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A new stability criterion for solitons of the driven nonlinear Schrödinger equation (NLSE) has
been conjectured. The criterion states that p′(v) < 0 is a sufficient condition for instability, while
p′(v) > 0 is a necessary condition for stability; here v is the soliton velocity and p = P/N , where
P and N are the soliton momentum and norm, respectively. To date the curve p(v) was calculated
approximately by a collective coordinate theory, and the criterion was confirmed by simulations.
The goal of this paper is to calculate p(v) exactly for several classes and cases of the generalized
NLSE: A soliton moving in a real potential, in particular a time dependent ramp potential and
a time dependent confining quadratic potential, where the nonlinearity in the NLSE also has a
time dependent coefficient. Moreover, we investigate a logarithmic and a cubic NLSE with a time
independent quadratic potential well. In the latter case there is a bisoliton solution which consists of
two solitons with asymmetric shapes, forming a bound state in which the shapes and the separation
distance oscillate. Finally, we consider a cubic NLSE with parametric driving. In all cases the p(v)
curve is calculated either analytically or numerically, and the stability criterion is confirmed.
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I. INTRODUCTION

The stability criteria for the homogeneous (translationally invariant) nonlinear Schrödinger equation (NLSE) in
1 + 1 dimension that are available in the literature are restricted to (a) bright solitons, i.e., solutions decaying to
zero at the spatial infinities, with time dependencies of the form eiΛt (and those reducible to this form by a Galileian
transformation); and (b) traveling dark solitons (solutions approaching nonzero constant values as x → ±∞). The
criteria are insensitive to the particular form of the nonlinearity as long as it is conservative and U(1) invariant; i.e.,
as long as the NLSE does not include any driving or damping terms.
In the case of the bright solitons of the form u(x, t) = us(x)e

iΛt, the Vakhitov-Kolokolov criterion states that if
the corresponding energy Hessian has only one negative eigenvalue, then the soliton is stable if the variation of the
norm dN/dΛ > 0 and unstable otherwise [1–3]. Here N =

∫

|u|2dx is denoted as norm, or as the number of particles
contained in the soliton.
There is a similar criterion [4–7] for dark solitons of the form u(x, t) = us(x−vt), with |us|2 → ρ0 as x→ ±∞. The

dark soliton traveling at the constant velocity v is stable if dP/dv < 0, and unstable otherwise; P is a renormalized field
momentum. A rigorous proof of the stability criterion was given by Lin [8]. A similar stability criterion, which also
uses a renormalized momentum, was established in Ref. [9] for dark and bright solitons of the undriven cubic-quintic
NLSE.
Some parts of the stability analysis of the traveling dark solitons [7] can be carried over to the case of traveling bright

solitons of the NLSE with a driving term. Namely, a linear stability analysis shows [10] that a pair of eigenvalues
crosses from the imaginary to the real axis at the value v0 where P ′(v) = dP/dv = 0. The sign of P ′(v) required for
stability depends on the type of the soliton; some classes require P ′ < 0, whereas other classes are stable when P ′ > 0.
Each point of the curve P (v) represents a soliton traveling at a particular constant velocity v; therefore the curve is a
characteristic of the whole family of solitons. The values of v0 where P ′ = 0 break the family into parts with different
stability properties. The disadvantage of this stability criterion is that one always has to solve numerically a linear
eigenvalue problem before a prediction about the stability of solitons of a particular type of NLSE can be made.
In recent years a very different type of stability criterion was conjectured by us and confirmed by numerical

simulations [11, 12]. For the NLSE

iut + uxx + 2|u|2u+ δu = R, (1)

with a spatiotemporal external driving of the form

R = re−iK(t)x, (2)

a collective coordinate (CC) theory was developed. This theory uses the 1−soliton solution of the unperturbed NLSE
(Eq. (1) with R ≡ 0) in order to make an ansatz for u(x, t) with four collective coordinates: soliton position q(t),
amplitude β(t), phase φ(t) and normalized momentum p(t) = P (t)/N(t). The momentum P (t) of the field u(x, t) is
identical to the momentum conjugate to the soliton position q(t). In this approach the Lagrangian of the driven NLS
Eq. (1) is a function of the collective coordinates and their time derivatives. The Lagrange equations form a set of
coupled nonlinear ordinary differential equations (CC equations) which can be solved analytically or numerically (see
below). The solutions for p(t) and the soliton velocity v(t) = q̇(t) form a parametric representation of the so-called
”stability curve” p(v) which is obtained by elimination of the time t. This means that each solution of the CC
equations has its own, individual p(v) curve, the whole of which is traced in time.
The conjectured criterion [11, 12] states that

dp/dv < 0 (3)

is a sufficient condition for instability of the soliton; and

dp/dv > 0 (4)

is a necessary condition for stability. Thus the slope of the curve p(v) predicts whether the corresponding soliton is
stable or not.
Note that this is quite different from the above criterion [10] where the curve P (v) represents a family of solitons

where each soliton travels at a particular constant velocity. Thus this criterion cannot be applied to solitons with
time dependent velocity. Also note that the renormalized momentum that is used in Refs. [7–10] differs conceptually
from the normalized momentum p(t) = P (t)/N(t) which is used in the conjectured criterion Eqs. (3) and (4).
The conjectured criterion was empirically confirmed by numerical simulations for the NLS Eq. (1) in the following

cases:
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1. Time-independent, spatially periodic driving of the form r exp(−iKx); here the soliton displays periodic oscil-
lations of the velocity, momentum, amplitude and phase. Although the driving force has zero spatial average,
the soliton’s net motion is unidirectional. The initial conditions (IC) determine whether the soliton is stable or
not [11].

2. Spatiotemporal driving of the form R = r exp[−iK(t)x] with harmonic K(t). In this case the solutions of the CC
equations exhibit oscillations with three very different frequencies [12]: an intrinsic frequency ωi, the frequency
ω of the harmonic function K(t), and a very low frequency ωl. Stable solitons are predicted and confirmed
by simulations only when the intrinsic oscillations are suppressed by choosing IC with β0 =

√
−δ. When the

damping term −iαu(x, t) with α > 0 is included in the r.h.s. of the NLS Eq. (1), the CC dynamics simplifies:
Both the ωi and ωl oscillations are damped out after a transient time 1/α. After this transient all CC oscillations
become locked to the driving frequency ω. The stability curve p(v) does not have any sections with a negative
slope, and the stability of the soliton is indeed confirmed by simulations [12].

3. Driving of the same form as in case 2, but with a biharmonic force [12]. Including the same damping term as in
case 2, a soliton ratchet can be obtained. However, in order to obtain stable solitons the damping parameter α
must be in a certain range and special IC must be chosen, which yield a straight stability curve with a positive
slope. The soliton stability is confirmed by simulations for the NLSE [12].

4. Instead of the cubic NLS Eq. (1), an NLSE with the nonlinearity g|u|2κu was investigated [13], with positive
coupling constant g, arbitrary positive nonlinearity exponent κ, and the same driving as in case 1. For the
unperturbed case (R ≡ 0) there exist exact 1-soliton solutions [13] which were used as the ansatz for a CC
theory. The resulting CC equations were solved analytically in the cases of stationary solutions and small
oscillations about them. Otherwise the equations were solved numerically for the case κ = 1/2. The solutions
describe oscillating solitons and the criterion Eq. (3) makes predictions for which IC unstable solitons are
expected, which is confirmed by simulations [13].

5. In addition to the non-parametric (external) drivings in the cases 1-4, the case of parametric driving has also
been investigated, choosing R = re2iKxu∗(x, t) with time independent K [14]. In this case the four CC equations
can be reduced to two equations, and the stability curve can be obtained analytically. The stability or instability
of the solitons, depending on the IC, is confirmed by simulations.

In the above five cases the stability curve was computed or calculated by using the parametric representation p(t),
v(t) of the curve. Here p(t) and v(t) were obtained from the solutions of the CC equations for each of the cases.
The CC theories naturally are approximations because they have only a few degrees of freedom, whereas the NLSE

are PDE; which have infinitely many degrees of freedom. The main goal of this paper is to calculate exactly the
stability curve, without using collective variables.
In Section II we consider a generalized NLSE (GNLSE) with arbitrary nonlinearity G(|u|) and arbitrary driving

R[u(x, t);x, t] and derive an expression for p(t) which contains two integrals which cannot be evaluated in a general
way. The first integral vanishes in most cases, namely when the soliton shape is symmetric. The second integral
contains the driving R. In Sections III and IV we investigate several classes of GNLSE for which the above integrals
can be calculated. In particular we show that the second integral vanishes when the soliton moves in a real potential
V (x), i.e. R = V (x)u(x, t).
In the case of a cubic NLSE with the ramp potential V (x) = 2αx, an exact soliton was obtained by a direct method

[15]. We generalize this for the nonlinearity G = |u|2κ and the time dependent ramp potential V (x, t) = f(t)(2αx−δ).
The stability curve is a straight line with positive slope, so the stability criterion (4) is fulfilled (Section III).
In Section III we also consider a GNLSE with a time dependent confining quadratic potential V (x, t) = k(t)x2,

where the nonlinearity has the form g(t)|u|2u. When a certain integrability condition holds [16, 17], an exact 1-soliton
solution can be obtained which allows the exact calculation of the stability curve, which is a straight line with positive
slope. Thus, the criterion Eq. (4) is fulfilled.
The special case k(t) = g(t) ≡ 1 is identical with the cubic NLSE with a time independent confining quadratic

potential. However, here the integrability condition of Refs. [16, 17] is not fulfilled; thus the self-similar transformation
method [17] cannot be applied. To our knowledge an exact, analytical 1−soliton solution is not known in the literature.
However, such a solution was obtained for the logarithmic NLSE [18]. Here intrinsic anharmonic oscillations of the
soliton are coupled to the harmonic oscillations of the soliton position. For this solution we calculate the stability
curve and find that the criterion (4) is again fulfilled (Section III).
The stability criteria in Eqs. (3) and (4) were conjectured and confirmed for single solitons with a symmetric shape

[11, 12]. In Section IV we test whether the criteria also hold for bisolitons in a cubic NLSE with a parabolic potential
well. Here two solitons with asymmetric shapes form a bound state in which their shapes and their separation
distance oscillate. We observe this in numerical simulations, using an IC obtained by modifying a result for the case



4

of a parabolic potential barrier [19]: There two asymmetric lumps move away from each other, become smaller and
vanish eventually.
Finally, in order to have examples for stability curves with negative slope, we take the parametric driving R =

re−2iKxu∗(x, t) (Section V). We numerically integrate the NLS Eq. (5) with G(|u|) = |u|2 and obtain u(x, t). This
is used to compute the normalized momentum p(t) = P (t)/N(t), the soliton position q(t) = N1(t)/N(t), where N1 is
the first moment of the norm, and the velocity q̇(t) ≡ v(t). Then the time is eliminated to give the stability curve
p(v). Depending on the IC, the soliton can be stable or unstable.

II. SOLITONS WITH VANISHING BOUNDARY CONDITIONS

We consider the generalized NLSE

iut +
1

2
γuxx + 2G(|u|)u = R[u(x, t);x, t], (5)

with a real positive parameter γ and a real function G and assume that an exact 1-soliton solution exists, which is
represented by

u(x, t) = u(s)(x− q(t), t), (6)

where q(t) is the soliton position. The explicit time dependence means that the soliton shape may change during the
time evolution (in the cases 1-5 in the Introduction the shape changes periodically).
We multiply the NLS Eq. (5) by u∗ and the complex conjugate NLSE by u, subtract the two equations and obtain

∂ρ

∂t
+
∂j

∂x
= i(R∗u− c.c.), (7)

with the norm density

ρ(x, t) = |u|2, (8)

and the momentum current density

j(x, t) =
i

2
(uu∗x − c.c.) . (9)

We multiply Eq. (7) by x, integrate over all x, and obtain

dN1

dt
= γP +

∫ +∞

−∞

dx ix(R∗u− c.c.). (10)

Here the integrated term xj|+∞

−∞
vanishes when we insert the soliton solution, because we assume that u(s) or u

(s)
x

vanishes stronger than 1/x for x→ ±∞.

N1(t) =

∫ +∞

−∞

dxx|u(x, t)|2, (11)

is the first moment of the norm N(t) =
∫ +∞

−∞
dx |u(x, t)|2 and

P (t) =

∫ +∞

−∞

dx j(x, t) (12)

is the field momentum.
We now insert the soliton solution into N(t) and N1(t), and change variables by x− q(t) = y and denote

u(s)(x− q(t), t) = ũ(y, t). (13)

We calculate

N(t) =

∫ +∞

−∞

dy|ũ|2 = Ñ(t), (14)
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N1(t) =

∫ +∞

−∞

dy y |ũ|2 + qN = Ñ1 + qN. (15)

Ñ1 vanishes if the soliton shape |ũ|2 is symmetric, this is the case for the five types of NLSE presented in the

Introduction. However, we keep Ñ1 because we will also consider the case of an asymmetric soliton. Eq. (10) can be
written as

P = P̃ =
1

γ
q̇N +

1

γ
qṄ +

1

γ
˙̃N1 −

i

γ

∫ +∞

−∞

dy(y + q)(R̃∗ũ− c.c.), (16)

with R̃ = R[ũ(y, t); y + q, t]. The second term on the r.h.s. of Eq. (16) and the second part of the integral cancel,
because the integration of Eq. (7) yields

Ṅ = i

∫ +∞

−∞

dx(R∗u− c.c.) = i

∫ +∞

−∞

dy(R̃∗ũ− c.c.). (17)

Finally, we divide Eq. (16) by N and obtain for the normalized momentum p = P/N

p(t) =
1

γ
q̇ +

1

γ

˙̃N1(t)

N(t)
+

1

γ
F (t), (18)

with

F (t) = − i

N

∫ +∞

−∞

dy y(R̃∗ũ− c.c.). (19)

In order to obtain the stability curve p(v), see the Introduction, it is necessary to eliminate the time from the
parametric representation p(t), v(t) = q̇ of the curve. I.e., the inverse function t(q̇) must be inserted in F (t). Since
the integral Eq. (19) cannot be performed for arbitrary R, in the following we choose R such that this integral can
be evaluated.

III. SYMMETRIC SOLITON IN A POTENTIAL

We consider a soliton which moves in a real potential V (x, t) which may also depend on time. This means that

R = V (x, t)u(x, t) and in Eq. (19) R̃∗ũ − c.c. = Ṽ (y, t)|ũ|2 − c.c. = 0, i.e. F (t) vanishes. If the soliton profile is

symmetric, i.e. ũ(y, t) = ũ(−y, t), Ñ1(t) in Eq. (15) also vanishes and Eq. (18) yields the very simple result

p(t) =
1

γ
q̇(t). (20)

The stability curve p(v) = 1
γ v is a straight line with slope p′(v) = 1

γ > 0 and the necessary condition for stability, Eq.

(4), is fulfilled.
In order to confirm this general result, we consider several classes and examples of GNLSE. In all cases p(t) and

q̇(t) can be calculated exactly.
The first class consists of the GNLSE (5) with the nonlinearity G = |u(x, t)|2κ with κ > 0 and a linear potential

(ramp potential), i.e. R = V (x, t)u(x, t) = f(t)(2αx − δ)u(x, t) with the real parameters δ and α. Compared to Ref.
[15] we have included an arbitrary real function f(t); moreover Ref. [15] only considered the case κ = 1.
Using the ansatz

u(x, t) = A(x, t)eiϕ(x,t), (21)

with real A and ϕ, we obtain

∂

∂t
A2 +

∂

∂x
(γA2ϕx) = 0, (22)

(−ϕt −
γ

2
ϕ2
x + 2|A|2κ)A+

γ

2
Axx = f(t)(δ − 2αx)A. (23)
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We generalize the ansatz of Ref. [15] by assuming

A(x, t) = Ãsechκ̃{β[x− q(t)]}, (24)

ϕ(x, t) = p(t)[x− q(t)] + φ(t), (25)

where β, Ã, and κ̃ are real constants. Inserting Eqs. (24)-(25) in Eq. (22) we obtain q̇ = γp(t), for all κ and

independent of f(t). This means that the stability curve p(v) = 1
γ v is always a straight line with positive slope.

Inserting Eqs. (24)-(25) in Eq. (23) we obtain a complicated ODE which simplifies considerably for κ̃ = 1/κ and

Ã =

[

γ

2

β2(κ+ 1)

2κ2

]1/(2κ)

. (26)

The ODE is then solved by

p(t) = p0 − 2α

∫ t

0

f(τ)dτ, (27)

q(t) = q0 + γ

∫ t

0

p(τ)dτ, (28)

φ(t) = φ0 +

∫ t

0

[

γ

2
p2 +

γ

2

β2

κ2
+ (δ − 2αq)f(τ)

]

dτ. (29)

In the special case f(t) ≡ 1 we find

p(t) = p0 − 2αt, (30)

q(t) = q0 + γp0t− γαt2, (31)

φ(t) = φ0 +

(

δ − 2αq0 +
γ

2
p20 +

γ

2

β2

κ2

)

t− 2αγp0t
2 +

4

3
α2γt3. (32)

For κ = 1 this agrees with the 1−soliton solution of Ref. [15], where the N−soliton solution was obtained by using
the Inverse Scattering Theory (IST).
The second class of GNLSE contains a quadratic potential, multiplied by a function k(t), and a second function

g(t) > 0 multiplying a cubic nonlinearity [17]:

iut +
1

2
uxx + g(t)|u|2u = k(t)x2u. (33)

For simplicity we have set γ = 1. k(t) and g(t) are not arbitrary, because Eq. (33) can be converted by a modified
Lens-type transformation, or self-similar transformation [20–22], to the standard NLSE

i
∂Φ

∂T
+

1

2

∂2Φ

∂X2
+ |Φ|2Φ(X,T ) = 0, (34)

if an integrability condition holds [17]

gg̈ − 2ġ2 − 2kg2 = 0. (35)

The same condition was obtained by IST in Ref. [16].
Solutions of Eq. (33) can be obtained from the well-known solutions of the standard NLSE by the transformation

u(x, t) =
√

g(t)Φ(X,T )e−
i
2

ġ

g
x2

, (36)

with

X(x, t) = g(t)x, T =

∫ t

0

g2(τ)dτ. (37)

The 1−soliton solution of Eq. (34) is

Φ(X,T ) = Assech[As(X −X0 − ksT )]e
i[ksX+(A2

s−k
2

s)
T
2
+φ0], (38)
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where As, ks, X0 and φ0 are arbitrary real constants, and in the following we set X0 = φ0 = 0.
The 1−soliton solution of Eq. (33) then is

u(x, t) = As
√

g(t)sech{As(X(x, t)− ksT (t))}eiψ, (39)

with

ψ(x, t) = ksX(x, t) +
1

2
(A2

s − k2s)T (t)−
1

2

ġ

g
x2. (40)

The soliton has the amplitude As
√
g and width 1/(Asg), therefore the norm

N =

∫ +∞

−∞

dx|u|2 = 2As, (41)

is time independent. The soliton profile is symmetric with respect to the soliton position q(t), which is defined as the
position of the maximum of |u|2. This position is obtained from X(q, t) = ksT (t), which yields q(t) = ksT (t)/g(t)
using Eq. (37).
For the stability curve we need the velocity q̇ = ks(g−T ġ/g2) and the momentum. The momentum current density

Eq. (9) is obtained as

j(x, t) = A2
sg(t)sech

2(y)(ksg − xġ/g), (42)

with y = As(gx− ksT ). The momentum Eq. (12) is P = 2Asks(g−T ġ/g2) = 2Asq̇. Using Eq. (41) we finally obtain
the normalized momentum p(t) = P (t)/N = q̇. The stability curve p(v) = v is a straight line with slope 1. Thus we
have shown that the necessary stability condition dp/dv > 0 is fulfilled for the above class of GNLSE with arbitrary
functions k(t) and g(t), provided that they fulfill the integrability condition Eq. (35).
However, this condition is not fulfilled for the simplest case k(t) ≡ 1 and g(t) ≡ 1. Here to our knowledge, an exact,

analytical 1−soliton solution is not known in the literature. Instead of the cubic nonlinearity we therefore consider the
logarithmic NLS Eq. (5) with G = 1

2λ
2 ln |u|, γ = 1, and R = V (x)u(x, t), where V = 1

2ω
2x2 is a quadratic potential

well [18]. Writing u(x, t) as in Eq. (21) the soliton envelope is a Gaussian,

A(x, t) =
1

π1/4σ1/2
exp

[

− (x− q)2

2σ2

]

, (43)

where the soliton position q(t) performs harmonic oscillations with frequency ω. The phase of the soliton is

ϕ(x, t) = xq̇ +
σ̇

σ

(

1

2
x2 − xq

)

+B(t), (44)

where B(t) is an integration constant. The soliton width σ(t) fulfils the nonlinear oscillator equation

σ̈ + ω2σ − 1

σ3
+
λ2

σ
= 0. (45)

We remark that in Ref. [18] there is a factor 2 at the term σ−3 and a factor σ̇ multiplying the whole l.h.s. of Eq.
(45). Due to the factor σ̇ solutions with arbitrary constant width would be admitted. However, this is not confirmed
by our simulations which confirm Eq. (45) which has only one solution with constant width

σ̄2 =
1

2ω2

(

√

λ4 + 4ω2 − λ2
)

. (46)

All other solutions are anharmonic oscillations around σ̄.
For small amplitude the oscillations are harmonic with frequency

ν2 = ω2 +
3

σ̄4
− λ2

σ̄2
. (47)

The appearance of ω2 in Eqs. (45)-(47) shows that the intrinsic oscillations of the width are coupled to the harmonic
oscillations of the soliton in the quadratic well.
For the discussion of Eq. (47) we distinguish two regimes:



8

• For ω ≪ λ2/2 the potential is weak, compared to the nonlinearity. Here the average soliton width σ̄ is much
smaller than the characteristic length l = 1/ω of the potential. The frequency

ν2 = 2λ4
(

1 +
ω2

2λ4

)

, (48)

shows that the intrinsic oscillations are only weakly coupled to the translational motion.

For ω = 0.05 and λ = 1 we have ν = 1.415 which agrees very well with the simulation result ν = 1.408, see Fig.
1 left panels. This rules out the above factor 2 at the term σ−3 in Ref. [18].

• For ω ≫ λ2/2 we have

ν2 = 4ω2

(

1 +
λ2

2ω

)

. (49)

Here σ̄ = O(l) and ν ≈ 2ω, which means that the intrinsic oscillations are strongly coupled to the translational
motion. For ω = 5 and λ = 1, ν = 10.49 which agrees well with 10.53, see Fig. 1 (right panels).

Finally we calculate the stability curve. The momentum current density Eq. (9) results in

j(x, t) =
1√
πσ2

exp[−(x− q)2/σ2][σq̇ + (x− q)σ̇]. (50)

The integration over x yields P (t) = q̇ and the same for p(t) = P (t)/N , because N = 1. This means that the necessary
condition for stability is fulfilled.

IV. ASYMMETRIC SOLITONS

In the cases 1-5 in the Introduction, and in all the cases of GNLSE in Section III, the soliton profile is always

symmetric with respect to the center of mass. If the profile is not symmetric, the term with ˙̃N1(t) in Eq. (18) does
not vanish and therefore the stability curve p(v) cannot be a straight line and the slope of the curve could be negative
somewhere.
A solution with two asymmetric lumps was obtained by an IST by Balakrishnan [19] who investigated the GNLSE

iut +
1

2
uxx + 2|u|2u = 2V (x)u, (51)

with the quadratic potential

V (x) =
1

4
µλx2 + µλ0x+ µ0, (52)

with arbitrary real constants λ, µ; λ0, µ0. In Ref. [19] only the case of a parabolic potential barrier (µλ < 0, λ0 = 0,
µ0 = 0) was explicitly considered and resulted in the solution

u(x, t) =

√

2c∗

c
η(t)x sech

[

λη(t)x2 + ln
2η(t)

|c|

]

e−iλξ(t)x
2

. (53)

Here ξ(t) and η(t) are the real and imaginary parts of the complex time dependent eigenvalue in the IST. u(x, t) in
Eq. (53) is antisymmetric in x, the envelope comprising two lumps at the positions q(t) and −q(t) on the positive and
negative x-axis, respectively. The two lumps move away from each other, become smaller and smaller and eventually
vanish.
We consider the case of a parabolic potential well (µλ > 0, λ0 = µ0 = 0) and take u(x, 0) with ξ(0) = 0, η(0) = 1,

and c = 1 as IC for a simulation, because Eq. (53) formally also holds for µλ > 0. Fig. 2 shows a bisoliton, a bound
state of two solitons. Their amplitudes, widths and separation distance oscillate, while the norm and the energy are
conserved.
Although our stability criteria Eqs. (3)-(4) were conjectured and confirmed only for single solitons, we can test

whether the criteria also hold for the bisoliton in Fig. 2. We must treat the solitons separately, which means that their
positions q(t) = N1(t)/N and momenta P (t) are defined by the integrals Eqs. (11) and (12) over [0,∞] for the right
soliton and [−∞, 0] for the left soliton, respectively. Although the oscillations of P (t) and q(t) are weakly anharmonic,
the stability curve p(v) is practically a straight line (Fig. 3). I.e., the curvature is not visible because the asymmetry
of each of the solitons is small.
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V. PARAMETRICALLY DRIVEN SOLITONS OF THE CUBIC NLSE

In the Introduction we have reported four cases of NLSE with non-parametric (external) driving. In all these cases
the driving term R = a exp(−iKx) on the r.h.s. of the NLSE Eq. (1) does not vanish at infinity, thus the soliton
solutions do not fulfill the vanishing boundary conditions which we have assumed in Section II. Therefore Eq. (18)
for p(t) does not hold.
In the fifth case in the Introduction the soliton is driven parametrically, i.e. the driving term on the r.h.s. of Eq.

(1) is chosen as

R = r exp(2iKx)u∗(x, t), (54)

with constant K. In this case the soliton vanishes at the infinities and the vanishing boundary conditions of Section
II are fulfilled and therefore Eq. (18) holds.
Note that the appearance of the complex conjugate field u∗ in Eq. (54) is decisive: without the asterisk we would

have R = V (x)u(x, t) and the soliton would move in the potential V (x). This case has already been considered at the
beginning of Section III.
For the parametrically driven soliton of the cubic NLSE a collective coordinate (CC) theory has been developed

[14] in which the p(v) curve is calculated analytically. Depending on the IC the soliton is predicted to be stable or
unstable, and this is confirmed by simulations.
However, the CC theory is only an approximation, therefore our goal now is to calculate the p(v) curve without

using the collective variables. As an exact analytical solution for the parametrically driven soliton is not known, we
work with the numerical solutions obtained by simulations for the NLSE Eq. (1) with the driving term Eq. (54).
As IC we take the exact 1−soliton solution of the unperturbed cubic NLSE in the representation of Ref. [12]

u(x, t) = 2iηsech[2η(x− q)]ei[p(x−q)−Φ]. (55)

In order to obtain the p(v) curve we have taken the following steps

1. For the integration of NLSE we use a 4th order Runge-Kutta method and vanishing boundary conditions. The
parameters related with the discretization of the system are x ∈ [−100, 100], ∆x = 0.05; ∆t = 10−4 (such that
the condition ∆t < (1/2)(∆x)2 is fulfilled).

2. From the simulation results we compute the momentum P , the norm N(t), and the first moment of the norm
N1(t). The soliton position is q(t) = N1/N and the normalized momentum p = P/N .

3. The soliton velocity, v = q̇, is obtained by a numerical differentiation using the 5 point Lanczos method and a
running average.

4. We observe that the functions p(t) and v(t) are nearly periodic. We compute their spectra by using the Discrete
Fourier Transform (DFT). The spectra show essentially one peak at ω1 or two peaks at ω1 and ω2 = 2ω1.

5. We fit the data from p(t) and v(t) in t ∈ [0, 2T ], T = 2π/ω, with the function A0 + A1 cos(ω1t + A2) +
A3 cos(ω2t +A4); i.e. 5 fitting parameters for each of the functions. For the fitted functions used in Fig. 4 we
obtain correlation coefficients between 0.97 and 0.998.

6. Using the fitting functions, we eliminate the time in t ∈ [0, 2T ] and plot p(v).

The upper panels in Fig. 4 demonstrate the effect of the fitting procedure by showing p(v) curves with and without
fitting. For the lower left panel no fitting was used because here the functions p(t) and v(t) deviate too much from
periodicity.
The p(v) curves differ qualitatively, depending on the initial soliton amplitude. For small amplitude η0 = 0.25 the

slope p′(v) is always negative (upper panels of Fig. 4), predicting instability. In our simulations the average of the
oscillating amplitude of the soliton decreases very slowly and the soliton vanishes asymptotically.
For intermediate values of the initial amplitude (e.g. η0 = 0.35) the situation is completely different: there the

p(v) curve has two branches, one with positive and one with negative slope, in between the slope has a singularity
(lower left panel of Fig. 4). The lifetime of the soliton is short, suggesting that the soliton is destroyed by the changes
between positive and negative slope.
For larger initial amplitude (e.g., η0 = 0.48) the p(v) curve is a straight line with positive slope (lower right panel

of Fig. 4). This predicts stability of the soliton which is confirmed by the simulations.
Finally we want to discuss how Eq. (18) can yield a negative slope for the p(v) curve. First of all, the second

term in Eq.(18) vanishes because the profile |u|2 of the soliton solution Eq. (55) is symmetric. The third term F (t)
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Figure 4. Stability curves for parametrically driven solitons. IC: Eq. (55) with η0 = 0.25 (upper left and right panels without
and with the use of fitting functions, respectively), η0 = 0.35 (lower left panel), η0 = 0.48 (lower right panel). Other ICs:
q0 = 0, Φ0 = π/2, p0 = −K/4. Parameters: r = 0.05, K = −0.1, δ = −1.

vanishes if the soliton moves in a real potential (Section III). However, for the parametric drive, Eq. (54), F (t) does
not vanish because of the appearance of the complex conjugate field u∗(x, t). Depending on the values of the ICs,
F [t(q̇)] can be stronger than the first term q̇ in Eq.(18) and then p[q̇] can have a negative slope.

VI. SUMMARY

In recent years a new stability criterion for the solitons of the driven NLSE was conjectured by us. A Collective
Coordinate (CC) theory was used to calculate the so-called ”stability curve” p(v). The slope of this curve allowed
making predictions about the soliton stability which were confirmed by simulations.

The goal of this paper is to calculate the stability curve without using a CC theory because these theories are
approximate. We have considered a generalized NLSE (GNLSE) with arbitrary nonlinearity and arbitrary driving
and have derived an expression for p(t) which contains two integrals which cannot generally be evaluated. Therefore
we have investigated several classes of GNLSE for which these integrals can be calculated exactly: We have considered
a soliton moving in a real potential. In particular we have calculated the p(v) curve for the cases of a time dependent
ramp potential and a time dependent confining quadratic potential, where the nonlinearity has a time dependent
coefficient. We also calculated the p(v) curve for a logarithmic NLSE with a time independent parabolic potential
well. Here intrinsic anharmonic oscillations of the soliton width are coupled to the harmonic oscillations of the soliton
position. For the cubic NLSE with a parabolic potential well there is a bisoliton, which consists of two solitons with
asymmetric shapes. The solitons form a bound state in which the shapes and the separation distance oscillate. The
p(v) curve predicts stability which is confirmed by numerical simulations. Finally, we have performed simulations
for the cubic NLSE with parametric driving. The p(v) curve is obtained numerically and depending on the initial
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conditions stability or instability is predicted and confirmed.
In the above GNLSE the solitons vanish at the infinities. In the future we plan to calculate the p(v) curve for

the case of non-vanishing boundary conditions. Moreover, we plan to consider the case of a symmetric soliton in a
complex potential with arbitrary real part and even imaginary part.
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