomenological parameters α and µb that are critical for dynamo action.

3. The expulsion mechanism and choice of h

Before going through the kinematic dynamo program, we show how the flow
parameter h introduced in (2.1) is chosen. Recall that 2h is the vertical extension
of the column of liquid sodium that is free to move about in the inner cylinder. Our
investigation of the influence of the parameter h has been motivated by negative
results obtained by other teams and ourselves when assuming that the MND region
extends up to h = 0.9, i.e., includes the blade region. Some of these results, all
obtained with h = 0.9, can be summarized as follows:

• Axisymmetric dynamo action occurs for unrealistic values of α (of the or-
der of the maximum velocity of the impellers) when assuming that the
distribution of α is localized in the domain swept by the blades and when
using either steel impellers (µd = µb = 1) or perfect ferromagnetic impellers
(µd = µb =∞) (see [18, 16, 19]).
• Axisymmetric dynamo action takes place for realistic values of α (typically a

few percents of the maximum velocity) when assuming that the distribution
of the α-effect is uniform in the entire inner cylinder (0 ≤ r ≤ 1, |z| ≤ 1.3)
and when using soft iron impellers (µd = µb = 40 for 0.7 ≤ |z| ≤ 1).
However, assuming that α is nonzero in the disks is clearly unphysical [20].
• No dynamo has been obtained using soft iron impellers (µd = µb = 60 for

0.7 ≤ |z| ≤ 1) with realistic values of α and distributions of α that all
vanish in the impellers. We have tested a uniform distribution in the bulk
of the flow and various distributions localized near the impellers without
success, (results not reported).

These negative results (all obtained with h = 0.9) seem to be paradoxical when
compared to those from [18] and those from [21] where Ohmic decay tests with
various values of Rm and α = 0 show that the dominant decaying axisymmetric
mode is purely toroidal and localized in the high-permeability domain composing
the disks.

In the spirit of [21], we conduct induction tests with α = 0 to better evaluate the
effect of the high-permeability of the two counter-rotating regions and the effect of
h. Starting from zero initial data, the test consists of generating an axisymmetric
poloidal field by enforcing a current in a closed toroidal loop located in the equa-
torial plane and of major radius 0.5 and minor radius 0.05. The test is done once
with h = 0.9 and once with h = 0.7. We set α = 0, Rm = 30, µd = 60, µb = 10, and
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the velocity is the MND field. Note that since α = 0 and axisymmetry is assumed,
the poloidal magnetic field is not coupled to the toroidal one and dynamo action is
not possible (see (2.6)).
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Figure 3. Time evolution of the toroidal, poloidal, and total mag-
netic energy in induction runs with the MND velocity field with
µd = 60, µb = 10 using h = 0.9 (a) and h = 0.7 (b).

Figure 3 shows the time evolution of the magnetic energy, 1
2

∫
DB·H dv, in the

computational domain D. The results for h = 0.9 and h = 0.7 are shown in
panels (a) and (b), respectively. In both cases the poloidal energy grows first and
saturates in about one diffusion time (t ≈ 30 = Rm). As expected, the differential
rotation within the MND flow produces toroidal magnetic energy through the so-
called Ω-effect. After about three rotation periods (t ≈ 20) the toroidal energy
becomes larger than the poloidal one and accumulates in the high permeability
domain, i.e., the disk and the blades. Saturation is reached in about 15 rotation
periods and the toroidal energy is about three times larger than the poloidal one.
Other tests, not reported here, show the same behavior when µb varies between 1
and 60.

It is remarkable that the toroidal energy in the case h = 0.7 saturates at a
level that is 50% higher than when h = 0.9. The origin of this difference becomes
apparent when inspecting the profiles of the components of the magnetic induction
along the vertical line r = 0.3, 0 ≤ |z| ≤ 1.3 as shown in Figure 4. The amplitude
of the poloidal components, Br, Bz, are comparable in the two cases, whereas the
amplitude of the toroidal component, Bθ, is significantly larger when h = 0.7 than
when h = 0.9. The ratio Bθ(h = 0.7)/Bθ(h = 0.9) is three in the soft iron disks
(0.9 ≤ |z| ≤ 1) and 10 in the domain swept by the blades (0.7 ≤ |z| ≤ 0.9).

Note that the two tangent components of the magnetic induction are discontinu-
ous across the three interfaces |z| = 0.7, |z| = 0.9 and |z| = 1, where the permeabil-
ity is discontinuous, since the tangential components of the magnetic field H×n are
continuous across these interfaces. These jumps are visible on the Bθ component
and one should have (B+

θ − B−θ )/B+
θ = (µ+ − µ−)/µ+. For instance, for h = 0.7,

we have Bθ(1
+) = 0.0079, Bθ(1

−) = 0.485, which gives (B+
θ −B−θ )/B+

θ = −60.4 ≈
−59.0 = (µ+ − µ−)/µ+, then Bθ(0.9

+) = 0.486, Bθ(0.9
−) = 0.079, which gives

(B+
θ −B−θ )/B+

θ = 0.837 ≈ 0.833 = (µ+−µ−)/µ+, and finally Bθ(z = 0.7+) = 0.061,
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Bθ(0.7
−) = 0.0056, which gives (B+

θ −B−θ )/B+
θ = 0.908 ≈ 0.900 = (µ+ − µ−)/µ+.

In conclusion we observe that the jump conditions are satisfied, although enforced
weakly in SFEMaNS.
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Figure 4. Induction runs with different MND flows. Profiles as a
function of z at r = 0.3 of the steady magnetic field with different
MND flows: (a) h = 0.9; (b) h = 0.7.

Upon noticing that the radial speed is maximal at |z| = h, the above numerical
experiment leads us to draw an important conclusion. When h = 0.9, the radial
component of the MND velocity field, which is large in the volume occupied by
the blades 0.7 ≤ |z| ≤ 0.9, sweeps away the toroidal component of the magnetic
induction, thereby making the term αBθ in (2.4) inefficient. In other words, the
expulsion effect that occurs when h = 0.9 inhibits the action of the α-effect in the
region where the toroidal magnetic field could be stored. Although the heuristic
argument leading to the α-effect postulates the existence of swirling jets flowing
outward between the blades, see discussion in section 2, and in absence of experi-
mental data giving us a better knowledge of the flow between the blades, we choose
in the rest of the paper to work with h = 0.7. According to (2.2), this choice implies
that the radial component of the velocity in the impeller domain (blades and disks)
is zero.

4. Dynamo action

In this section we look for dynamo action by exploring various scenarios involving
µd, µb, Rm, α and the MND velocity field. Except in section 4.3, we always use
the MND velocity field as defined in (2.1)-(2.2)-(2.3). Except in section 4.5, all the
computations are done assuming axisymmetry of the eigenmodes.

4.1. Growth rates for µd = 60. In the kinematic dynamo framework, the tempo-
ral behavior of the magnetic induction can be expressed as B =

∑
n∈N Bn(r, θ, z)eδnt,

where (δn,Bn(r, θ, z))n∈N are eigenpairs of the differential operator in the right-
hand side of (2.4). We henceforth refer to γ := Re(δ) as the growth rate and
f := Im(δ) as the frequency; the index n is dropped when the context is unambigu-
ous.

When the angular velocities of the two impellers are exactly opposite (i.e., exact
counter-rotation), the geometric configuration possesses the symmetry of rotation
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by π about any axis contained in the equatorial plane. This symmetry, which we
denote Rπ (see e.g. [22, §2.3]), is equivalent to the combined action of reflections in
θ = 0 and in z = 0; more precisely,

(4.1) Rπ(Ar, Aθ, Az)(r, θ, z) = (Ar,−Aθ,−Az)T(r,−θ,−z).

The set of axisymmetric eigenvectors can be classified into two families depending
on their invariance by the Rπ symmetry. We call dipolar modes the axisymmetric
vector fields BD such that Rπ(BD) = −BD, and we call quadrupolar modes the
axisymmetric vector fields BQ such that Rπ(BQ) = BQ. These two families of
modes are independent and are associated with two distinct families of eigenspaces.

α γ (SFEMaNS) γ (FV/BEM) OSC
-0.03 0.0127 0.0156 yes
-0.015 -0.0167 -0.0155 yes
-0.005 -0.0513 -0.0477 yes

0 -0.0353 -0.0343 no
0.015 -0.0030 -0.0030 no
0.03 -0.0338 -0.0328 no
0.05 -0.0383 -0.0358 no

Table 1. Largest growth rates of the axisymmetric eigenmode
with dipolar symmetry versus α, computed with SFEMaNS and
FV/BEM. OSC means that the frequency is non-zero.

In the rest of this section we use Rm = 30, µb = 10, and for the permeability
of the disks we set µd = 60, which is a value close to that measured in [15]. The
eigenpairs are computed by using either ARPACK (for SFEMaNS) or time inte-
gration (for FV/BEM). Table 1 shows growth rates computed with SFEMaNS and
FV/BEM for α ∈ [−0.03,+0.05]. For each value of α, the growth rate reported in
the table is the largest that is associated with a dipolar eigenmode. Some devi-
ations between the results are evident, which may be caused by slight differences
in the space discretization used in each code (e.g. the permeability jumps at the
fluid-disk/blade interface are smoothed in FV/BEM) or the way the eigenvalues
are evaluated (ARPACK vs. time integration).

Figure 5 shows the largest growth rate of the axisymmetric modes with dipo-
lar symmetry (red curve) and with quadrupolar symmetry (blue curve) for α ∈
[−0.03, 0.05]. Dynamo action occurs for α ≤ αc ≈ −0.025 and no dynamo is ob-
tained for positive values of α. The bifurcation happening at αc is of Hopf type;
for instance, for α = −0.03, the growth rate is ∼ 0.014 and the oscillation pe-
riod is T = 2π/f = 2π/0.072 ≈ 87. We consider that the value of the threshold,
αc ≈ −0.025, is realistic since the maximal speed of the MND velocity field is one
in our advective units. Moreover, that αc is negative agrees with the heuristic
argumentation developed in section 2.

The spatial structure of the dipolar eigenmode is shown in Figure 7(b). The
left panel shows the out-of-plane component of the magnetic field and the arrows
materializing the poloidal component. The right panel shows the isosurface of 20%
of the maximum of the magnetic energy and the magnetic field lines colored by Hz.
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Figure 5. (Color on line) Largest growth rates of axisymmetric
modes for α ∈ [−0.03, 0.05], Rm = 30, µb = 10 and µd = 60
(dipolar and quadrupolar eigenvectors).

4.2. Comparison with VKS experiment and µd → ∞ limit. The magnetic
fields generated in the VKS experiment are mainly axisymmetric, have the dipo-
lar symmetry, and are stationary when close to the threshold and when the two
counter-rotating impellers have exactly opposite angular velocities. If the impellers
rotate at slightly different frequencies, the magnetic fields that are generated are
still axisymmetric, but they are also time-dependent and alternate between dipo-
lar and quadrupolar symmetry. The non-oscillating behavior observed when the
angular velocities of the two impellers are exactly opposite is also predicted in the
low dimensional model of [23] in which the magnetic field is assumed to be the
superimposition of a dipolar and a quadrupolar mode. Denoting by D and Q the
amplitude of the dipolar and quadrupolar modes, respectively, and assuming that
these two modes are coupled through a complex amplitude equation for A = D+iQ,
it is shown in [23] that the Rπ symmetry implies that the normal form for A only
admits real coefficients and, under appropriate simplifications, the bifurcation is of
pitchfork type. We then face the question of why is it that we find numerically an
oscillatory dipolar mode, whereas the dipolar mode in the experiment and in the
simplified normal form analysis of [23] is stationary?
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Figure 6. (Color on line) Largest growth rates of axisymmetric
modes for α ∈ [−0.03, 0.03] Rm = 30, µb = 10 and µd =∞ (dipolar
and quadrupolar eigenvectors).
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One possible answer to this problem is that we are running linear kinematic
dynamo simulations and linearity makes the normal form analysis irrelevant. In
other words, the dipolar and quadupolar modes that we observe a priori live in
different eigenspaces and cannot interact. A more satisfactory answer consists of
exploring the full range of the parameter µd and in particular the limit µd → +∞.
Actually, keeping µb = 10, simulations not reported here show that the period of
the critical dipolar eigenmode increases as the permeability of the disk µd increases
and eventually tends to infinity when µd goes to +∞. Even more revealing, when
setting µd = +∞, the growth rates of the dipole and quadrupole converge to the
same values as the α-effect becomes stronger as shown in Figure 6. Actually the
two growth rates coincide when α is less than αc ≈ −0.012. This means that the
axisymmetric dipolar and quadrupolar eigenmodes coexist in the same eigenspace
and are stationary when µd = +∞ (keeping µb = 10). It is therefore reasonable
to imagine that nonlinearities together with slight imperfections in the experiment
(angular velocities not exactly opposite, µd 6=∞) authorize the simultaneous pres-
ence of the dipolar and quadrupolar modes, and that the observed magnetic field
may oscillate between these two states.

(a) (b)

Figure 7. (Color on line) Dipolar eigenmode for µd =∞ (a) and
µd = 60 (a), with µb = 10, Rm = 30 and α = −0.03 in both
cases. Are shown in panels (a) and (b): (left) meridional section,
colors represent the out-of-plane magnetic field component and the
arrows materialize the poloidal magnetic field; (right) isosurface of
20% of the maximum of the magnetic energy and magnetic field
lines colored by Hz (from blue (near axis) Hz = −0.01 to red
(outside axis) Hz = 0).

The above conclusion is reinforced when we compare the structure of the eigen-
mode obtained for α = −0.03, µb = 10, and µd = +∞ (shown in Figure 7(a)) with
the magnetic field measured at saturation in the VKS experiment (see Figure 6(b)
in [24]). To better evaluate the influence of µd we also show in panel (b) of Figure 7
the eigenmode obtained with µd = 60, all the other parameters being unchanged.
Both in Figure 7(a) and in Figure 7(b), the left panel shows the poloidal vector field
(Hr, Hz) and the contours of the out-of-plane component of H. The out-of-plane
magnetic field has extrema close to the impellers and the poloidal field has a very
strong axial component close to the rotation axis.

The similarities between the computed and experimental fields are even more
striking when we compare the radial profiles of the components of the magnetic
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Figure 8. Dipolar eigenmode for µd =∞ (top row) and µd = 60
(bottom row), with µb = 10, Rm = 30 and α = −0.03. Radial
profiles of Hr (a)-(d), Hθ (b)-(e) and Hz (c)-(f) at z = 0, ±0.51 as
indicated.

field H along the lines z = 0, z = ±0.51, as shown on Figure 8, with those of the
magnetic induction B in the VKS dynamo at z = 0, z = ±0.52 (see Figure 5(b)
of [24]). Note that B = µ0H along the line z = 0, z = ±0.52, which are in the fluid
region where µr = 1.

In conclusion, notwithstanding the simplifications made in the present numerical
model, the limit µd → +∞ reproduces very well the observations from both the
VKS experiment and the normal form analysis.

4.3. Role of the poloidal velocity field. In this section we assess the role of the
poloidal component of the velocity field by removing its contribution from the MND
profile; that is to say, we set ur = uz = 0 in (2.1) and keep (2.2)-(2.3) unchanged.
We also take ε = 1 in (2.1)-(2.2)-(2.3) so that the maximum velocity is still equal to
1 in the bulk of the flow. Observe from (2.6) that the generation of the poloidal field
(Br, Bz) now relies only on the α-effect; the generation of the toroidal component
Bθ through the radial and axial gradients of uθ is unchanged (Ω-effect).

The numerical simulations are done with µd = 60, µb = 10 and Rm = 30. The
growth rate of the dipolar mode is shown in panel (a) of Figure 9, see solid line
labeled Dip-noPol. It is remarkable that the capacity of this severely truncated
velocity field to produce dynamo action is similar to that of the full MND profile,
see line labeled Dip. The spatial distribution of the magnetic field, H, obtained
with α = −0.03 is shown in panel (b) of Figure 9. Although the growth rate of this
mode is very close to that obtained with the full MND profile, the two fields show
major differences. The poloidal field and the contours of the out-of-plane magnetic
field reveal that the magnetic field is localized close to the impellers.
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Figure 9. (Color on line) Dynamo runs with the toroidal MND
flow using µb = 10, µd = 60, Rm = 30: (a) Comparison of
dipolar growth rate versus α for the toroidal MND field (labeled
Dip-noPol) and the full MND velocity field (labeled Dip as in Fig-
ure 5); (b) Dipolar eigenmode for α = −0.03 using toroidal MND
field; (c) Dipolar eigenmode for α = −0.03 using full MND field
(as in Figure 7(b)). Colors represent the out-of-plane component of
the magnetic field and the arrows materialize the poloidal compo-
nent.

The radial profiles of the magnetic fields obtained with the truncated and with
the full MND velocity field also differ notably as can be seen in figure 10. These
simulations show the impact of the poloidal component of the velocity field on the
transport of the magnetic field.
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Figure 10. Dynamo runs with the toroidal MND velocity field
for µb = 10, µd = 60, Rm = 30 and α = −0.03. Radial profiles of
Hr (a), Hθ (b) and Hz (c) at z = 0, ±0.51 as indicated.

4.4. Influence of µb. We now explore the influence of the effective permeability in
the region swept by the blades by setting µb = 60 and by computing the growth rate
of the dipolar mode for α ∈ [−0.02,+0.02], keeping µd = 60 and Rm = 30 and using
the full MND field. The results are reported in Figure 11 and are compared with
those already obtained with µb = 10. The results shown in the figure have been
obtained with SFEMaNS, but those given by FV/BEM are similar; for instance,
SFEMaNS gives γ = 0.158 and FV/BEM gives γ = 0.167 for α = −0.02. A
striking feature of the case µb = 60 is that dynamo action is obtained with both
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positive and negative values of α, as already found in [20] where it is assumed that
α is uniformly distributed in the entire computational domain. The bifurcations at
α−c ≈ −0.0047 and α+

c ≈ +0.0052 are both oscillatory. Note that the critical values
of α for µb = 10 and µb = 60 are in proportion of the magnetic permeabilities,
i.e., 0.025/0.0047 ≈ 5.3 ≈ 60/10, suggesting that the α-effect in the blade region is
controlled by the product αµb.
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Figure 11. (Color on line) Largest growth rate of the axisym-
metric dipolar mode with µd = 60 for α ∈ [−0.03, 0.05], using
either µb = 10 (as in Figure 5, solid line labeled 10-60) or µb = 60
(dashed line labeled 60-60).

4.5. Dynamo with steel material? Following the VKS experimental results de-
scribed in [4], we now perform computations with α = −0.03 using materials of low
magnetic permeability for the blades and the disks. More precisely, we compute the
growth rates by making Rm vary in the range [30, 430] and by using iron disks and
steel blades in one case, and by using disks and blades made of steel in the other
case. The first case (µd = 60, µb = 1) is referred to as run Q in [4], and the second
case (µd = 1, µb = 1) is referred to as run P. The computations are done with SFE-
MaNS using ARPACK, and in each case we look for the leading eigenvalue of the
first two azimuthal Fourier modes, which we denote m = 0 (axisymmetric mode)
and m = 1, respectively. The results are reported in the panel (a) of Figure 12 for
run Q and in the panel (b) for run P.

An axisymmetric dynamo is obtained for Rm ≥ Rcm ≈ 120 for the composite
impellers, i.e., run Q. The first unstable mode is quadrupolar. The Fourier mode
m = 1 has a negative growth rate in the range 0 ≤ Rm ≤ 130 and has the struc-
ture of a stationary equatorial dipole. The threshold Rcm ≈ 120 for axisymmetric
dynamo action is compatible with the threshold ∼ 190 estimated in [4] for run Q
by extrapolating measured decay rates at various magnetic Reynolds numbers. No
dynamo action is obtained for Rm ≤ 430 when the impellers are made of steel, i.e.,
run P. This conclusion is again in agreement with that from [4]. These numerical
experiments show that it is necessary to have blades made of a material with a
relative magnetic permeability larger than 1 to obtain dynamo action in the VKS
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Figure 12. (Color on line) Growth rates of Fourier modes m = 0
(solid line labeled m=0) and m = 1 (dashed line labeled m=1) with
α = −0.03 for Rm ∈ [30, 430]: (a) with µb = 1, µd = 60; (b) with
µb = 1, µd = 1.

experiment at a magnetic Reynolds number less than 70, which is the upper bound
that can be reached with the current power supply.

5. Concluding remarks

The kinematic dynamo simulations presented in this paper are based on a mean-
field model relying on three phenomenological parameters: the magnetic permeabil-
ity of the disks, µd; the effective permeability of the domain swept by the blades,
µb; the component aθθ of the α-tensor. For the α-effect model to be effective with
realistic values of α, i.e., a few percents of the reference velocity scale, it is necessary
to have a large value of µd. For the critical magnetic Reynolds number to be within
the limits of the power supply available in the VKS experiment, it is also necessary
that the blades be made of a material of moderately large permeability.

5.1. Similarities with the VKS dynamo. The model exhibits features that are
all observed in the VKS experiment:

• Dynamo action occurs at Rm = 30 using a realistic value of α (say α =
−0.03) when the disks are composed of soft iron and the effective perme-
ability in the region swept by the blades is large enough (µb = 10).

• The two most unstable modes at Rm = 30 are axisymmetric and have
dipolar and quadrupolar symmetry, respectively. These modes are slowly
oscillatory and occur at different thresholds on α when µd = 60, but they
become steady and the corresponding two eigenspaces merge to form a two-
dimensional vector space when µd → +∞. These two modes are observed
to exist in the VKS experiment when the rotation frequencies of the two
impellers are different.

• The most unstable mode at Rm = 30 is an axisymmetric dipole when the
angular velocities of the two impellers are exactly opposite. This mode is
dominated by the Bz component close to the axis and by the Bθ component
in the vicinity of the impellers (see Figure 7). The spatial distribution of this
mode is very close to that observed at saturation in the VKS experiment
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(see Figure 6(b) of [24]). The radial profiles of the components of the
magnetic field along the lines z = 0, z = ±0.51 are also close to those
observed experimentally (compare Figure 8 and Figure 5(b) of [24]).
• Dynamo action is possible with soft iron disks and steel blades using a re-

alistic value of α (say α = −0.03), but the corresponding critical magnetic
Reynolds number is close to 120, making it unobservable with the power
supply that is currently available in the VKS experiment. The most unsta-
ble mode is an axisymmetric quadrupole. Induction experiments reported
in [4] suggest that the critical Rm could be ∼ 190, which is roughly in agree-
ment with our estimate considering that our definition of Rm is different
from that in [4] (see discussion before (2.4)).
• No dynamo action occurs with steel impellers (both the disks and the blades

made of steel) with a realistic value of α (say α = −0.03) in the range Rm ∈
[30, 430]. We have also verified (results not shown here) that there is no
dynamo action at Rm = 30 in the range α ∈ [−5,+5]. Moreover, induction
experiments reported in [4] suggest that turbulence dissipation increases
with Rm, which suggests that dynamo action may not be possible in any
reasonable range for the magnetic Reynolds number with steel impellers.

5.2. Tentative scenario for the VKS dynamo. Our model agrees with the in-
duction experiments reported in [4] and confirms that the presence of ferromagnetic
material is important to understand the VKS experiment. The numerical simula-
tions reported in the present paper and those reported in [9, 21] then lead us to
think that the interaction between the ferromagnetic material and the recirculating
flow between the blades may be a potential candidate for the source of the VKS
dynamo. More precisely, we propose the following three step scenario:

(1) Accumulation of toroidal energy in the disks when µd is large;
(2) Creation of poloidal energy in the blade region by interaction between the

toroidal mean field that accumulates in the disks and the velocity field
recirculating between the blades;

(3) Transport by the bulk flow throughout the entire vessel and generation of
toroidal energy by Ω-effect.

The accumulation of toroidal energy in the disks is supported by previous studies
reported in [9, 21]. It is shown therein that the disks have a strong tendency to
store toroidal energy as µd grows (see Figures 5 and 6 in [21] and Figures 5 and
7 in [9]). Moreover the linear stability analysis (without alpha modeling) shows
that the axisymmetric mode (though decaying) is dominant when µd ≥ 18 (see
Figure 5 in [21]). The recirculating velocity field between the blades interacts with
the axisymmetric toroidal mean field that dominates in the neighborhood of the
disks. The small scales radial perturbations of the magnetic field are focalized and
amplified by the blades when µb is large as shown in [25]; this is the localized alpha
effect (see Figure 2).

This tentative scenario is reminiscent of the flux transport dynamo mechanism
frequently invoked for the solar dynamo. Recall that this model of the solar cycle
is based on the accumulation of toroidal energy in the tachocline region (transition
region between the solar convective and radiative zones), the production of poloidal
energy due to the α-effect induced by the helicity generated by simultaneous action
of buoyancy and Coriolis acceleration, and finally a meridional transport by the
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bulk flow between the equator and the poles. Contrary to the conventional picture
of a dynamo loop where poloidal and toroidal energies are locally coupled, in flux
transport models the coupling occurs sequentially in separate regions.

The above model is still speculative and its validation would require a better
knowledge of the fluid flow between the blades, which is a difficult task, either ex-
perimentally or numerically, even in the purely hydrodynamical case: flow measure-
ments between the blades are just starting (J. Burguete, private communication)
and the lack of resolution is a permanent challenge for direct numerical simulations.
Finally, let us recall that further nonlinear MHD computations aiming at realisti-
cally reproducing the VKS dynamo will have to overcome the challenge of having
to deal with very small magnetic Prandl numbers (Rm/Re � 1), and to account
for blades made of soft iron they will have to properly implement jump conditions
on moving boundaries.
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