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Human awareness plays an important role in the spread of infectious diseases and the control
of propagation patterns. The dynamic process with human awareness is called awareness cascade,
during which individuals exhibit herd-like behavior because they are making decisions based on
the actions of other individuals (Journal of Complex Networks (2013) 1, 3-24). In this paper, to
investigate the epidemic spreading with awareness cascade, we propose a local awareness controlled
contagion spreading model on multiplex networks. By theoretical analysis using a microscopic
Markov chain approach and numerical simulations, we find the emergence of an abrupt transition
of epidemic threshold βc with the local awareness ratio α approximating 0.5, which induces two-
stage effects on epidemic threshold and the final epidemic size. These findings indicate that the
increase of α can accelerate the outbreak of epidemics. Furthermore, a simple 1D lattice model
is investigated to illustrate the two-stage like sharp transition at αc ≈ 0.5. The results can give
us a better understanding of why some epidemics can not break out in reality and also provide a
potential access to suppressing and controlling the awareness cascading systems.

PACS numbers: 89.65.-s, 89.75.Fb, 89.75.Hc

I. INTRODUCTION

Epidemic spreading is an important phenomenon
which has been extensively studied [1–10] in the field
of complex network. There have been various mod-
els which can be used to shed light on these dynamic
processes, including the classical susceptible-infected-
susceptible model(SIS) [11], susceptible-infected-recovery
model(SIR) [12] and so on [13, 14]. These models have
focused on various factors which can affect epidemic
spreading, e.g., the frequency of contacts between peo-
ple [15, 16], duration of the disease [17, 18], immunity of
particular individuals [19], etc.
Very recently, there has been growing interest in in-

vestigating the interplay between human response and
epidemic spreading [14, 20–23], especially the awareness,
or risk perception which can be considered as a crucial
feature in the reduction of susceptibility when individu-
als become aware of the epidemics. Funk et al. [24] found
that in a well-mixed population, awareness of epidemics
can lead to a lower size of the outbreak, but can not affect
the epidemic threshold. Moreover, Wu et al. [25] classi-
fied the awareness into three categories, the so called lo-
cal awareness, global awareness and contact awareness.
They show that global awareness cannot decrease the
likelihood of an epidemic outbreak while the other two
types of awareness can decrease it.
Furthermore, as a natural way to describe the interre-

lated different interactions among people, multiplex net-
work [27–32] has been gaining more and more attentions
in exploring epidemic spreading with respect to aware-
ness [23, 26]. Two interdependent networks can be used
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for modeling the co-evolution of disease and the aware-
ness dynamic process. By considering the dynamic inter-
play between awareness and epidemic spreading in mul-
tiplex networks, Granell et al. [26] discovered the emer-
gence of a metacritical point where the diffusion of aware-
ness is able to control the onset of epidemics. A com-
mon feature of these models mentioned above is that the
dynamic process of the spreading of awareness and epi-
demics is the same.

However, in real cases, the way awareness spreading is
quite different from which epidemics do. For instance,
when one occasionally reads a message about epidemics
on Facebook or other social networks, he may not take
actions, which means he doesn’t become aware of it. But
when the proportion of his friends who have been aware
of the epidemics surpasses a critical point, he may take
measures with high probability, in other words, one can
become aware of the epidemics according to the states
of its friends. This herd-like feature is just like the way
we make decision to accept one idea or reject it in our
daily life [33–35]. Here, we introduce a threshold model
to describe this phenomenon and the threshold in the
transformation process of awareness state is named as
local awareness ratio in our work.

In this paper, we propose a local awareness controlled
contagion spreading(LACS) model on top of multiplex
networks to study the interplay between the spreading of
epidemic and awareness. In the model, we find an inter-
esting phenomenon that epidemic threshold may undergo
an abrupt transition when local awareness ratio is set to
be 0.5. Moreover, the final epidemic size also appears
to display two distinct phases around this critical value.
When local awareness ratio is smaller than 0.5, the epi-
demic threshold is the bigger one and the final epidemic
size is almost the same. Otherwise, the final epidemic size
increases significantly with the increasing of local aware-
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ness ratio but the epidemic threshold is the smaller one.
Analytically, we extend the microscopic Markov chain
approach (MMCA) [26] to derive the epidemic thresh-
old of our model and numerical simulations show that
the MMCA has a high accuracy for the prediction of the
epidemic threshold.
The rest of this paper is organized as follows: In Sec.

II, we describe the LACS model and the dynamic process
on it; in Sec. III, we use MMCA to analyze the epidemic
threshold of our model; in Sec. IV, we present numerical
simulations and compare these with theoretical results.
We also investigate the effects of different local aware-
ness ratios on the spread of epidemics, meanwhile, a 1D
lattice model is proposed to investigate the two-stage ef-
fects; in Sec. V, we conclude the paper and make some
discussions.

II. THE LOCAL AWARENESS CONTROLLED

CONTAGION SPREADING MODEL

Our model is implemented on a multiplex network. To
illustrate it, we construct a two-layer network, see FIG.1.
The first layer represents individual’s awareness of epi-
demics. On this layer, if one individual is aware of epi-
demics, its state is Aware (A), otherwise its state is Un-
aware (U). The second layer corresponds to individual’s
physical states of epidemics, which means if an individual
is infected, its state is Infected (I), else its state is Sus-
ceptible (S). For the sake of simplicity, we assume this
multiplex network is unweighted and undirected. The
interconnection between two layers is responsible for the
coupled dynamic process of the spreading of epidemics
and awareness.
As mentioned above, individuals on the awareness

layer spread the awareness of epidemics while contagion
process takes place on the contagion layer. The evolution
of the awareness dynamic process is defined as follows:
on the one hand, unaware individuals become aware due
to two reasons: the radio between their aware neighbors
and their degrees, number of links connected with them,
reaches the critical value (local awareness ratio α) or un-
aware individuals is already infected. On the other hand,
aware individuals change into the state of unaware in two
ways: the individual is susceptible again or have forgot-
ten the awareness (with a probability δ).
Similar to the classical epidemic model (SIS), on the

contagion layer, a susceptible individual can be infected
by an infectious neighbor with probability β while in-
fected ones can recover to be susceptible with probabil-
ity µ at the same time. If an individual is infected, it is
naturally that this individual becomes aware of the epi-
demic. However, the infectivity β can be reduced by a
factor if one is aware of the epidemic. We use βU and βA

to represent the infection rates without and with aware-
ness, respectively. For the sake of simplicity, here we as-
sume βA = 0, which corresponds to complete immunity
of individuals aware of the epidemic. It is worth noting
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FIG. 1. (Color online) Example of the structure of multiplex
network used in our work. The upper layer corresponds to
the network where the spreading of awareness happens, nodes
on this layer have two kinds of states: unaware and aware.
The other layer represents the epidemic spreading with two
kinds of states, including susceptible and infected. Only three
kinds of states can exist in this multiplex network: unaware
and susceptible, aware and infected, aware and susceptible.
The spreading models of awareness and epidemic are different,
with threshold model and contagion model for the upper and
lower layer, respectively.

that each individual in this multiplex network can only
have three kinds of states: unaware and susceptible (US),
aware and infected (AI), aware and susceptible (AS).

III. THE MMCA METHOD ON THE LACS

MODEL

In this section, to illustrate the use of MMCA
method[36, 37] which is a discrete-time version of the
evolution of epidemics by means of Markov chain, we
introduce the probability tree method. In FIG. 2, we re-
veal the possible states and their transitions in the LACS
model, just as defined in[26]. Here, let aij , bij be the ad-
jacency matrices of the awareness layer and the conta-
gion layer, respectively. Since individual i has to be one
of the three states at time t, we denote the probabili-
ties as pAI

i (t), pAS
i (t), pUS

i (t), respectively. Then on the
awareness layer, we define the probability for unaware in-
dividual i not changing from state U to state A as ri(t);
on the contagion layer, we define the probabilities for in-
dividual i not being infected by any neighbors if i was
aware as qAi (t) , and not being infected by any neighbors
if i was unaware as qUi (t) .
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FIG. 2. Transition probability trees for the states. The states
include AI (aware and infected), US (unaware and suscep-
tible), AS (aware and susceptible). Note that µ represents
transition probability from infected to susceptible, δ repre-
sents transition probability from aware to unaware, qA repre-
sents transition probability for individual not being infected
by neighbors if it is aware, qU represents transition proba-
bility for individual not being infected by neighbors if it is
unaware, r represents probability for individual not changing
from unaware to aware. The coupled dynamic process takes
place consecutive as time goes by.

With respect to the above definitions, we have

ri (t) = H(α−

∑
j ajip

A
j (t)

ki
)

qAi (t) =
∏

(1− bjip
AI
j (t)βA) (1)

qUi (t) =
∏

(1− bjip
AI
j (t)βU )

Note that Eqs.(1) are obtained supposing independence
on the contribution from the neighbors, which is the only
approximation in MMCA[23, 26]. H(x) is a Heaviside
step function, i.e., if x > 0, H(x) = 1, else H(x) = 0.
In other words, ri(t) can only be 0, when the fraction of
its aware neighbors surpasses local awareness ratio α, or
1 if the fraction of its aware neighbors is less than local
awareness ratio α.
Then, the evolution equations of three different states

can be described as follows by using the MMCA
method[26]:

pUS
i (t+ 1) = pAI

i (t)δµ+ pUS
i (t)ri(t)q

U
i (t) + pAS

i δqUi (t)

pAS
i (t+ 1) = pAI

i (t)µ(1 − δ) + pUS
i [1− ri(t)]q

A
i (t)

+ pAS
i (1 − δ)qAi (t)

pAI
i (t+ 1) = pAI

i (t)(1 − µ) + pUS
i (t){[1− ri(t)][1 − qAi (t)]

+ ri(t)[1− qUi (t)]}+ pAS
i (t){δ[1− qUi (t)]

+ (1 − δ)[1− qAi (t)]} (2)

There exists an epidemic threshold βc for the coupled
dynamic process. The epidemic threshold indicates that
for infection strengths β below the epidemic threshold
βc, initial epidemics quickly die out. While for in-
fection strengths β above the epidemic threshold βc,
the epidemics can outbreak in the population. We use
the stationary solution of the system of Eqs.(2) to get

βc by letting t → ∞, which means pAI
i (t+ 1)t→∞ =

pAI
i (t)t→∞ = pAI

i , pAS
i (t+ 1)t→∞ = pAS

i (t)t→∞ = pAS
i ,

pUS
i (t+ 1)t→∞ = pUS

i (t)t→∞ = pUS
i . Near the epidemic

threshold, the probability for nodes being infected can
be assumed as pAI

i = ǫi ≪ 1. Then, the probabilities for
individuals not being infected by neighbors are described
as follows according to the above assumption.

qAi =
∏

(1− bjip
AI
j βA)

≈ (1− βAΣjbjiǫj) (3)

qUi =
∏

(1− bjip
AI
j βU )

≈ (1− βUΣjbjiǫj) (4)

Considering the stationary probabilities of three different
states pUS

i , pAS
i , pAI

i with respect to Eq.(3) and Eq.(4),
we obtain the reduced stationary equations upon omit-
ting higher order items:

pUS
i = pUS

i ri + pAS
i δ (5)

pAS
i = pUS

i (1− ri) + pAS
i (1− δ) (6)

Furthermore, we get the probability for node i being in-
fected ǫi

µǫi = pUS
i ((1− ri)β

AΣjbjiǫj + riβ
UΣjbjiǫj)

+ pAS
i (δβUΣjbjiǫj + (1− δ)βAΣjbjiǫj)

= (pAS
i βA + pUS

i βU )Σjbjiǫj (7)

It’s clear that pAI
i +pAS

i +pUS
i = 1, where pAi = pAI

i +pAS
i .

Noting that pAI
i = ǫi ≪ 1, we get pAI

i ≈ pAi and pUS
i =

1− pAI
i − pAS

i = 1− pAi . So Eqs.(7) can be described as

µǫi = βU (1− pAi )Σjbjiǫj (8)

therefore, Eqs.(8) is reduced to Σj [(1−pAi )bji−
µ
βU tji]ǫj =

0, where tji are the elements of the identify matrix.
As a self-consistent equation, the epidemic threshold

βc reduces to the solution of eigenvalue problem. The
outbreak of epidemic is the minimum value βU satisfying
Eqs.(8). Let Λmax be the maximal eigenvalue of S whose
elements are sji = (1− pAi )bji. Then the critical point is
written as [26]

βU
c =

µ

Λmax

(9)

IV. SIMULATIONS OF THE EPIDEMIC

THRESHOLD

In Sec. III, we analytically obtain the condition for
the outbreak of epidemic. Simulations of this coupled
dynamic process are performed using different networks
in this section to crosscheck our analytical results. In
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the following, see FIG. 3, we show the comparison of
Monte Carlo simulations with our theoretical predictions
of epidemic threshold βU

c .
We consider a two-layer SF network, of which the

topology structures of the two layers are the same. Be-
sides, the initial condition is set to be that 10% of nodes
are infected. Iterate the rules of the coupled dynamic
process with parallel updating until convergence to a
steady state. The process is totally evolved for 1000
time steps. In order to reduce the fluctuation of the per-
cent of nodes to be infected, we make time average that
satisfies ρI = 1

T
Σt=t0+T−1

t=t0
ρI(t) and take T=20 (that is,

t0 = 981).
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FIG. 3. (Color online) The comparison of epidemic thresholds
βU
c using the MMCA approach (blue (upper) line) and Monte

Carlo simulations (red line) as a function of local awareness
ratio α with a fixed value of δ = 0.8. The recovery probability
µ is set to 0.6. The two layers of the multiplex network are
the same SF network generated by the configuration model
with exponent 3. Each layer has 104 nodes and the average
degree 〈k〉 = 6. The Monte Carlo simulations is averaged by
30 realizations.

As can be seen from FIG. 3, we find good agreement
between the MMCA method and simulations in calcu-
lating the epidemic threshold βU

c and the discrepancy
between MMCA and Monte Carlo can also be shown in
our simulations. The reason why the analytic results al-
ways overestimate the Monte Carlo is that we suppose
independence on the contribution from the neighbors in
MMCA[23, 26]. Due to the assumption, the value of ri(t)
in MMCA is somehow smaller than that in Monte Carlo
simulations. Therefore, it is easier for the outbreak of
epidemics in Monte Carlo simulations. Furthermore, we
find that the epidemic threshold has an abrupt transi-
tion when the local awareness ratio α is set to be 0.5.
It is of interest for us that the local awareness ratio α
has two-stage effects on the epidemic threshold βU

c . The
two-stage is divided at a fixed point α = 0.5, with the
first stage occurring in the range of α ∈ [0, 0.5) and the
second stage happens when α belongs to [0.5,1]. In every
stage, the change of α has little effect on the epidemic
threshold. In order to explore if the critical point is re-
lated to the structure of multiplex network or the values

of other parameters, including recovery probability µ and
the probability of forgetting the awareness δ, we perform
large amounts of simulations on different multiplex net-
works with different values of µ and δ.

In the following, we apply our LACS model to the case
of two-layer Erdős-Rényi networks, of which the two lay-
ers are the same Erdős-Rényi networks. In FIG. 4, we ex-
amine the effect of local awareness ratio α on the change
of epidemic threshold βU

c .
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FIG. 4. (Color online)Monte Carlo simulations of two-layer
Erdős-Rényi networks. The size of infected individuals ρI is
shown as a function of infectivity β. In every panel, we plot
this dynamic process on four different local awareness ratio α:
α = 0.2 (circle lower line), α = 0.4 (cross line), α = 0.6 (circle
upper line), α = 0.8 (diamond line). The values of the other
two parameters are: (a) µ = 0.8, δ = 0.3, (b) µ = 0.6, δ = 0.5,
(c) µ = 0.5, δ = 0.6, (d) µ = 0.3, δ = 0.8, respectively. The
Erdős-Rényi network has 104 nodes and the average degree 〈k〉
is 5. All these simulations begin with the initial state where
10% of the nodes are infected and average 10 realizations for
each curve on the same Erdős-Rényi networks.

Similar to SF networks, as can be seen from FIG. 4,
in the case of Erdős-Rényi networks, it is found that the
local awareness ratio also has the two-stage effects on epi-
demic threshold no matter what value δ and µ is. On this
occasion, these simulations confirm that the two-stage
effects appears invariably in our model, irrespectively of
the value of δ and µ and the structure of networks as
well. We have also explored other different structures of
multiplex networks for the sake of completion, and in all
of them, the two-stage effects exist. Besides, we have
compared the UAU-SIS model[26] with LACS model(for
more details, see Supplemental Material). All these sim-
ulations state one conclusion that the coupled dynamic
process induces the appearance of two-stage effects on
epidemic threshold. That is to say, this phenomenon
suggests that the two-stage effects on epidemic thresh-
old is a result of our LACS model with one layer being
a threshold model and the other layer being a contagion
model. In the next section, so as to explore this critical
point, within the framework of LACS model, we use a
1D lattice model to analyze this phenomenon.
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A. Analysis of the critical point on 1D lattice

model

We consider a 1D lattice model in which each node
has two neighbors with a total number of 104 nodes on
each layer, see FIG. 5. As the degree of each node is
2, there exist only three cases of awareness states of its
neighbors. The first case is none of them is aware of the
epidemics, the second case is only one of them is aware of
the epidemics, and the last one is both of them are aware
of the epidemics. When 0 6 α < 0.5, if none of the two
neighbors is aware of the epidemics, the probability of an
unaware node to be aware is 0, otherwise, the probability
is 1; when α > 0.5, if both of the two neighbors are aware
of the epidemics, the probability of an unaware node to
be aware is 1, otherwise, the probability is 0. In the
following, we still use the MMCA method to study the
epidemic threshold of the 1D lattice model. Furthermore,
through the analysis, we illustrate the reason why two-
stage effects on epidemic threshold occur at α = 0.5.
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FIG. 5. Example of LACS model on 1D lattice model. In this
figure, we describe the transitions of one unaware node under
different local awareness ratios: when 0 6 α < 0.5. (1) rep-
resents the two different cases where unaware node becomes
aware.(2) represents the unique case where unaware node re-
mains unaware; when α > 0.5, (1) represents the unique case
where unaware node becomes aware. (2) represents the two
different cases where unaware node remains unaware.

To derive the epidemic threshold of the 1D lattice
model, we recall that the fraction of unaware nodes is PU ,
thus the fraction of aware nodes is PA = 1−PU . Because
of the homogeneity of lattice, we assume that the proba-
bility for one node being aware is PA and the probability
for one node being unaware is PU . According to these def-
initions, let P (j), j = 0, 1, 2 be the probability that one
node has i neighbors, of which the state is aware. There-
fore, we have P (0) = P 2

U , P
(1) = 2PUPA, P

(2) = P 2
A.

Then, we obtain the probability tree of the lattice as
FIG. 6.
Hence, through analyzing the states of the two neigh-

AI

UI AI

US AI

AS

AS US

AS AI US

δ 1-δ

μ 1-μ

1-δ δ

A
q 1

A
q- 1

U
q-

U
q

US

US

1
U
q-

U
q

AI

AS US

AS AI

US

1
A
q-A

q

0 0.5a£ <

AS US

AS AI

US

1
A
q-A

q

US

US

1
U
q-

U
q

AI

0.5a ³

AS

1-μ μ

FIG. 6. Transition probability trees of 1D lattice model. The
probability trees that AI and AS states transform into other
states are the same with SF networks. As for the US state, be-
cause of the existence of critical awareness ratio α = 0.5, there
are two kinds of trees according to different local awareness
ratios. In this figure, red node means that this node is aware
and white means the node is unaware. P (0) is the probability
that the awareness states of two neighbors are unaware, and
P (2) is the probability that the awareness states of two neigh-
bors are aware. The other parameters represent the same
meanings as described in Sec. III

bors of node i, using the MMCA method, we can get
PUS
i (t) and PAS

i (t) which represent the probabilities for
node i being US state or AS state, respectively:

(1)0 < α < 0.5

PUS
i (t+ 1) = PAI

i (t)µδ + PAS
i (t)δqUi + PUS

i (t)P (0)qUi

PAS
i (t+ 1) = PAI

i (t)µ(1− δ) + PAS
i (t)(1 − δ)qAi

+ PUS
i (t)(1 − P (0))qAi (10)

(2)α > 0.5

PUS
i (t+ 1) = PAI

i (t)µδ + PAS
i (t)δqUi + PUS

i (t)(1 − P (2))qUi

PAS
i (t+ 1) = PAI

i (t)µ(1 − δ) + PAS
i (t)(1 − δ)qAi

+ PUS
i (t)P (2)qAi (11)

Among Eqs.(10) and Eqs.(11), PAI
i is the probability

for node i being AI state and other parameters have the
same meanings with our definitions of the LACS model
in Sec.III. We use the same assumption as Eqs.(7) to de-
rive stationary solution of Eqs.(10) and Eqs.(11). Thus,
Eqs.(10) and Eqs.(11) can be described as follows:

(1)0 < α < 0.5

PUS
i = PAS

i δ + PUS
i P (0)

PAS
i = PAS

i (1− δ) + PUS
i (1− P (0)) (12)
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(2)α > 0.5

PUS
i = PAS

i δ + PUS
i (1 − P (2))

PAS
i = PAS

i (1− δ) + PUS
i P (2) (13)

Noting that P (0) = P 2
U , P

(2) = P 2
A and inserting them in

Eqs.(12) and Eqs.(13) we obtain
(1)0 < α < 0.5

PUS
i = PAS

i δ + P 2
UP

US
i ≈ PAS

i δ (14)

Since we have PUS
i + PAS

i + PAI
i = 1 and PAI

i = ǫi ≪ 1
around the epidemic threshold βc, we can approximately
get PUS

i + PAS
i = 1. Therefore, it is clear for us that

when 0 < α < 0.5, PUS
i = 1

1+ 1

δ

.

(2)α > 0.5

PUS
i = PAS

i δ + (1 − P (2))PUS
i ≈ PAS

i δ + PUS
i (15)

which means that when α > 0.5, PAS
i ≈ 0 and then

PUS
i ≈ 1. In FIG. 7, we show our analysis about the final

size of unaware nodes around the epidemic threshold βc.
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δ

= 4
9
if α ∈ [0, 0.5),

otherwise PUS = 1 on the 1D lattice model.

Eqs.(14) and (15) means that when α ∈ [0.5, 1], the

final fraction of unaware nodes PUS = 1
N

∑N
i=1 P

US
i ≈ 1

around the epidemic threshold βc, whereas when α ∈
[0, 0.5), PUS ≈ PASδ ≈

1
1+ 1

δ

. These results lead to the

two-stage effects on the epidemic threshold βU
c for the

reason that the more individuals know the epidemics, the
bigger the epidemic threshold is. Therefore, as a result
of different fractions of unaware individuals around 0.5,
there exists an abrupt transition for the epidemic thresh-
old. That is to say, the awareness cascade on upper layer
leads to the two-stage effects of the epidemic threshold.
As to an epidemic, the epidemic threshold and the fi-

nal epidemic size are two important characteristics to

describe it. From the analysis above , we explore the
two-stage effects of our LACS model on the epidemic
threshold. Hence, in order to have a comprehensive un-
derstanding of the effects of LACS model on epidemics, in
the following section, we study the effect of local aware-
ness ratio on the final epidemic size.

B. The effect of local awareness ratio on the final

epidemic size

In order to explore what effect the local awareness ra-
tio has on the spreading of epidemics, we illustrate the
spreading process in FIG. 8 and FIG. 9. In the two fig-
ures, we plot the stationary fraction of infected individ-
uals ρI as a function of infectivity βU and α using the
SF multiplex networks defined in FIG. 3 with different
values of recovery probability µ and the probability of
forgetting the awareness δ.

FIG. 8. (Color online)The stationary fraction of infected indi-
vidual ρI as a function of infectivity βU and the local aware-
ness ratio α with the same value of δ = 0.4 in every panel. Re-
covery probability µ is set as follows: (a) µ = 0.5 (b) µ = 0.6
(c) µ = 0.7 (d) µ = 0.8 from top left to bottom right. The
four full phase diagrams β−α for the same multiplex network
described in FIG. 3 are obtained by averaging 20 realizations
for each point in the grid 100× 100.

As can be seen from FIG. 8 and FIG. 9, it’s clear that
the effects α has on the spreading of epidemics can be
classified into two categories, of which one is the final epi-
demic size ρI and the other is the epidemic threshold βU

c .
As for the final epidemic size, we find that local awareness
ratio α plays two roles under different recovery probabil-
ity µ and probability of forget the awareness δ. On the
one hand, when α ∈ [0, 0.5), it has little effect on the final
epidemic size; On the other hand, however, if α ∈ [0.5, 1],
it has obvious effect on the final epidemic size, especially
when α becomes larger and larger (also see Supplement
Material). Furthermore, with a smaller δ and bigger µ,
the final size of epidemic becomes smaller and smaller.
It is obvious that the increasing of µ leads to a faster
decreasing of final epidemic size than the decreasing of
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FIG. 9. (Color online)The stationary fraction of infected indi-
vidual ρI as a function of infectivity βU and the local aware-
ness ratio α with the same value of µ = 0.9 in every panel.
The probability of forget the awareness δ is set as follows: (a)
δ = 0.5, (b) δ = 0.6, (c)δ = 0.7, (d) δ = 0.8 from top left
to bottom right. The four full phase diagrams β − α for the
same multiplex network described in FIG. 3 are obtained by
averaging 20 realizations for each point in the grid 100× 100.

δ. This is because that µ is recovery probability which
can directly effect the percentage of infected individu-
als, whereas δ is the probability of forgetting awareness
which effects the percent of infected individuals through
coupled dynamic process. At the same time, in all these
cases, similar to FIG. 3 and FIG. 4, the epidemic thresh-
old βU

c has an abrupt transition at α = 0.5, which has
been discussed above on 1D lattice model.

Here let us go back to our LACS model to explore the
reason of two-stage effects on final epidemic size. As α is
the local awareness ratio, then if α becomes larger, the
probability of unaware individuals to be aware becomes
smaller. This can also lead the probability for individ-
uals being infected become bigger for the reason that
individuals can not take measures if they are unaware of
the disease. But the bigger infectivity probability leads
more individuals become aware, which can in turn pro-
mote the spreading of awareness. The coupled dynamic
process determines the final epidemic size and it is bal-
anced by the two factors’ effects. Owing to the two-stage
effects on the epidemic threshold, the epidemic threshold
is grouped into two situations. When α < 0.5, the effect
of larger α on the promotion of epidemic spreading can be
balanced by the effect of increasing popularity of aware-
ness. However, when α ≥ 0.5, larger α shows a strong
effect on promoting the spreading of epidemic and leads
to larger fraction of infected individuals. Hence, the dy-
namic process of the two layers with different spreading
models helps us understand the difference of final epi-
demic size when α is set to be various values.

V. CONCLUSIONS

In a summary, we have studied the effects of aware-
ness spreading on the outbreak of epidemics in the frame-
work of multiplex networks. Our results show that the
local awareness ratio α has two-stage effects on epidemic
threshold and leads to different final epidemic sizes, re-
gardless of the structure of networks or the values of other
parameters. That is to say, when α is in the range of
[0,0.5), the epidemic threshold is a fixed and larger value,
however, in the range of [0.5,1], the epidemic threshold
is also a fixed but smaller value. As for the final epi-
demic size, it increases as the local awareness ratio α in-
creases. But if α ∈ [0, 0.5), the increasing speed is much
more slower than the speed when α ∈ [0.5, 1]. These
phenomena give us an interesting way to understand the
epidemics in reality for they can somehow explain why
some epidemics can not outbreak or reach the epidemic
threshold. In reality, for some epidemics, if an individual
is easy to take measures even though less than half of its
friends know or are infected by some epidemics, which
means that in our awareness spreading layer the local
awareness ratio α < 0.5. Since on the point the epidemic
threshold is bigger, this leads to the outbreak failure of
epidemics.
Furthermore, our results give us useful suggestions on

the prevention of epidemics through different strategies.
For some serious epidemics, the local awareness ratio α
of an individual locates in [0,0.5) with large probability,
which indicates that they don’t need half of their neigh-
bors to tell them the epidemics. Therefore, as the epi-
demic threshold is the bigger one and decreasing the local
awareness threshold has little effect on the final epidemic
size, what we should do is to try our best to separate and
cure the infected individuals. But for some other epi-
demics, the bigger local awareness ratio α along with the
smaller epidemic threshold sheds light on what measures
we should take to lower the popularity of epidemics. We
should broadcast epidemics through various social net-
works to catch individuals’ attention and then decrease
the local awareness ratio, which can not only make the
final epidemic size become smaller but also increase the
epidemic threshold. Finally, our LACS model can also be
applied to various spreading processes, including rumor
spreading, to have a better understanding of them.
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VII. SUPPLEMENTAL MATERIAL

In this section, we apply LACS model on various mul-
tiplex networks to explore the effects of local awareness
ratio on the spreading of epidemics.
In FIG. 10, we explore the spreading process on two-

layer Erdős-Rényi network, of which the two layers are
the same Erdős-Rényi networks. Meanwhile, the Erdős-
Rényi network has 104 nodes and the average degree 〈k〉
is 5.

FIG. 10. (Color online)The stationary fraction of infected
individual ρI as a function of infectivity βU and the local
awareness ratio α. The parameters are set as follows: (a)
µ = 0.3, δ = 0.8, (b) µ = 0.5, δ = 0.6, (c)µ = 0.6, δ = 0.5,
(d) µ = 0.8, δ = 0.3 from top left to bottom right. The four
full phase diagrams β−α are obtained by averaging 20 Monte
Carlo simulations for each point in the grid 100 × 100. All
these simulations begin with the initial state where 10% of the
nodes are infected on the two-layer Erdős-Rényi networks.

In FIG. 11, we also explore the spreading process on
one multiplex network with two different layers. The
awareness layer is Erdős-Rényi network defined above
and the contagion layer is SF network which consists of
104 nodes generated by the configuration model with ex-
ponent 3. Besides, the average degree of the SF network
is 6.
It is clear that the two-stage effects also exist in these

multiplex networks, no matter what kinds of networks
the two layers belong to. It is also interesting that in-
creasing β in a certain range, the awareness cascade over-
comes the infection cascade when µ ≫ δ, such as, FIG.
8(d), FIG. 10(d), FIG. 11(d). In addition, as can be seen
from these figures, the overcome phenomenon is espe-
cially remarkable on the two-layer Erdős-Rényi multiplex
network. Hence, in order to explore the reason why there
exists this interesting phenomenon, let’s consider the de-
tails of the coupled spreading process. As described in
the main text, µ is the probability of recovering from

FIG. 11. (Color online)The stationary fraction of infected
individual ρI as a function of infectivity βU and the local
awareness ratio α. The parameters are set as follows: (a)
µ = 0.3, δ = 0.8, (b) µ = 0.5, δ = 0.6, (c)µ = 0.6, δ = 0.5,
(d) µ = 0.8, δ = 0.3 from top left to bottom right. The four
full phase diagrams β−α are obtained by averaging 20 Monte
Carlo simulations for each point in the grid 100 × 100. All
these simulations begin with the initial state where 10% of the
nodes are infected on the multiplex network with two different
layers.

epidemics for infected node and δ is the probability of
being unaware for aware node, respectively. Therefore,
with the increasing of β, more and more nodes become
infected, at the same time, larger µ leads more nodes be-
come susceptible and smaller δ makes more nodes stay
aware. This coupled dynamic process produces more and
more nodes whose states are AS, which can slow down
the speed of spreading process. If the promotion effect of
lager β is not so strong to overcome the effect of µ and δ,
the fraction of infected nodes ρI becomes smaller instead
of increasing with β. With respect to the difference be-
tween Erdős-Rényi multiplex network and SF multiplex
network, it is important to compare the different struc-
tures of these two kinds of network. Because of the prefer-
ential attachment, SF network has a more widely degree
distribution than ER network. According to our LACS
model, it is somehow difficult for unaware hub nodes be-
ing aware on SF network, which means that larger µ and
smaller δ produces more US nodes instead of AS nodes.
Since the AS nodes can not only decrease ρI but also pro-
mote the spreading of awareness, the slowing down effect
on the spreading process of SF network is not so strong
as Erdős-Rényi network. This can also be seen through
comparing FIG. 8(d), which is a two-layer SF network,
with FIG. 11(d), of which the awareness layer is Erdős-
Rényi network and the other is SF network. Although
the difference between these two multiplex networks is
just the structure of awareness layer, the overcome phe-
nomenon of SF multiplex network is much less obvious
than the one including one Erdős-Rényi layer. There-
fore, the phenomenon also indicates the importance of
awareness spreading on the coupled dynamic process.
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In the following, we also compare the UAU-SIS model
[26] with LACS model on a two-layer SF multiplex net-
work as defined in FIG. 3. Since unaware nodes in the
UAU-SIS model can become aware with a probability λ
through communication with their neighbors, which is
different with threshold model, we have compared these
two models on different conditions of λ and local aware-
ness ratio α, as can be seen from FIG. 12, FIG. 13.
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FIG. 12. (Color online.) Monte Carlo simulations of LACS
model (blue circle and red plus sign lines) and the UAU-
SIS model (green triangle line), the initial fraction of infected
nodes is set to be 10%. In the four panels, we plot the sta-
tionary fraction of infected individual ρI as a function of in-
fectivity βU for a fixed value of λ = 0.2, α = 0.2, α = 0.8.
The other parameters are set as follows: (a) µ = 0.3, δ = 0.8
(b) µ = 0.5, δ = 0.6 (c) µ = 0.6, δ = 0.5 (d) µ = 0.8, δ = 0.3,
respectively.
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FIG. 13. (Color online.) Monte Carlo simulations of LACS
model (blue circle and red triangle lines) and the UAU-SIS
model (green plus sign line), the initial fraction of infected
nodes is set to be 10%. In the four panels, we plot the sta-
tionary fraction of infected individual ρI as a function of in-
fectivity βU for a fixed value of λ = 0.8, α = 0.2, α = 0.8.
The other parameters are set as follows: (a) µ = 0.3, δ = 0.8
(b) µ = 0.5, δ = 0.6 (c) µ = 0.6, δ = 0.5 (d) µ = 0.8, δ = 0.3,
respectively.

As shown in FIG. 12 and FIG. 13, the dynamic pro-
cesses of these two models are different from each other
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FIG. 14. (Color online.) Monte Carlo simulations of LACS
model (green circle (upper) and red plus sign (lower) lines)
and the UAU-SIS model (yellow circle (lower) and blue plus
sign (upper) line) on two-layer ER network defined in FIG.
4, the initial fraction of infected nodes is set to be 10%. In
the four panels, we plot the stationary fraction of infected
individual ρI as a function of infectivity βU for a fixed value
of λ = 0.2, λ = 0.8, α = 0.2, α = 0.8. The other parameters
are set as follows: (a) µ = 0.3, δ = 0.8 (b) µ = 0.5, δ = 0.6 (c)
µ = 0.6, δ = 0.5 (d) µ = 0.8, δ = 0.3, respectively.
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FIG. 15. (Color online.) Monte Carlo simulations of LACS
model (green circle (upper) and red plus sign (lower) lines)
and the UAU-SIS model (yellow circle (lower) and blue plus
sign (upper) line) on one multiplex network defined in FIG.
11, of which the awareness layer is ER network and the other
layer is SF network. The initial fraction of infected nodes
is set to be 10%. In the four panels, we plot the stationary
fraction of infected individual ρI as a function of infectivity
βU for a fixed value of λ = 0.2, λ = 0.8, α = 0.2, α = 0.8. The
other parameters are set as follows: (a) µ = 0.3, δ = 0.8 (b)
µ = 0.5, δ = 0.6 (c) µ = 0.6, δ = 0.5 (d) µ = 0.8, δ = 0.3,
respectively.

according to the value of λ: When λ ≪ 1, the epi-
demic threshold of the UAU-SIS model βUAU

c satisfies
βα1
c 6 βUAU

c < βα2
c , where βα1

c , βα2
c represents the small

and large epidemic threshold of LACS model, respec-
tively. Therefore, through considering the awareness
layer as a threshold model, abundant details about the
outbreak of epidemics have been obtained. Besides, with
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the increasing of β, final epidemic size of the UAU-SIS
model increases quickly than LACS model whatever α
is. However, when λ → 1, the dynamic process of the
UAU-SIS model is almost the same with that of LACS
model with small α. Noting that the difference between
these two models is the definition of the probability of un-
aware node being aware. Thus, when λ → 1, this means
that the probability of unaware node i being aware is al-
most 1 if node i has aware neighbors. At the same time,
since when α is smaller than 0.5, the spreading process
on LACS model is almost the same, for simplicity, we
consider an critical point that α → 0. It is obvious that
when α → 0, the probability for unaware node i being
aware is also almost 1 if node i has aware neighbors. This

induces that the dynamic processes on these two models
are almost the same.
In order to verify our analysis, we have also compared

the UAU-SIS model with LACS model on different mul-
tiplex networks in FIG. 14, FIG. 15. The results show
that when λ → 1 and α is smaller than 0.5, the dy-
namic processes of the two models are always almost
the same no matter what structure the multiplex net-
work is. Therefore, through the comparison between the
UAU-SIS model with LACS model, we have also cross-
checked LACS model. From the analysis above, we find
that the LACS model gives us a better understanding
of the UAU-SIS model and reveals abundant details of
epidemic spreading.
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