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Université Libre de Bruxelles, Optique Nonlinéaire Théorique,
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Abstract

An optoelectronic oscillator exhibiting a large delay in its feedback loop is studied both exper-

imentally and theoretically. We show that multiple square-wave oscillations may coexist for the

same values of the parameters (multi-rhythmicity). Depending on the sign of the phase shift, these

regimes admit either periods close to an integer fraction of the delay or periods close to an odd

integer fraction of twice the delay. These periodic solutions emerge from successive Hopf bifurca-

tion points and stabilize at a finite amplitude following a scenario similar to Eckhaus instability in

spatially extended systems. We find quantitative agreements between experiments and numerical

simulations. The linear stability of the square-waves is substantiated analytically by determining

stable fixed points of a map.
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I. INTRODUCTION

Nonlinear delay dynamics have been a particularly prolific area of research in the field of

photonic devices during the last 30 years [1]. A large variety of setups exhibiting optical or

electro-optical delayed feedback loops have been explored for novel applications, but also as

experimental tools for delay systems in general. They have stimulated fruitful interactions

with researchers working in different fields by emphasizing specific delay-induced phenomena

[2–9]. Examples include different forms of oscillatory instabilities, stabilization techniques

using a delayed feedback, and synchronization mechanisms for delay-coupled systems. Most

of the current lasers used in applications are semiconductor lasers (SLs), which are highly

sensitive to optical feedback [10]. Here, the light coming from the laser is reflected back to

the laser after a substantial delay. Another popular delay system is an optoelectronic oscilla-

tor (OEO) [11, 12] that consists of a laser injecting its light into an optoelectronic loop. For

OEOs, the feedback exhibits a large delay because of a long optical fiber line in the OEO

closed-loop configuration. An OEO is capable of generating, within the same optoelectronic

cavity, either an ultra-low-jitter single-tone microwave oscillation, as used in radar applica-

tions [13], or a broadband chaotic carrier typically intended for physical data encryption in

high bit rate optical communications [14, 15]. The OEO is a particularly attractive system

because it allows quantitative comparisons between experiments and theory [16–18].

For systems exhibiting a Hopf bifurcation in the absence of delay, a feedback with a large

delay may lead to the coexistence of stable periodic solutions in the vicinity of the first

Hopf bifurcation point. This multi-rhythmicity was predicted theoretically using a Hopf

normal-form equation with a delayed feedback [19], where the bifurcation scenario is similar

to Eckhaus instability in spatially extended systems [20]. The bandpass OEO without its

optical fiber line admits a Hopf bifurcation. In this paper, we investigate the stabilization

of nearby Hopf bifurcation branches in this regime.

We conduct here a systematic experimental and numerical study of an OEO exhibiting a

large delay. We show that an OEO admits coexisting stable periodic square-waves. Depend-

ing on the feedback phase, they are characterized by frequencies close to either (1+2n)/(2τD)

(n = 0, 1, 2, ...) or n/τD (n = 1, 2, ...) where τD is the delay of the feedback loop. In order

to induce these periodic solutions, we inject a periodic electrical signal into the oscillator

during the initialization phase of the experiment and then observe the resulting dynamics
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FIG. 1. Schematic of the experimental setup of an optoelectronic oscillator

after the injected signal is removed. In the simulations, we choose different initial periodic

functions in order to determine different periodic solutions.

Periodic regimes of an OEO showing frequencies that are multiple of 1/τD were found

in the past. In [21, 22], the authors progressively increased the delay and investigated

the sequential jump to stable oscillations of frequency (2n + 1)/(2τD) (n = 0, 1, ...). In

[23, 24], the authors found numerically periodic solutions of frequency close to n/τD. In this

paper, we demonstrate the multi-rhythmicity phenomenon by exciting square-waves with

a specific frequency (specific n). Furthermore, we relate these periodic solutions to nearby

Hopf bifurcation points, a prerequisite for an Eckhaus bifurcation scenario.

The experimental setup of an OEO is sketched in Fig. 1. A semiconductor laser beam is

injected into a Mach-Zehnder intensity modulator (MZM). The MZM induces a nonlinear

function of the applied voltage. The modulated light passes through an optical fiber, which

is used as a delay line, and is injected into an inverting photodetector, which converts

the signal into the electrical domain. The voltage emitted from the photodectector passes

through a bandpass filter and then through a power splitter. Half of the voltage, denoted by

V , is amplified by an inverting modulator driver (MD). This electric signal is then reinjected

inside the MZM via its radio frequency input port to close the feedback loop. The voltage

coming out of the other port of the power splitter is used to measure the dynamical variable

V with a high-speed oscilloscope. The device used has an 8 GHz analog bandwidth and

a 40 GS/s sampling rate. In our experiments, the delay of the feedback loop is fixed at

τD = 22 ns. The system described is the same as in Refs. [22, 23, 25] except that a pattern

generator has been included to perturb the dynamics of the system. An electrical switch is

used to isolate this pattern generator from the rest of the system. The switch also allows a
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controllable electrical signal to be combined with V at the input of the MD.

Mathematically, we consider the evolution equations formulated in Refs. [15, 23] with

time measured in units of the delay. They are given by [26]

ε
dx

ds
= −x− δy + β

[

cos2 (m+ tanh (x (s− 1)))− cos2 (m)
]

, (1)

dy

ds
= x, (2)

where s ≡ t/τD and x is the normalized voltage of the electrical signal in the OEO. The

feedback amplitude β and the phase shift m are two control parameters. ε ≃ (τDω+)
−1 =

0.0157 and δ ≃ τDω− = 0.2042 [26] are dimensionless time constants fixed by the low and

high cut-off frequencies of the bandpass filter denoted by ω− and ω+, respectively. Equations

(1) and (2) are the same equations studied in [25] except of the hyperbolic tangent function

in Eq. (1) that accounts for the amplifier saturation.

Equations (1) and (2) admit a single steady state (x, y) = (0, 0) and its linear stability

has been analyzed in detail in Refs. [21, 25]. Of particular interest are the primary Hopf

bifurcation points, which can be classified into two different families. In the limit δ → 0 and

ε → 0, the critical feedback amplitudes and the Hopf bifurcation frequencies approach the

limits [27]

m > 0 : βn = 1/ sin(2m), and ωn = (1 + 2n)π (n = 0, 1, 2, ..), (3)

m < 0 : βn = −1/ sin(2m), ω0 =
√
δ, and ωn = 2nπ (n = 1, 2, ..). (4)

If m > 0, the frequencies are odd multiples of π, meaning that the successive Hopf bifur-

cations lead to 2/(1 + 2n)−periodic solutions [2τD/(1 + 2n)−periodic solutions in physical

time]. If m < 0 and n = 1, 2, .., the frequencies are even multiples of π and the successive

Hopf bifurcations lead to 1/n−periodic solutions (τD/n−periodic solutions in physical time).

In addition, there exists for m < 0 a Hopf bifurcation characterized by the low frequency

ω0 =
√
δ ≪ 1. It leads to oscillations with a large period compared to 1 (large period

compared to τD in physical time).

The organization of the paper is as follows. In Section II, we describe the experimental

observations and numerical simulations for the two families of Hopf bifurcations. In Section

III, we propose a partial stability analysis of the plateaus by associating their mean values

to stable fixed points of a map. Finally, we discuss our main results in Section IV.
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II. EXPERIMENTS AND SIMULATIONS

From the linear stability analysis of the zero solution discussed above, we find that there

exist two families of Hopf bifurcations depending on the sign of m. For each case, we describe

our experimental observations and compare them to numerical simulations of Eqs. (1) and

(2).

A. Case m > 0

If m > 0, oscillations of period close to 2τD (corresponding to a frequency of 22.7 MHz)

are observed experimentally [see Fig. 2(a)]. In order to find harmonic oscillations, we

excite the system with signals at different frequencies. To this end, the pattern generator

injects different periodic signals into the OEO loop during a few seconds. Figure 2(b) shows

square-wave oscillations of period close to 2τD/5 obtained by injecting a square-wave signal

of frequency 114 MHz. Similarly, by exciting the OEO with sine-wave signals of frequency

159 MHz and of frequency 205 MHz, we obtain 2τD/7 and 2τD/9−periodic oscillations,

respectively [Fig. 2(c) and Fig. 2(d), respectively]. 2τD/3−periodic oscillations are also

observed but are not shown for clarity. The observation of stable oscillations characterized

by higher frequencies (n > 4) is not possible because of the bandwidth limitation of the

pattern generator.

We next integrate numerically Eqs. (1) and (2) using the same values of the parameters

as for the experiments. Figure 3 shows four different time series obtained using different

initial functions described in the caption. We note that the shape and the period of the

oscillations are in good agreement with the experimental observations. The plateaus of the

square-wave are slightly increasing or decreasing in time, which is an effect of the small

parameters ε and δ. If we decrease their values, the plateaus become flatter. Another point

raised by the numerical simulations and by the experimental observations is that the mean

values of the plateaus are roughly the same for the main and harmonic periodic solutions.

From Fig. 3(d), we evaluate theses values as

xmax ≃ 0.9 and xmin ≃ −0.95. (5)
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FIG. 2. Experimental time series obtained after injecting different periodic signals into the OEO

loop during a few seconds and after the injected signal is removed. The measured values of the

parameters are m = 0.665, β = 1.94, and τD = 22 ns.

2/9−periodic oscillations are also found numerically but they are unstable for long time.

They are stable if we slightly decrease ε. A smaller ε leads to sharper transition layers and

contribute to the overal stability of the square-wave. The discrepancy between experimental

and numerical solutions for the 2/9-periodic regimes could be the result that the model

slightly overestimated the effect of the amplifier saturation (value of d) which contributes

to smooth the transition layers.

We also examine the effect of changing m. Figure 4(a) shows the first Hopf bifurcation

lines in the (m, β) parameter plane. There is a stable steady state if β < 1. Increasing β

leads to a critical point βH1 > 1 where oscillations of period 2 appear. The minimal value

of βH1 is obtained if m = π/4. By progressively increasing β from βH1, we may generate

stable higher-order harmonic oscillations that become more robust with respect to small

perturbations.
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FIG. 3. Numerical time series obtained from Eqs. (1) and (2). (a) Oscillations of period close to

2 with x (s) = cos (πs) and y (s) = 0 (−1 < s < 0); (b) oscillations of period close to 2/3 with

x (s) = cos (3πs) and y (s) = 0 (−1 < s < 0); (c) oscillations of period close to 2/5 with x (s) =

cos (5πs) and y (s) = 0 (−1 < s < 0); (d) oscillations of period close to 2/7 with x (s) = cos (7πs)

and y (s) = 0 (−1 < s < 0). The values of the control parameters are the same as in Fig. 2:

m = 0.665 and β = 1.94.

B. Case m < 0

If m < 0, we observe in the experiment stable square-wave oscillations of period close

to τD/n. Figure 5(b), (c), and (d) show oscillations of period close to τD, τD/2, and τD/3,

respectively. They are obtained by exciting the OEO with periodic signals of different

frequencies as described in the caption. Oscillations of period close to τD/4 are also observed.

Moreover, we find stable slowly-varying oscillations [See Fig. 5 (a)] in agreement with our

previous stability analysis that predicts a Hopf bifurcation for m < 0 with a low frequency.

As for the case m > 0, we do not find higher order harmonic oscillations because of the

bandwidth limitation of the pattern generator preventing us to initialize the system with

frequencies above a certain threshold.

Integrating Eqs. (1) and (2) using different initial functions leads to similar time-periodic

regimes. The slowly-varying oscillations are shown in Fig. 6(a) and exhibit a period close to
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FIG. 4. Hopf bifurcation lines in the (m,β) parameter plane. (a) corresponds to the case m positive

and (b) to the case m negative. They have been determined numerically from the exact conditions

with ε = 0.0157 and δ = 0.2042. The numbers in the figures indicate the value of n corresponding

to a specific frequency defined in (3) and (4). All curves are nearly parabolic with a minimum at

m = ±π/4. If ε → 0 and δ → 0, all curves moves to a unique parabola with minimum located at

(m,β) = (±π/4, 1).

T = 17.2. With the Hopf bifurcation frequency ω0 given in (4), we compute T0 = 2π/ω0 ≃ 14

which is of the same order of magnitude as T . Figures 6(b), (c), and (d) show oscillations

of period close to 1, 1/2, and 1/3, respectively.

We investigate numerically the effect of changing m < 0. The first Hopf bifurcation

lines are shown in Fig. 4(b). In contrast to the case m > 0 where the square-wave re-

mains symmetric (same plateau lengths), the shape of the square-wave depends here on m.

If m = −π/4, we observe symmetric square-wave oscillations with a period close to τD/n.

However, ifm+π/4 6= 0, the square-wave becomes asymmetric with different duty lengths for

each plateau. The total period remains constant. As for the case m > 0, the square-wave

oscillations become more robust if β increases. The same properties are observed experi-

mentally. Figure 6(b) and Figs. 6(c) (d) are obtained using slightly different values of the

parameters m and β. From Figs. 6(c) and (d), we find that the mean values of the plateaus

are identical for the two periodic regimes and are given by

xmax ≃ 1.1 and xmin ≃ −1.1. (6)
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FIG. 5. Experimental time series obtained after injecting different periodic signals into the OEO

loop during a few seconds and after the injected signal is removed. (a) Low-frequency oscillations of

period close to 12τD obtained by injecting a sine-wave signal of frequency 5 MHz; (b) oscillations of

period close to τD obtained by injecting a sine-wave signal of frequency 45.5 MHz; (c) oscillations of

period close to τD/2 obtained by injecting a sine-wave signal of frequency 90.9 MHz; (d) oscillations

of period close to τD/3 obtained by injecting a sine-wave signal of frequency 136 MHz. The values

of the delay is τD = 22 ns. The measured values of the control parameters are m = −0.845 and

β = 1.94 for (a) and (b) and m = −0.785 and β = 2.2 for (c) and (d).

III. LINEAR STABILITY OF THE PLATEAUS

In the limit δ → 0 and ε → 0, Eqs. (1) and (2) reduce to a single equation for a map

given by

xn+1 = β
[

cos2 (m+ tanh(xn))− cos2 (m)
]

. (7)

Here, we demonstrate that the plateaus of the square-waves can be partially understood

by considering the stable fixed points of this map. For the case m > 0, there is a Hopf

bifurcation at βc = 1/ sin(2m) to a stable period-2 fixed point [see Fig. 7(a)]. For the values

of m and β used in our experiments and simulations, the diagram in Fig. 7(a) indicates

xmax = 0.72 and xmin = −1.04, (8)

which agree qualitatively with the values (5) estimated from the numerical simulations.
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FIG. 6. Numerical time series obtained from Eqs. (1) and (2). (a) Slowly varying solutions

obtained with x (s) = cos (0.5πs) and y (s) = 0 (−1 < s < 0); (b) oscillations of period close to 1

with x (s) = cos (2πs) and y (s) = 0 (−1 < s < 0); (c) oscillations of period close to 1/2 obtained

with x (s) = cos (4πs) and y (s) = 0 (−1 < s < 0); (d) oscillations of period close to 1/3 with

x (s) = cos (6πs) and y (s) = 0 (−1 < s < 0) The values of the control parameters are the same as

in Fig. 5: m = −0.845 and β = 1.94 for (a) and (b) and m = −0.785 and β = 2.2 for (c) and (d).

FIG. 7. Stable fixed points of Eq. (7). (a) m = 0.665. The diagram shows branches of a Period 2

fixed point. The dashed line corresponds to the experimental and numerical value of β. (b) m =

−0.785. The diagram shows two branches of Period 1 fixed points. The dashed lines corresponds

to the experimental and numerical value of β.
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For the case m < 0, Eq. (7) admits two stable period-1 fixed points that appear at

βc = −1/ sin(2m) [xn > 0 and xn < 0, see Fig. 7(b)]. For the values of the parameters used

in our experiments and simulations [Figs. 5(c)(d) and for Figs. 6(c)(d)], the diagram in Fig.

7(b) indicates

xmax = 1.10 and xmin − 1.10, (9)

which agree quantitatively with the values (6) obtained from the numerical simulations.

IV. DISCUSSION

Symmetric and asymmetric square-wave oscillations have previously been found [16, 18,

23, 28] and were related to the first Hopf bifurcation of a basic steady state. Here, we

concentrate on the next primary Hopf bifurcations and show that they quickly stabilize

above critical amplitudes. This is the bifurcation scenario related to the Eckhaus instability

known to exist in spatially extended systems. The Eckhaus instability has been predicted

to occur in a simple model equation in the limit of large delays [19]. The idea is based on

the observation that all Hopf bifurcation points move to a critical value in the limit of large

delay (in our case, ε → 0 and δ → 0). We may then apply the method of multiple time

scales and formulate a partial differential equation for a small amplitude solution. In [19], a

single variable complex Ginzburg-Landau equation was derived for which the stability of the

different periodic solutions can be demonstrated analytically. The mechanism responsible

for the stabilization of each branches of periodic solutions is called the Eckhaus instability.

Assuming β − 1 = O(ε2) and δ = O(ε2), we have found that two coupled partial differential

equations can be derived from Eqs. (1) and (2). By contrast to the case studied in [19],

these equations cannot be solved analytically. However, their similitude to the Ginzburg-

Landau equation suggests that distinct stable periodic solutions may coexist through the

same Eckhaus scenario. In this paper, we demonstrated both experimentally and numeri-

cally that this coexistence of square-waves with distinct periods is possible. Those regimes

have already been referenced in previous studies of OEOs but not as coexisting solutions.

They were obtained as sequencial jumps when varying either the delay [21, 22] or the low

frequency cutoff [23, 24]. Here, we showed how to obtain these regimes systematically in an

experiment without varying any parameters of the OEO system. A remarkable property of

our OEO is the possibility to compare quantitatively experimental observations and numer-
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ical simulations. It motivates asymptotic studies of the OEO equations based on the large

delay limit [28].

We believe that this multi-rhythmicity of square-waves resulting from nearby Hopf bi-

furcations is generic to a large class of delay systems exhibiting a large delay. Recently, we

studied a semiconductor laser subject to polarization-rotated feedback [29] and found this

coexistence of harmonic periodic regimes both experimentally and numerically. The laser

rate equations are completely different from the dynamical equations for an OEO and are

mathematically more complex to analyze. The common property is the presence of nearby

Hopf bifurcation points leading to square-waves with periods that are close to 2τD/ (2n + 1),

where n = 0, 1, 2, ....
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[6] W. Just, A. Pelster, M. Schanz, and E. Schöll, Philosophical Transactions of the Royal Society

A: Mathematical, Physical and Engineering Sciences 368, 303 (2010).

12



[7] T. Kalmár-Nagy, N. Olgac, and G. Stépán, Journal of Vibration and Control 16, 941 (2010),

http://jvc.sagepub.com/cgi/reprint/16/7-8/941.

[8] M. Lakshmanan and D. Senthilkumar, Dynamics of nonlinear time-delay systems (Springer,

New York, 2011).

[9] H. Smith, An introduction to delay differential equations with applications to the life sciences

(Springer, New York, 2011).
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