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Abstract

Analytical and computational studies of reacting flows are extremely challenging due in part

to nonlinearities of the underlying system of equations and long-range coupling mediated by heat

and pressure fluctuations. However, many dynamical features of the flow can be inferred through

low-order models if the flow constituents (e.g., eddies or vortices) and their symmetries, as well

as the interactions among constituents, are established. Modal decompositions of high-frequency,

high-resolution imaging, such as measurements of species-concentration fields through planar laser-

induced florescence (PLIF) and of velocity fields through particle-image velocimetry (PIV), are the

first step in the process. A methodology is introduced for deducing the flow constituents and their

dynamics following modal decomposition.

Proper orthogonal (POD) and dynamic mode (DMD) decompositions of two classes of problems

are performed and their strengths compared. The first problem involves a cellular state generated

in a flat circular flame front through symmetry breaking. The state contains two rings of cells

that rotate clockwise at different rates. Both POD and DMD can be used to deconvolve the state

into the two rings. In POD the contribution of each mode to the flow is quantified using the

energy. Each DMD mode can be associated with an energy as well as a unique complex growth

rate. Dynamic modes with the same spatial symmetry but different growth rates are found to be

combined into a single POD mode. Thus, a flow can be approximated by a smaller number of

POD modes. On the other hand, DMD provides a more detailed resolution of the dynamics.

Two classes of reacting flows behind symmetric bluff bodies are also analyzed. In the first,

symmetric pairs of vortices are released periodically from the two ends of the bluff body. The

second flow contains von Karman vortices also, with a vortex being shed from one end of the bluff

body followed by a second shedding from the opposite end. The way in which DMD can be used

to deconvolve the second flow into symmetric and von Karman vortices is demonstrated.

The analyses performed illustrate two distinct advantages of DMD: (1) Unlike proper orthogonal

modes, each dynamic mode is associated with a unique complex growth rate. By comparing DMD

spectra from multiple nominally identical experiments, it is possible to identify “reproducible”

modes in a flow. We also find that although most high-energy modes are reproducible, some are

not common between experimental realizations; in the examples considered, energy fails to differ-

entiate between reproducible and non-reproducible modes. Consequently, it may not be possible to

differentiate reproducible and non-reproducible modes in POD. (2) Time-dependent coefficients of
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dynamic modes are complex. Even in noisy experimental data, the dynamics of the phase of these

coefficients (but not their magnitude) are highly regular. The phase represents the angular position

of a rotating ring of cells and quantifies the downstream displacement of vortices in reacting flows.

Thus, it is suggested that the dynamical characterizations of complex flows are best made through

the phase dynamics of reproducible DMD modes.

∗ Corresponding Author: sroy@woh.rr.com
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I. INTRODUCTION

Combustion instabilities can damage industrial systems severely and limit their perfor-

mance [1, 2]. These instabilities are typically generated when a system is driven toward

high performance or high efficiency and often take the form of uncharacteristically hot or

cold spots [2–4]. Hot spots can cause extensive and irreparable damage in large chemical

reactors [4], while cold patches can extinguish combustion in reactors or jet engines [5].

Prevention and control of the onset and growth of combustion instabilities is an important

design goal.

A major difficulty with such a design is the lack of a sufficiently accurate and analytically

or computationally solvable model system. Reacting flows can, in principle, be modeled using

an appropriate system of reaction–diffusion equations [6–9], supplemented by the Navier–

Stokes equations [10, 11]. However, several difficulties are involved. First, the precise details

of the underlying chemical reactions and values for the diffusion rates of products are rarely

known. Second, typical flows contain and are affected by long-range pressure and heat-

release fluctuations. In particular, the zero-Mach-number (i.e., fluid speed is much smaller

than sound speed) assumption used in most analytical studies is not expected to be valid,

even in simple configurations [12]. Third, the boundary conditions for most technologically

relevant examples are non-trivial; consequently, special function expansions cannot be used

to simplify the analyses. Computational analyses of reacting flows encounter difficulties as

well. The nonlinearity of the underlying equations causes energy to be recursively cascaded

from large scales to small scales; flow components on the resulting vastly different scales are

coupled. Consequently, accurate simulation of a combustion flow requires that computations

be performed on an extremely fine grid.

On the other hand, high-frequency, high-resolution imaging such as measurements of

species-concentration fields through planar laser-induced florescence (PLIF) and of veloc-

ity fields through particle-image velocimetry (PIV), is feasible [13, 14]. The data can be

used to perform modal decompositions and dimensional reductions of the flows. However,

turbulent combustion contains reproducible and non-reproducible components. Random

experimental and observational noise can only be quantified statistically. The small-scale

“eddy-like” structures formed through energy cascading, while not “random,” are not repro-

ducible; they depend sensitively on the initial conditions from which they emerged. Only the
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reproducible constituents can be used for flow characterization or control. Thus, successful

post-processing of turbulent combustion should include techniques to deconvolve the flow

into reproducible and non-reproducible constituents.

Nonlinear control methods that rely only on experimental data have been proposed [15,

16] and validated in contexts ranging from cardiac rhythms [17, 18] and laser systems [19] to

neural signals [20, 21] and spatio-temporal fluid flows [22]. Specifically, the goal is to drive

an irregular system toward an unstable periodic orbit [15, 23]. These periodic orbits are

contained in the attractor; hence, the feedback necessary to implement control is small. More

importantly, the periodic orbits and feedback can be computed from modal decomposition

of data [22, 24]; no model of the underlying dynamical system is required.

Typically modal decomposition is implemented using a pre-specified basis expansion such

as Fourier transforms or wavelets or, in the case of linear systems, through global eigen-

modes [25, 26]. However, these approaches are not efficient in deconvolving nonlinear flows

that are contained in irregular domains for two reasons: (1) the expansion of flow con-

stituents such as eddies or vortices requires a very large number of modes [27], and (2) it

is difficult to assign expansion modes to a specific flow constituent such as the von Karman

vortices [13, 28]. Proper orthogonal decomposition (POD) addresses issue (1) [29–32]. First,

there is no preconceived selection of the expansion modes; rather, the proper orthogonal

modes are computed from data through a correlation matrix. Next, features of turbulent

flows can be captured by ∼25 POD modes [13, 28]. The remaining modes are assumed to

represent noise and non-reproducible features of the flow. However, in the examples stud-

ied below, it is not possible to use POD to resolve issue (2). (If the system is symmetric,

it may be possible to associate symmetry-broken POD modes with symmetry-broken flow

constituents [28].) It should be noted that POD is optimal in the sense that, at a given

truncation, it provides the closest description of the original flow [32].

In this study we analyzed reacting flows using POD and an alternative decomposition

based on Koopman operator theory [26, 33, 34], which generalizes eigendecomposition to

nonlinear systems. Koopman modes are a generalization of normal modes [34], and each

represents a global collective motion of the secondary field. The spectrum of the underlying

dynamics (e.g., reaction–dffusion and Navier–Stokes equations) is contained in the spec-

trum of the Koopman operator [26, 34]. Schmid [33] proposed a fast algorithm, referred

to as dynamic mode decomposition (DMD), for computing approximately (a subset of) the
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Koopman spectrum from the secondary field.

Two problems were studied. The first involves a cellular state formed on a flat circular

flame front [5]. The state analyzed consists of two “rings” of cells that co-rotate at different

rates. Proper orthogonal and dynamic mode decompositions were compared and contrasted.

Both can be used to differentiate the dynamics associated with the two rings. However,

multiple dynamic modes have the same spatial structure but different growth rates. They

combine to form a single proper orthogonal mode. Thus, POD is the more parsimonious or

efficient expansion, while DMD provides more refined dynamical details of the modes. The

second problem involves reacting flows behind a symmetric bluff body. The flow contains two

types of eddies–periodic shedding of symmetric pairs of vortices and von Karman shedding,

where vortices are shed alternately from opposite sides of the bluff body. How POD and

DMD can be used to differentiate the two types of vortex shedding is demonstrated.

In these studies, two features of DMD are identified that are extremely useful in decon-

volving the flow. First, unlike proper orthogonal modes, each dynamic mode is associated

with a unique complex growth rate. Comparing DMD spectra from multiple nominally

identical experiments (or from different segments of the same experiment) aids in identify-

ing “reproducible” modes in a flow. Spatio-temporal dynamics represented by the remaining

modes presumably reflect noise and features sensitive to the precise initial conditions. In

addition, as our analyses show, high-energy modes of the flow are typically, but not always,

reproducible. This may also be be true in POD. Thus, we were unable to differentiate re-

producible and non-reproducible modes in POD. The second issue involves the use of DMD

to identify multiple modes contained in a single flow constituent. The time-dependent co-

efficients of the dynamic modes are complex functions. Even in noisy experimental data,

we find that the phase of these coefficients (but not their magnitude) exhibits repeatable

dynamics. The phase represents the angular position of a rotating ring of cells and quantifies

the downstream displacement of the vortices in reacting flows. Whether two dynamic modes

should be assigned to a single flow constituent can be determined using Lissajous figures. A

flow constituent can be reconstructed when all DMD modes associated with it are known.

Proper orthogonal and dynamic mode decompositions are outlined in Section II. Sec-

tion III introduces a state of two co-rotating rings of cells on a combustion front and reports

results from POD and DMD. It was found that either decomposition can be used to partition

the dynamics to those of the outer and inner rings of cells. POD and DMD are compared
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using this example. The algorithm to capture noise and other non-reproducible features of

the flow is introduced. In Section IV these ideas are employed to analyze vortex shedding

behind a symmetric bluff body. Two types of flows are considered. In the first, symmetric

vortex pairs are shed periodically from either side of the bluff body. In the second, von

Karman vortices are also included. Proper orthogonal and dynamic mode decompositions

are conducted on both classes of flows. In particular, DMD was used to differentiate the

primary flow components from noise and other non-reproducible aspects of turbulent com-

bustion and also to select modes with similar phase dynamics. Finally, in Section V the

implications of the results are discussed. The Appendix outlines conditions under which

combinations of dynamic modes can be a proper orthogonal mode.

II. MODAL DECOMPOSITION

Below, we briefly outline dynamic mode and proper orthogonal decompositions and the

associated computations from a spatio-temporal field. These presentations are included only

for completeness and follow Refs. [26, 29–34]. Suppose the state of a system is z and its

dynamics are given by

ż = F(z), (1)

with an appropriate set of boundary conditions. The dynamics evolve the initial state z0

of the system to St(z0) at time t. In the case of reacting flows, F consists of the relevant

reaction–diffusion and Navier–Stokes equations with, perhaps, no-slip boundary conditions.

For reacting flows, these equations and the associated model parameters along with the

boundary conditions are not known with sufficient accuracy to make reliable predictions. On

the other hand, one has available high-frequency, high-resolution data on various secondary

fields associated with the flow; e.g., the concentration field through PLIF or velocity field

through PIV. Let us represent one such (observable) secondary field (associated with z) by

u[z](x), where x are the grid points on which the observations are made. As the state of

the system evolves from z0 at time t = 0 to St(z0) at time t, the secondary field evolves

from u[z0](x) to u [St(z0)] (x). When the context is clear, one can simplify the notation by

writing u(x, t) for u [St(z0)] (x).
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A. Proper Orthogonal Decomposition

In POD u(x, t) is decomposed in a basis {Ψk(x)} whose members are the normalized

eigenvectors of the correlation matrix C given by Cx,x′ ≡ 〈u(x, t)u(x′, t)〉t, where x and x′

are two spatial locations, and the average is over time. Since C is real and symmetric, POD

modes {Ψk(x)} are real and orthogonal. Ψ0(x) is the time-averaged field. For fields in two

spatial dimensions, denote the number of pixels in the two directions by H and W . The

spatio-temporal field can be expanded as

u(x, t) =
N−1∑
k=0

bk(t)Ψk(x), (2)

where N ≤ HW is the number of POD modes, and bk(t) are the time-dependent coefficients.

Variations in u(x, t) can be quantified using V ≡ E [(u(x, t))2], where the expectation is

over the grid points and snapshots. Using the expansion of u(x, t) and the orthonormality

of Ψk(x)’s, one observes that V =
∑
〈|bk(t)|2〉t. Lk ≡ 〈|bk(t)|2〉t can be interpreted as the

contribution of the kth mode to V ; it is referred to as the energy (or latency). The terms

in the expansion are reordered so they are in a non-increasing order of Lk. Generally, it is

assumed that high-energy modes are robust, and that the remaining ones represent noise

and other irregular features of the flow. A reduced-order approximation [35] for the flow

can be derived by truncating the series (2) at an appropriate order n (< N) to obtain

un(x, t) ≡
∑n−1

k=0 bk(t)Ψk(x). The “quality” of the approximation is given by

βn =

∑n−1
k=0 Lk∑N−1
k=0 Lk

. (3)

Larger values of βn correspond to better approximations of the data. POD modes are

the most efficient basis in the sense that for given n, no other decomposition of the form∑n−1
k=0 b̃k(t)Ψ̃k(x) has a larger value of βn [29–32].

B. Dynamic Mode Decomposition

The Koopman operator is a linear operator U t that maps the function u(x, t = 0) (the

initial state) to the function u(x, t) [26, 34], i.e.,

U t : u(x, t = 0)→ u (x, t) . (4)
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U t is assumed to depend on F and t. Unlike F , which can be a nonlinear system, U t is an

infinite dimensional linear operator [34]. Its eigenfunctions are referred to as the Koopman

eigenfunctions. Projections of the state u(x, t = 0) to the Koopman eigenfunctions are

known as the Koopman modes. Interestingly, under very general conditions, the spectrum of

F is contained in the spectrum of U t [26, 34]; hence, the stability and structure of solutions

z(t) of the system F can be inferred through the analysis of the Koopman operator.

Dynamic mode decomposition [25, 33, 36] is an efficient algorithm for computing ap-

proximations to the Koopman spectrum and Koopman modes from experimental snapshots

collected at uniform time intervals δt. Since U δt is independent of the state u(x, t), one can

approximate the transformation of the field during the time interval [t, t+ δt] as

u (x, t+ δt) ≈ Au (x, t) , (5)

where A ≡ A(δt) is a matrix of size HW×HW . If one denotes by uk the field corresponding

to the snapshot taken at time t = kδt, Eqn. (5) can be re-written as uk+1 ≈ Auk. Thus,

U1 ≡ [u1, u2, . . . , un] ≈ A [u0, u1, u2, . . . , un−1] ≡ AU0. (6)

Finally, singular value decomposition of U0 = VSWT can be used to compute the spectrum

of A (or equivalently of VTAV) by noting that VTAV = VTU1WS−1 [36]. Eigenfunctions

of A are referred to as dynamic modes of the flow [25, 33, 36]. Dynamic mode decomposition

provides an approximation to a subset of the Koopman spectrum Λn and the corresponding

Koopman modes Φn(x). Koopman modes evolve as exp(Λnt) under F .

It should be noted that since A is not symmetric, its eigenvalues Λn and the eigen-

functions Φn(x) are, in general, complex-valued. Furthermore, the eigenfunctions are not

orthonormal. Eigenvalues of the Hermitian conjugate A† of A are Λ∗nt. The corresponding

eigenfunctions Φ̃n(x) are orthogonal to Φn(x)’s–specifically, with an appropriate normaliza-

tion
∫
dx Φ̃m(x)Φn(x) = δmn.

The spatio-temporal field u(x, t) can be expanded as

u(x, t) =
∑

ak(t)Φk(x), (7)

where the sum is performed over the DMD modes. By the orthonormality introduced above,

ak(t) =
∫
dx Φ̃k(x)u(x, t). If necessary, the field can also be expanded in the basis {Φ̃(x)}

as u(x, t) =
∑
ãk(t)Φ̃k(x). Now the variations in the spatio-temporal dynamics reduce to

9



V =
∑
akãk, and one can interpret the quantity Lk = akãk as the energy associated with the

kth mode. Note, however, that because DMD modes are not orthogonal, Lk is not strictly

positive; hence, in defining βk [Eqn. (3)], one must sum absolute values. It should be noted,

however, that with this definition, Lk may exceed 1, although no such examples were found

in the studies reported here.

Unlike proper orthogonal modes, dynamic modes are associated with unique eigenvalues

Λn. One can use the extra information to address an important issue. In typical complex

flows, a single flow constituent (e.g., von Karman vortices) may not be captured by a single

proper orthogonal or dynamic mode [28]. In such cases, we know of no method in POD

for identifying and assigning modes to a constituent. In contrast, analysis of simulated and

experimental data suggests that the dynamic modes associated with a flow constituent can be

identified. Specifically, such eigenvalues are found to lie on a smooth curve in the complex

plane [25, 33, 36]. An alternative scheme is as follows: recall that the primary dynamic

mode (i.e., that with the highest energy) has a single frequency–the imaginary part of the

corresponding Λ. One may expect dynamic modes with harmonics of this frequency to be

associated with the same flow constituent. In the next section, these ideas are used to

decompose cellular flame patterns and reacting flows behind bluff bodies.

DMD modes associated with reproducible features of a flow will be “robust,” i.e., they will

be found in multiple realizations of an experiment. In contrast, modes representing non-

reproducible flow characteristics will change with the realization. This observation leads

to the following conjecture: it is possible to differentiate reproducible and non-reproducible

aspects of a flow by comparing DMD spectra from multiple realizations of a set of nominally

identical experiments. Finally, it was observed that in constructing reduced-order models,

one can discard the non-reproducible features and retain only their statistical characteristics;

in other words, one need to consider only the primary, robust flow constituents in reduced-

order models.
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III. CELLULAR FLAME PATTERNS

A. The Experiment

The experimental setup is discussed in Refs. [5, 27, 37] and shown schematically in Fig-

ure 1(a). Cellular flame patterns were generated on a circular porous-plug burner that was

mounted in a combustion chamber, which was maintained at a pressure of 0.3 – 0.5 atm.

A mixture of methane and air entered a porous medium and, following passage through it,

formed a flat flame front. The front was a luminous disk 5.62 cm in diameter and ∼0.5 mm

thick. The ambient pressure, fuel/oxidizer ratio, and flow rate were controlled to within 1%.

A Dage-MTI charge-coupled-device camera was mounted vertically on top of the combustion

chamber to record the spatio-temporal patterns.

FIG. 1. (a) Schematic of the experimental setup generating cellular flames. (b) An example of a

cellular state as observed from the top and the side. Notice that the darker (cooler) regions of the

flame lie further from the porous plug.

As the flow rate was increased, the circular flame front experienced local curvature,

resulting in symmetry-broken cellular structures such as those shown in Figure 1(b). The

cellular pattern consisted of brighter (hotter) cells demarked by darker (cooler) cusps that

extended farther away from the porous plug. The motion was video-recorded at 30 Hz.

The spatio-temporal dynamics were captured by N = 123 equally spaced snapshots, with
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a resolution of W = 216 pixels along the length and H = 190 pixels along the width of a

snapshot. Both POD and DMD were implemented on a matrix of W ×H columns (spatial

points in a snapshot) and N rows (number of snapshots).

B. The Double Rotating State

A cellular flame pattern of two co-rotating rings of cells was analyzed, several consecutive

snapshots of which are shown in Figure 2. The inner ring of two cells and the outer ring

of six cells rotated clockwise, although at different rates. States where the rings rotated

in opposite directions and those with rings containing different numbers of cells were also

observed and described in Ref. [5]. The analysis outlined below has been applied to these

patterns as well.

FIG. 2. Several consecutive snapshots from the cellular flame state of two co-rotating rings of cells.

Both rings execute clockwise rotations, the angular speed of the inner ring being larger.

C. Proper Orthogonal Decomposition

Figure 3 shows the energies of the first sixteen proper orthogonal modes of the co-rotating

cellular state, and Figures 4 and 5 show the first four proper orthogonal modes and the power

spectra of their time-dependent coefficients. The first two modes have a six-fold symmetry

and represent the outer ring, while the next two have a two-fold symmetry and are located

near the inner ring. The next two modes (not shown) once again are located near the outer

ring and have a twelve-fold symmetry. The fourth pair is located in the region of the inner

ring and has a four-fold symmetry. In fact, the motion of a ring of k cells requires the

coupling of modes of k and 2k-fold symmetries, as discussed in Refs. [38, 39]. As seen from

Panels (c) and (d) of Figures 4 and 5, the dynamics, bn(t), for these modes contain a narrow

range of spectral components.
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FIG. 3. Energies of the first 16 proper orthogonal modes of the double co-rotating state. Dashed

line shows the cumulative energies as a fraction of the total, given in the scale at right. The mean

mode Ψ0(x) has been removed.
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FIG. 4. (Color online) POD modes (a) Ψ1(x) and (b) Ψ2(x) and the power spectra of their time-

dependent coefficients (c) b1(t) and (d) b2(t). Observe that the modes are located near the outer

ring of cells. The power spectra in (c) and (d) have several significant Fourier components.

As Figure 3 shows, the first eight modes capture a significant fraction of the total energy

of the spatio-temporal dynamics. The remaining modes are noisy, contain many small
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FIG. 5. (Color online) POD modes (a) Ψ3(x) and (b) Ψ4(x) and the power spectra of their time-

dependent coefficients (c) b3(t) and (d) b4(t). Observe that the modes are located near the inner

ring of cells. The power spectra in (c) and (d) have several significant Fourier components.

scale irregular structures, and typically span the entire domain. Their energies decay very

slowly, and they represent low energy states, noise, or non-reproducible features of the

flame dynamics. The spatio-temporal dynamics of the reproduction (i.e., the reduced-order

dynamics) using the first n = 9 POD modes (including the 0th mode – mean of the spatio-

temporal field over time) are

u9(x, t) =
8∑

k=0

bk(t)Ψk(x). (8)

Figure 6 shows several snapshots of the approximation and should be compared with Fig-

ure 2. The differences between the two sets of snapshots are small. The spatio-temporal

dynamics of the inner and outer rings can be extracted using reproductions that include

modes {1, 2, 5, 6} and {3, 4, 7, 8}, respectively, as also shown in Figure 6.

Although the spatio-temporal dynamics, u9(x, t), are close to u(x, t), one cannot deter-

mine the roles played by the remaining POD modes (noise, finer features of the flow, etc.).

Note also that the selection of POD modes 1, 2, 5, and 6 as belonging to a single flow

constituent was based only on their symmetries.
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FIG. 6. Reproductions of snapshots corresponding to those shown in Figure 2 are shown in the

top row. The second and third rows contain reproductions of the outer and inner rings of cells.

Both rings are moving clockwise, and the angular velocity of the inner ring is larger.

D. Dynamic Mode Decomposition
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FIG. 7. (Color online) (a) DMD eigenmodes of the double co-rotating state with the 70 largest

energies. Eigenmodes occur in complex conjugate pairs, and only those with non-negative real

parts are shown. (b) Robust modes that remain unchanged –or nearly unchanged– between several

sub-intervals of the dynamics. They are conjectured to represent reproducible features of the flow.

Figure 7(a) shows the (complex) eigenvalues of the dynamic modes for the double co-

rotating state with the highest 70 energies. The modes appear in complex conjugate pairs
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and only those with non-negative imaginary parts are shown. Next, the series of snapshots

is subdivided into several subgroups, for example the first half, the second half, the middle

half, etc. The DMD spectra for each of these subgroups are computed and a search initiated

for the modes that are “robust”, i.e., those that are common to all subgroups. In our studies,

the first consideration used is the proximity of the frequencies; specifically, if the imaginary

parts between the subgroups differ by less than 3%. On the other hand, real parts of the

eigenvalues are more variable; we suspect that this higher variability is related to that of the

magnitude of ak(t) shown in Figure 10 below. We thus do not use them for our comparison.

The next step is to verify that the modes have “similar” spatial structure. In cases where

they have a well-defined spatial structure and/or symmetry (e.g., Figures 4 and 5), these

details can aid a comparison. A quantitative comparison is made as follows. Suppose we

wish to determine if a (normalized) mode Φ(x) associated with the full set of snapshots can

be identified with a (normalized) mode Φ(s)(x) derived from a subgroup of the snapshots.

Since the phases of the two DMD modes may differ, we first find a phase φ that minimizes

the difference; i.e., δ(s) ≡ minφ|eiφΦ(x)−Φ(s)(x)|. We then require that their maximum of

δ(s) for different subgroups be smaller than a pre-specified cutoff η in order for the DMD

mode to be considered robust. For the analysis here, we used η = 0.5.

Robust modes, along with the mode numbers placed in non-decreasing order of their

energies, are shown in Figure 7(b). The energies of the modes are color coded (online

version) according to the color bar shown at the right.

Figure 8 shows the energies of the dominant modes. As can be observed, although

some robust modes have high energies, it is not possible to partition robust and non-robust

modes of the double rotating state using energy alone. Our conjecture is that robust modes

represent reproducible features of the combustion flow; conversely, modes that are not robust

are associated with non-reproducible features including noise.

Figure 9 shows the real and imaginary parts of the (complex) DMD mode Φ2(x) with

the highest energy; its eigenvalue is Λ1 = −0.24 + 39.02i. The mode is located on the outer

ring of cells and has the same six-fold symmetry, and its frequency is Ω2 = Im(Λ2)/2π ≈

6.21 (frame rate). If the mode was an exact Koopman mode, a2(t) ∼ exp(Λ2t) [26].

However, we observe, in Figures 9 (c) and (d), that the spectrum contains a small but

non-zero broad-band component. This is because DMD modes are only approximations to

Koopman modes.
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FIG. 9. (Color online) (a) Real and (b) imaginary parts of the dynamic mode of the double co-

rotating state with the highest energy. The dynamics of the (c) real and (d) imaginary parts of

a1(t) are dominated by the frequency Ω1.

The coefficients ak(t) are calculated using Eqn. (7). The scatter plots of the real and
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FIG. 10. (a) The points a2(t) in the complex plane are broadly distributed. However, the behavior

of the phase angle, defined as θ2(t) = tan−1 [Im(a2(t))/Re(a2(t))] /s(2), where s(2) is the symmetry

of the mode, evolves smoothly. The slope ω2(t) of the curve is the angular velocity of the ring.

imaginary parts of a2(t) are shown in Figure 10(a). Experimental noise, irregularities in the

flow, and the cutoff used in the singular value decomposition (Section II B) cause fluctua-

tions. Interestingly, the angular changes of the phase-space orbit are highly robust, and the

irregularities are restricted to the radial component. To illustrate this point, we define

θ2(t) = tan−1 [Im(a2(t))/Re(a2(t))] /s(2), (9)

where s(2) denotes the spatial symmetry of Φ2(x); specifically, Φ2(x) belongs to the dihedral

group D(s(2)). Thus, s = 2 for the inner ring and s = 6 for the outer ring. The role of s(2)

in the definition is justified from the following observation: when a ring of cells rotates by

2π/s(2), the pattern is repeated, and tan−1 [Im(a2(t))/Re(a2(t))] has changed by 2π.

As Figure 10(b) shows, the evolution of θ2(t) is highly regular; its slope ω2 ≡ ∂θ2/∂t is the

angular velocity of the ring of cells. Henceforth, θ(t) and ω(t) will be used to characterize

the evolution of each dynamic mode. Also note that since the POD modes are real, no such

angular behavior can be defined for single modes. However, when the mode energies occur

in pairs, it is possible to associate a phase to pairs of POD modes [27].

Figure 11 shows the real and imaginary parts of the dynamic mode with the next highest

energy, Φ6(x), the power spectrum of a6(t), and the phase dynamics, θ6(t). [Note that

Φ2(x) = Φ∗1(x) has the same energy as Φ1(x); similarly Φ5(x) and Φ6(x) have the same

energy.] Φ5(x) represents the inner ring and ω5(t) its angular velocity. Once again, note

that the power spectrum has a smaller spectral range than that of the corresponding POD
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FIG. 11. (Color online) (a) Real and (b) imaginary parts of the robust dynamic mode of the double

co-rotating state with the second highest energy. The dynamics of the (c) real part of a6(t) are

dominated by one frequency. (d) The evolution of the phase of a6(t) is regular.

modes Ψ3(x) and Ψ4(x) and that the angular velocity of the inner ring is highly regular.

The spectrum of the dynamics of the DMD mode Φ2(x) is different from those of the

dynamics of the corresponding POD modes Ψ1(x) and Ψ2(x). An explanation of this ob-

servation follows. Φ7(x) has a spatial structure that is a rotation of Φ2(x); it is located in

the outer ring and has the same six-fold symmetry. However, the eigenvalues Λ2 and Λ7 and

the primary spectral components of â2(ω) and â7(ω) are different. In general, there can be

multiple DMD modes with identical or symmetry-related spatial structure but with different

eigenvalues. In POD such modes are combined into a single mode or a pair of modes such as

Ψ1(x) and Ψ2(x). b̂1(ω) is the sum of the â(ω)’s for the associated dynamic modes. This is

the sense in which the POD expansion is more efficient. However, even when multiple modes

have the same spatial structure (e.g., Φ1(x) and Φ7(x)), DMD can be used to differentiate

them through dynamics.

Finally, the relationship between different dynamic modes can be illustrated using Lis-

sajous figures, such as Figure 12, which relate phases of a pair of modes through their Sine
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FIG. 12. (a) Plot of sin θ2(t) vs. sin θ6(t) showing that modes Φ2(x) and Φ6(x) exhibit independent

dynamics. (b) In contrast, the angular velocities of modes Φ2(x) and Φ26(x) appear to be close,

suggesting that they belong to a single flow constituent.

functions. Specifically, when the ratio of angular velocities for two phases θi and θj is a

(low-order) rational number, pairs of points {sin θi(t), sin θj(t)} lie on a curve. This is a

helpful presentation of mode dynamics that may aid in identifying strongly coupled modes.

For example, the dynamics of a2(t) appears to be uncorrelated with that of a6(t). On the

other hand, angular velocities of a2(t) and a26(t) are nearly identical and the curve (a2(t),

a26(t)) consist of nearly closed orbits. The lack of closure appears to be due to small shifts

in the relative phase. We thus suspect that these modes are correlated. Such information is

helpful in developing a low-order model for the flow.

Two significant advantages of dynamic mode decomposition are highlighted. First, the

DMD spectrum from multiple, nominally identical experiments can be used to differentiate

robust and non-robust aspects of a flow. We have not been able to identify a corresponding

partition based on POD. Second, the dynamics of the phase defined in Eqn. (9), unlike the

corresponding magnitude, exhibit very little noise. Hence, the phase dynamics, through

Lissajous figures, can be used to search for modes that belong to the same flow constituent.

In POD, an analogous phase can only be defined when pairs of proper orthogonal modes

have identical energies [27].
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FIG. 13. (Color online) (a) Schematic of the reacting flow behind a v-gutter bluff body (adapted

from [43]). Schematics showing (b) symmetric and (c) von Karman vortex shedding behind a

symmetric barrier. Note that symmetric vortex shedding is not observed when the barrier has a

circular cross-section.

IV. REACTING FLOWS BEHIND A BLUFF BODY

In this section, proper orthogonal and dynamic mode decompositions are used to analyze

reacting flows behind symmetric bluff bodies. There are two classes of vortex shedding.

The first, illustrated schematically in Figure 13(b), involves periodic shedding of symmetric

pairs of vortices from either side of the bluff body. The second, shown in Figure 13(c), is

von Karman shedding where a single vortex shed from one side of the bluff body is followed

by another shed from the opposite side [10, 11]; von Karman shedding is periodic as well.

Study of the onset and growth of vortex shedding behind bluff bodies is motivated partly by

the changes in vortex dynamics as the equivalence ratio (i.e., the fuel-to-oxidizer ratio and
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the corresponding stoichiometric value) is changed from rich to lean conditions [13]. Vortex

development must be constrained for controlling combustion instabilities related to various

bluff-body combustors [6, 40].

A. The Experiment

Experiments on reacting flows were conducted within an optically accessible, atmospheric-

pressure combustion test section that contains a bluff-body flame holder for flame stabiliza-

tion. Air is delivered into a 152-mm × 127-mm rectangular test section at a constant rate

of 0.32 kg/s. While the air rate is maintained constant, propane fuel is added and mixed

upstream of the flame holder to provide equivalence ratios that vary between φ = 0.6 and

1.1. The flame holder is a v-gutter with a width of 38.1 mm and an angle of 35o, which is

capable of holding the flame to a blow-off equivalence ratio of φ = 0.55. Additional facility

details and flame-holder dimensions are provided in Ref. [13].

The bluff body is symmetric under reflection about a line parallel to the flow, and sym-

metric vortex shedding [41, 42] is observed in the entire range of control parameters. As

the equivalence ratio is reduced, the flows develop, in addition, the asymmetric von Karman

vortices [13].

A schematic of the experimental setup is shown in Figure 13(a), the details of which can be

found in Ref. [43]. Two-dimensional images of hydroxyl (OH) behind the bluff-body v-gutter

were acquired utilizing the PLIF technique. Briefly, PLIF of OH was performed using a 10-

kHz, diode-pumped, solid-state Nd:YAG laser and a tunable dye laser. The 532-nm output

of the Edgewave laser was used to pump the dye laser for obtaining tunable laser output

at ∼586 nm. This wavelength was then frequency-doubled at ∼283 nm to excite the Q1(9)

rovibrational transition in the A2Σ+ → X2Π (1, 0) band of OH. The Q1(9) transition has

a low Boltzmann-fraction sensitivity between temperatures of 1000 and 2400 K, minimizing

the need for a temperature correction on Boltzmann distributions when extracting flame

fronts. The PLIF signal of OH was collected employing a LaVision dual-stage, high-speed

UV intensifier (IRO) coupled to a Photron SA-5 CMOS camera. The collected light was

filtered using a Brightline Semrock filter with ∼90% transmission between 300 and 340 nm.

The combination of spectral filtering and time-gating of the intensifier allowed maximum

fluorescence collection while minimizing interference from flame emission and laser scatter.
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Fluctuations in the recorded PLIF intensity contained a uniform gradient in the y-

direction, as verified by averaging several sets of snapshots. The effect can be observed

in the snapshots shown in Figure 14 and in the POD and DMD modes, which are not

symmetric quantitatively. If our studies had been limited only to spatial structures with a

single symmetry type, we could have symmetrized the flow by replacing the experimental

field with the average of all the symmtery-related fields. However, we wish to extract both

the symmetric vortex shedding as well as time-delayed anti-symmetric von Karman vortex

shedding from the same experiment; both features cannot be simultaneously symmetrized.

B. Symmetric Vortex Shedding

FIG. 14. Four snapshots of the reacting flow at φ = 1.1, exhibiting symmetric vortex shedding

of period ∼80 frames. Although the flow is expected to be symmetric, the PLIF images of these

modes are not quantitatively symmetric as a result of a uniform gradient in the y-direction of the

PLIF measurement.

In this section results are presented from POD and DMD of reacting flows behind the

v-gutter bluff body that exhibit only periodic shedding of symmetric pairs of vortices. The

flow is observed for equivalence ratios between φ = 0.9 and φ = 1.1. Figure 14 shows several

snapshots of the vortex shedding at φ = 1.1, displaying a period of ∼8 ms (80 frames). POD

and DMD analyses were conducted on the last 4,000 of the 8,000 snapshots.

1. Proper Orthogonal Decomposition

Figure 15 shows the first two proper orthogonal modes and the power spectrum of their co-

efficients. The modes contain a single high-intensity patch (yellow/red) along the x-direction.

These and all other relevant modes are (qualitatively) symmetric about a horizontal axis.
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However, as mentioned earlier, the PLIF intensity displays a uniform gradient in the y-

direction, which is reflected in the quantitative asymmetry of the proper orthogonal modes.

The time-dependent coefficients of these modes exhibit a unique frequency of 120 Hz.
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FIG. 15. (Color online) First (a) and second (b) POD modes for the reacting flow at equivalence

ratio φ = 1.1 where symmetric pairs of vortices are shed from the sides of the bluff body periodically.

All primary POD modes are nearly symmetric for this flow. Power spectra of the time-dependent

coefficients of these modes, shown in (c) and (d), exhibit a dominant frequency of 120 Hz.

The pair of POD modes with the next highest energies are harmonics; specifically, they

contain two sets of high-intensity regions along the x-direction (compared to one in Fig-

ure 15), and the dominant spectral component of b̂3(ω) and b̂4(ω) is at a frequency of 240

Hz. Modes that represent higher harmonics of Ψ1(x) and Ψ2(x) are found as well.

2. Dynamic Mode Decomposition

Figure 16(a) shows the DMD modes and Figure 16(b) the robust modes, which are

identified using 2000-frame sections of the video. The real parts of the robust modes vary

between the subgroups and we show the mean and standard deviation for each robust mode.

It should be noted that, following transient motions the system dynamics lies on an attractor,
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FIG. 16. (Color online) (a) DMD spectrum for the reacting flow at equivalence ratio φ = 1.1. (b)

The mean and standard deviation (for the real part) of robust DMD modes. The mode numbering

is assigned according to the (non-increasing order of) energies.

and thus these real parts of the corresponding dynamic modes are expected to be zero [26, 34].

All error bars of robust modes in Figure 16(b) cross the real axis, suggesting that these modes

are associated with motion on the attractor. The mode numbers in Figure 16(b) are ordered

according to their energies shown in Figure 17. Once again most, but not all, of the high-

energy modes are reproducible. This is another example to illustrate that energy does not

partition robust and non-robust modes.
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FIG. 17. Energies of the first 71 dynamic modes of the reacting flow at equivalence ratio φ = 1.1.

Robust modes are shown in gray. Dashed line shows the cumulative energies as a fraction of the

total, given in the scale at right.

Figures 18(a) and (b) show the real and imaginary parts of the dynamic mode Φ1(x).
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Apart from the y-gradient in the PLIF field, the mode is symmetric about the x-axis. The

coefficient of Φ1(x), a1(t), has a dominant frequency of 120 Hz as seen in Figure 18(c).

Furthermore, note that Φ1(x) contains a single high-intensity (yellow/red) region along

the x-direction [in contrast to Φ7(x), see below]; one can define s(1) = 1, analogous to

the symmetry of dynamic modes of the double-rotating state. However, here the definition

pertains to the number of “structures” in the flow direction. As in the last section, a “phase”

associated with the mode can be defined by θ1(t) = tan−1 [Im(a1(t))/Re(a1(t))] /s(1). It

represents the displacement of the structure along the x-direction rather than a spatial

rotation in the previous example. One can also define ω1(t) = ∂θ1(t)/∂t, which will be

the flow velocity of the corresponding constituent. Figure 18(d) shows that the evolution

of θ1(t) is highly regular, in contrast to the noisy radial component |a1(t)|. Thus, even

though a significant variability exists between successive vortices, the fluctuations are in the

magnitude of the coefficient [similar to Figure 10(a)]; the downstream flow velocity is highly

regular.
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FIG. 18. (Color online) (a) Real and (b) imaginary parts of Φ1(x) for the reacting flow at equiva-

lence ratio φ = 1.1. (c) The spectrum of a1(t) exhibits a dominant frequency at 125 Hz. (d) θ1(t)

exhibits smooth dynamics.

Figure 19 shows the real and imaginary parts of Φ7(x), one of the two dynamic modes
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with the next highest energy, and the Fourier transform of the real part of a7(t). Φ7(x)

contains two distinct high-intensity regions along the x-direction (those shown in yellow/red)

and, thus, s(7) = 2. The phase has characteristics of a spatial harmonic of Φ1(x), and

the dominant frequency of a7(t) is 240 Hz. The dynamics of the phase θ7(t), shown in

Figure 19(d) are regular. Its angular velocity, ω7 is identical to ω1.
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FIG. 19. (Color online) (a) Real and (b) imaginary parts of Φ7(x) for the reacting flow at equiva-

lence ratio φ = 1.1. (c) â7(ω) peaks at 240 Hz. (d) θ7(t) exhibits regular behavior, and the rate of

its growth is identical to that of θ1(t).

Interestingly, downstream flow rates of robust modes 1, 7, 26, 36 of the reacting flow at

φ = 1.1 are identical, as shown in Figure 20. (The figure only shows one from each of the

four complex conjugate pairs of robust dynamic modes.) This observation suggests that the

reacting flow at equivalence ratio φ = 1.1 contains one reproducible flow constituent, which

can be reconstructed using the eight robust modes and the time average Φ0(x). Figure 21

shows several snapshots of this reconstruction; it should be compared with the corresponding

images of the original flow shown in Figure 14.
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FIG. 20. (Color online) Phase growth of robust modes 1, 7, 26, 36 for the reacting flow at φ = 1.1

are nearly identical. Successive curves are shifted for clarity. (b) The Lissajous figure for the last

1000 snapshots shows that Modes 1 and 7 are correlated, although some random drift between the

phases is observed.

FIG. 21. Several snapshots of the reconstruction of the reproducible flow using the robust modes.

These snapshots should be compared with the corresponding snapshots of the original flow given

in Figure 14.

C. Von Karman Vortex Shedding

The reacting flow at equivalence ratio φ = 0.8 contains symmetric vortex shedding as

well as von Karman shedding. Here noise and non-reproducible features of the flow are

significantly higher than at φ = 1.1. Part of this irregularity may be a consequence of the

nonlinear coupling between symmetric and von Karman vortex shedding.

The flow contains both symmetric and asymmetric POD modes [13, 28], the leading modes

being symmetric. As discussed in Ref. [28], the asymmetric modes must be associated with

von Karman vortex shedding. Figure 22 shows the symmetric and asymmetric modes with
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the highest energies.
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FIG. 22. (Color online) (a) Symmetric and (b) asymmetric proper orthogonal modes with largest

energies for the reacting flow at φ = 0.8. The asymmetric modes represent von Karman vortex

shedding [13, 28].

Figure 23(a) shows the DMD modes of the flow at φ = 0.8, and Figure 23(b) shows the

robust modes that were identified using 2000-frame sections of the flow.
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FIG. 23. (Color online) (a) The DMD spectrum for the reacting flow at equivalence ratio φ = 0.8.

The flow exhibits symmetric vortex shedding as well as von Karman shedding at this equivalence

ratio. (b) The mean and standard deviation for the robust modes 4, 5, 38, 58, and 61.

Modes 4, 5, 38, 58, and 61 are robust. Modes 4 and 5 and symmetric about the x-axis,

and mode 38 shows a von Karman-like behavior. Figure 24 shows the real and imaginary

parts of Φ4(x), the spectrum â4(ω) of the real part of a4(t), and the phase dynamics. The

corresponding results for the asymmetric mode with the highest energy, Φ38(x), are shown

in Figure 25.
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FIG. 24. (Color online) (a) Real and (b) imaginary parts of Φ4(x), the symmetric mode with

the largest energy, for the reacting flow at φ = 0.8. (c) â4(ω) is significantly noisier than the

corresponding spectra at φ = 1.1; it contains a peak at 115 Hz. (d) phase dynamics of a4(t) are

regular.

The phase dynamics of these five modes are significantly more regular (and noise-free)

than the overall dynamics, as shown in Figure 26(a). The angular velocities ω4(t) and ω5(t)

are approximately 0.073 and 0.078 radians/frame respectively, suggesting that they belong

to a single flow constituent. The angular velocities ω38 and ω58(t) are approximately 0.055

and 0.051 radians/frame, suggesting that they belong to a second flow constituent. However,

the difference in angular velocities between the two pairs of modes (and the symmetry of the

first pair and asymmetry of the second pair) implies that the two constituents are distinct.

The reproduction of the flow using Φ38 shows that the constituent represents von Karman

vortex shedding. The difference between the downstream flow rates of the symmetric and von

Karman vortices means that the overall shedding is not periodic. That the two constituents

are uncorrelated is reinforced by the Lissajous figure shown in Figure 26(b).

The top row of Figure 27 contains several snapshots from the reacting flow at φ = 0.8.

The next two rows show reconstructions of the symmetric and asymmetric constituents
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FIG. 25. (Color online) (a) Real and (b) imaginary parts of Φ38(x), the asymmetric mode with

the largest energy, for the reacting flow at φ = 0.8. (c) â38(ω) is noisy with a peak at 175 Hz. (d)

phase dynamics of a38(t) are regular.

at the corresponding time points. These can be interpreted as symmetric and von Karman

vortex shedding. Here, evidence is found for the success of using DMD in separating the flow

into distinct constituents. The symmetries of the constituents and the properties of their

dynamics (for example, that the angular velocities are not identical) provide the information

that is essential in the development of a low-dimensional model for the flow.

V. CONCLUSION

Recent advances in high-frequency, high-resolution imaging provide a strategy for analyz-

ing complex flows [26, 34]. The goal is to identify distinct flow constituents and determine

the coupling between them. However, experimental flows contain noise and, especially in

the case of turbulent convection, features that are not reproducible; only their statistical

properties are relevant. Thus, it is important to be able to differentiate reproducible features

of the flow from noise and non-reproducible aspects. Once reproducible flow constituents
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FIG. 26. (Color online) (a) Phase dynamics of several modes for the reacting flow at φ = 0.8.

“Angular velocities” ω4 ≈ 0.073 radians/frame and ω5 ≈ 0.078 radians/frame are nearly identical,

suggesting that they belong to the same flow constituent. Similarly, ω38 ≈ 0.055 radian/frame and

ω58 ≈ 0.051 radians/frame are close, suggesting that they form a second constituent. Successive

curves are shifted for clarity. (b) The Lissajous figure for the last 1000 snapshots shows that Modes

4 and 38 are uncorrelated, underscoring that they belong to different flow constituents.

FIG. 27. Several snapshots of the reacting flow at φ = 0.8 (top row), reconstructions of the

symmetric (second row), and asymmetric (bottom row) flow constituents.

are identified, it is possible to introduce a low-order model of the flow.

The first step in the analysis is a modal decomposition of the flow. Since most real com-
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bustors do not have symmetric regular shapes, the use of pre-specified bases such as Fourier

or wavelet bases for post-processing is inefficient. Approaches such as POD, which extract

the optimal basis functions from data, can be expected to be more effective. Indeed, the

structure and dynamics of eddies in turbulent combustion can be captured with a (rela-

tively) small number of proper orthogonal modes [13, 28]. However, it often is not possible

to identify the set of POD modes to be associated with a specific flow constituent, such as

a periodically shed collection of von Karman vortices.

In this study the use of dynamic modes was proposed to deconvolve combustion flows.

DMD eigenvalues and eigenmodes can be computed from a series of equally spaced snapshots

of the flow field. All spectral components of the dynamics underlying the flow are contained

in the DMD spectrum [26, 33, 34]. Each DMD mode is associated with a single complex

growth rate Λ. As in POD the relative importance of a mode toward the reconstruction of

the spatio-temporal dynamics can be estimated using an appropriately defined energy.

Two reacting flows were analyzed using POD and DMD. The first was a non-trivial

cellular state observed in a uniform circular flame front. A symmetry-breaking bifurcation

of a uniform circular flame front generates a variety of stationary and non-stationary cellular

states of the flame [5, 27, 37]. The state studied contained two rotating rings of cells that

co-rotated with different angular speeds. The second set of flows analyzed was reacting flow

behind symmetric bluff bodies [13, 41, 42]. In the first example, the flow contained only

periodic shedding of symmetric pairs of vortices from the ends of the bluff body. In the

second example, the flow contained symmetric and von Karman vortex shedding. The goal

in both studies was to deconvolve the flow into its constituents and to differentiate them

from noise and other irregular features.

Both POD and DMD can be used to separate the two rings of cells of the co-rotating

cellular state. The constituents exhibited the expected symmetries and contained harmonics

that are required for the rotation of rings [38, 39]. POD was the more efficient decomposition

in the sense that the spatio-temporal dynamics were approximated with the smaller number

of POD modes. In contrast, several dynamic modes had the same spatial structure but

different growth rates. Thus, DMD presented more detailed dynamical descriptions of the

modes.

A method to differentiate reproducible flow constituents from noise and non-reproducible

features of the co-rotating cellular state was introduced. It is based on DMD of several
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subsections of the flow and in identifying common eigenvalues. It was conjectured that

these robust modes capture the reproducible features of the dynamics, and conversely, that

non-robust modes represent non-reproducible features of the flow. (Ref. [44] introduces an

approach to compute dynamic modes using multiple, nominally identical data sets. We

expect that the selection of robust modes can be improved by using different combinations

of the experiments.) It should be noted that we were not able to use POD for differentiating

robust and non-robust modes in the examples we studied. First, as discussed in Section III D,

the POD modes are a combination of DMD modes with the same spatial structure, and the

contribution of the individual components (some of which may be reproducible, while others

may not be) cannot be established. Second, we found that some non-robust DMD modes

have higher energy than other robust DMD modes. One may suspect that the same holds for

POD modes as well. Hence, it may not be possible to partition robust and non-robust modes

based on the energies of POD modes alone. The ability to differentiate between robust and

non-robust modes was a significant advantage of DMD over POD in post-processing our

experimental data.

It was discovered that although the phase-space orbits are noisy, the angular motion

(defined via the coefficients of DMD modes) associated with the states evolved with highly

regular dynamics. This result suggests the use of the phase angle to describe the underlying

dynamics and to identify strongly correlated pairs of modes through Lissajous figures. The

rate of change of the phase angle was equal to the angular velocity of the corresponding

ring of cells. Finally, a correlated group of dynamic modes can be used to reconstruct

a flow constituent. It should be noted that, unless the POD modes can be paired using

their energies, it is not possible to define a corresponding angular motion. This is a second

advantage of DMD over POD in the post-processing of experimental data.

The conclusions made for the double-rotating state apply to reacting flows as well. Once

again the flow can be approximated with a smaller number of POD modes. However, DMD

of multiple nominally identical sets of snapshots aided differentiation between robust and

non-robust dynamical modes and, hence, reproducible and non-reproducible flow character-

istics. As in the co-rotating state, a “phase” of the dynamical modes was defined using their

(time-dependent) coefficients. In bluff-body flows, it represents not an angular position, but

the downstream displacement of the associated vortex. The phase dynamics were found to

be highly regular compared to the (erratic) changes in the magnitude of the coefficients.
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Using phase dynamics and Lissajous figures, strongly correlated modes that were associ-

ated with a single flow constituent were identified. Thus, it was possible to differentiate

between symmetric and asymmetric vortex shedding and reconstruct these constituents of

the complex reacting flow.

The ability to identify reproducible flow constituents and select dynamic modes associated

with a flow constituent is helpful in constructing reduced-order models for combustion flows.

Construction of these models is based on the dynamics, symmetries, and topological features

of the reproducible flow constituents, which must be supplemented by the statistical features

of noise and other non-reproducible aspects of the flow.
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Appendix A: Dynamic and Proper Orthogonal Modes

This Appendix outlines a set of conditions under which a combination of DMD modes with

the same spatial structure is a POD mode of the spatio-temporal dynamics. Consider first

spatio-temporal dynamics containing only a single dynamic mode Φ(x) with an eigenvalue

λ. Since flows on an attractor have no growth or decay, the growth rates of the DMD modes

have zero real parts; let λ = iµ, where µ ∈ R. Thus, the (real) spatio-temporal field is

u(x, t) = eiµtΦ(x) + e−iµtΦ∗(x). (A1)

Noting that the time average 〈eiµt〉t ∼ δµ0, the correlation matrix is

Cx,x′ = 〈u(x, t)u(x′, t)〉t = Φ(x)Φ∗(x′) + Φ∗(x)Φ(x′), (A2)

where x and x′ are two spatial locations. Consequently,∑
x′

Cx,x′Φ(x′) = NαΦ(x) +NβΦ∗(x), (A3)

where α = 〈Φ∗(x′)Φ(x′)〉x′ ∈ R, β = 〈Φ(x′)Φ(x′)〉x′ ∈ C, and N is the total number of grid

points.
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Consider a “phase-advanced” (or in the case of the cellular state, rotated) pattern eiθΦ(x)

whose real part is ΦR(x) ≡ eiθΦ(x)+e−iθΦ∗(x). Using Eqn. (A3) and its complex conjugate∑
x′

Cx,x′ΦR(x′) = N
[
αeiθ + β∗e−iθ

]
Φ(x) +N

[
αe−iθ + βeiθ

]
Φ∗(x). (A4)

Choosing θ = (i/4) ln(β/β∗),
∑

x′ Cx,x′ΦR(x′) ∼ ΦR(x) and, hence, ΦR(x) is an eigenfunc-

tion of Cx,x′ ; i.e., the phase-advanced dynamic mode is a POD mode.

Next, we extend the result to a field formed by a linear combination of a set of dynamic

modes with the same spatial structure. As before, the effective real part of the corresponding

eigenvalues is zero. The corresponding spatio-temporal pattern can be written as

u(x, t) =

(∑
k

cke
iµkt+iθk

)
Φ(x) +

(∑
k

c∗ke
−iµkt−iθk

)
Φ∗(x), (A5)

where ck is the coefficient and θk the phase of the kth DMD mode, with eiµkt being its

eigenvalue. Since the µ’s are distinct, the corresponding correlation matrix is

Cx,x′ =

(∑
k

|ck|2
)

[Φ(x)Φ∗(x′) + Φ∗(x)Φ(x′)] . (A6)

It follows that a phase-advanced dynamic mode is a POD mode for the spatio-temporal

dynamics.

Finally, we outline how the result generalizes to a spatio-temporal field with two dynamic

modes. The generalization to multiple modes is straightforward. Denote the two dynamic

modes by Φ1(x) and Φ2(x). The spatio-temporal field can be expressed as

u(x, t) = c1e
iµ1tΦ1(x) + c2e

iµ2tΦ2(x) + c.c., (A7)

where c1 and c2 are the coefficients of the dynamic modes and c.c. represents the complex

conjugate. The correlation matrix for the state is

Cx,x′ = |c1|2Φ1(x)Φ∗1(x
′) + |c1|2Φ∗1(x)Φ1(x

′) + |c2|2Φ2(x)Φ∗2(x
′) + |c2|2Φ∗2(x)Φ2(x

′). (A8)

Defining α1 = 〈Φ1(x
′)Φ∗1(x

′)〉x′ ∈ R, β1 = 〈Φ1(x
′)Φ1(x

′)〉x′ ∈ C, γ1 = 〈Φ1(x
′)Φ∗2(x

′)〉x′ ∈ C,

and γ2 = 〈Φ1(x
′)Φ2(x

′)〉x′ ∈ C, it is apparent that∑
x′

Cx,x′Φ1(x
′) = Nα1Φ1(x) +Nβ1Φ

∗
1(x) +Nγ1Φ2(x) +Nγ2Φ

∗
2(x). (A9)
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If the domains of Φ1(x) and Φ2(x) do not overlap (as is the case for the first two dynamic

modes for the double rotating state [see Figures (9) and (11))], then γ1 = 0 = γ2. Now,

Eqn. (A9) reduces to Eqn. (A3). Consequently, a phase-advanced dynamic mode is a prin-

cipal component, as was noted in Section III.
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