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It is common in the study of networks to investigate intermediate-sized (or “meso-scale”) fea-
tures to try to gain an understanding of network structure and function. For example, numerous
algorithms have been developed to try to identify “communities,” which are typically construed as
sets of nodes with denser connections internally than with the remainder of a network. In this pa-
per, we adopt a complementary perspective that “communities” are associated with bottlenecks of
locally-biased dynamical processes that begin at seed sets of nodes, and we employ several different
community-identification procedures (using diffusion-based and geodesic-based dynamics) to inves-
tigate community quality as a function of community size. Using several empirical and synthetic
networks, we identify several distinct scenarios for “size-resolved community structure” that can
arise in real (and realistic) networks: (i) the best small groups of nodes can be better than the best
large groups (for a given formulation of the idea of a good community); (ii) the best small groups
can have a quality that is comparable to the best medium-sized and large groups; and (iii) the best
small groups of nodes can be worse than the best large groups. As we discuss in detail, which of
these three cases holds for a given network can make an enormous difference when investigating and
making claims about network community structure, and it is important to take this into account
to obtain reliable downstream conclusions. Depending on which scenario holds, one may or may
not be able to successfully identify “good” communities in a given network (and good communi-
ties might not even exist for a given community quality measure), the manner in which different
small communities fit together to form meso-scale network structures can be very different, and
processes such as viral propagation and information diffusion can exhibit very different dynamics.
In addition, our results suggest that, for many large realistic networks, the output of locally-biased
methods that focus on communities that are centered around a given seed node might have better
conceptual grounding and greater practical utility than the output of global community-detection
methods. They also illustrate subtler structural properties that are important to consider in the
development of better benchmark networks to test methods for community detection.

PACS numbers: 89.75.Fb, 89.75.Hc, 05.10.-a

I. INTRODUCTION

Many physical, technological, biological, and social
systems can be modeled as networks, which in their sim-
plest form are represented by graphs. A (static and
single-layer) graph consists of a set of entities (called
“vertices” or “nodes”) and pairwise interactions (called
“edges” or “links”) between those vertices [1–3]. Graphi-
cal representations of data have led to numerous insights
in the natural, social, and information sciences; and the
study of networks has in turn borrowed ideas from all of
these areas [4].

In general, networks can be described using a com-
bination of local, global, and “meso-scale” perspectives.
To investigate meso-scale structures—i.e., intermediate-
sized structures that are responsible for “coupling” local
properties, such as whether triangles close, and global
properties such as graph diameter—a fundamental prim-

itive in many applications entails partitioning graphs
into meaningful and/or useful sets of nodes [3]. The
most popular form of such a partitioning procedure, in
which one attempts to find relatively dense sets of nodes
that are relatively sparsely connected to other sets, is
known as “community detection” [5–7]. Myriad meth-
ods have been developed to algorithmically detect com-
munities [5, 6]; and these efforts have led to insights
in applications such as committee and voting networks
in political science [8–10], friendship networks at uni-
versities and other schools [11–13], protein-protein in-
teraction networks [14], granular materials [15], amor-
phous materials [16], brain and behavioral networks in
neuroscience [17–19], collaboration patterns [20], human
communication networks [21, 22], human mobility pat-
terns [23], and so on.

The motivation for the present work is the observa-
tion that it can be very challenging to find meaningful
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medium-sized or large communities in large networks [24–
26]. Much of the large body of work on algorithmically
identifying communities in networks has been applied
successfully either to find communities in small networks
or to find small communities in large networks [5, 6, 25],
but it has been much less successful at finding mean-
ingful medium-sized and large communities in large net-
works [27]. There are many reasons that it is difficult
to find “good” large communities in large networks. We
discuss several such reasons in the following paragraphs.

First, although it is typical to think about communi-
ties as sets of nodes with “denser” interactions among
its members than between its members and the rest of a
network, the literature contains neither a consensus defi-
nition of community nor a consensus on a precise formal-
ization of what constitutes a “good” community [5, 6].

Second, the popular formalizations of a “community”
are computationally intractable, and there is little pre-
cise understanding or theoretical control on how closely
popular heuristics to compute communities approximate
the exact answers in those formulations [28, 29]. Indeed,
community structure itself is typically “defined” opera-
tionally via the output of a community-detection algo-
rithm, rather than as the solution to a precise optimiza-
tion problem or via some other mathematically precise
notion [5, 6].

Third, many large networks are extremely sparse [25]
and thus have complicated structures that pose signifi-
cant challenges for the algorithmic detection of communi-
ties via the optimization of objective functions [29]. This
is especially true when attempting to develop algorithms
that scale well enough to be usable in practice on large
networks [6, 25, 30].

Fourth, the fact that it is difficult to visualize large net-
works complicates the validation of community-detection
methods in such networks. One possible means of vali-
dation is to compare algorithmically-obtained commu-
nities with known “ground truth” communities. How-
ever, notions of ground truth can be weak in large net-
works [12, 25, 31], and one rarely possesses even a weak
notion of ground truth for most networks. Indeed, in
many cases, one should not expect a real (or realistic)
large network to possess a single feature that (to lead-
ing order) dominates large-scale latent structure in a
network. Thus, comparing the output of community-
detection algorithms to “ground truth” in practice is
most appropriate for obtaining coarse insights into how
a network might be organized into social or functional
groups of nodes [11]. Alternatively, different notions
and/or formalizations of “community” concepts might
be appropriate in different contexts [5, 6, 32–34], so it
is desirable to formulate flexible methods that can incor-
porate different perspectives.

Fifth, community-detection algorithms often have sub-
tle and counterintuitive properties as a function of sizes
of their inputs and/or outputs. For example, the
community-size “resolution limit” of the popular mod-
ularity objective function is a fundamental consequence

of the additive form of that objective function, but it only
became obvious to people after it was explicitly pointed
out [35].

Motivated by these observations, we consider the ques-
tion of community quality as a function of the size (i.e.,
number of nodes) of a purported community. That is,
we are concerned with questions such as the following.
(1) What is the relationship between communities of
different sizes in a given network? In particular, for a
given network and a given community-quality objective,
are larger communities “better” or “worse” than smaller
communities? (2) What is an appropriate way to think
about medium-sized and large communities in large net-
works? In particular, how do smaller communities “fit to-
gether” into medium-sized and larger communities? (3)
More generally, what effect do the answers to these ques-
tions have on downstream tasks that are of primary con-
cern when modeling data using networks? For example,
what effect do they have on processes such as viral prop-
agation or the diffusion of information on networks?

By considering a suite of networks and using several
related notions of community quality, we identify several
scenarios that can arise in realistic networks.

1. Small communities are better than large
communities. In this first scenario, for which
there is an upward-sloping network community pro-
file (NCP; see the discussion below), a network has
small groups of nodes that correspond more closely
than any large groups to intuitive ideas of what
constitutes a good community.

2. Small and large communities are similarly
good or bad. In this second scenario, for which
an NCP is roughly flat, the most community-like
small groups of nodes in a network have similar
community quality scores to the most community-
like large groups.

3. Large communities are better than small
communities. In this third scenario, for which
an NCP is downward-sloping, a network has large
groups of nodes that are more community-like (i.e.,
“better” in some sense) than any small groups.

Although the third scenario is the one that has an in-
tuitive isoperimetric interpretation and thus corresponds
most closely with peoples’ intuition when they develop
and validate community-detection algorithms, one of our
main conclusions is that most large realistic networks
correspond to the first or second scenarios. This is con-
sistent with recent results on network community struc-
ture using related approaches [24–26] as well as somewhat
different approaches [31, 36], and it also helps illustrate
the importance of considering community structures with
groups that have large overlaps. For more on this, see our
discussions below.

One of the main tools that we use to justify the above
observations and to interpret the implications of commu-
nity structure in a network is a network community pro-
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file (NCP), which was originally introduced in Ref. [25].
Given a community “quality” score—i.e., a formalization
of the idea of a “good” community—an NCP plots the
score of the best community of a given size as a function
of community size. The authors of Ref. [24, 25] consid-
ered the community quality notion of conductance and
employed various algorithms to approximate it. In subse-
quent work [26], many other notions of community qual-
ity have also been used to compute NCPs.

In the present paper, we compute NCPs using three
different procedures to identify communities.

1. Diffusion-based dynamics. First, we consider
a diffusion-based dynamics (called the AclCut
method; see the discussion below) from the orig-
inal NCP analysis [25] that has an interpretation
that good communities correspond to bottlenecks
in the associated dynamics.

2. Spectral-based optimization. Second, we con-
sider a spectral-based optimization rule (called the
MovCut method; see below) that is a locally-
biased analog of the usual global spectral graph
partitioning problem [37].

3. Geodesic-based dynamics. Finally, we con-
sider a geodesic-based spreading process (called the
EgoNet method; see the discussion below) that
has an interpretation that nodes in a good com-
munity are connected by short paths that emanate
from a seed node [38].

We describe these three procedures in more detail in Ap-
pendix B. For now, we note that the first and the third
procedures have a natural interpretation as defining com-
munities operationally as the output of an underlying dy-
namics, and the first and second procedures allow us to
compare this operational approach with an optimization-
based approach.

Viewed from this perspective, the computation of net-
work community structure depends fundamentally on
three things: actual network structure, the dynamics
or application of interest, and the initial conditions or
network region of interest. Although there are dif-
ferences between the aforementioned three community-
identification methods, these methods all take the per-
spective that a network’s community structure depends
not only on the connectivity of its nodes but also on (1)
the region of a large network in which one is interested
and (2) the application of interest. The perspective in
point (1) contrasts with the prevalent view of community
structure as arising simply from network structure [5, 6],
but it is consistent with the notion of dynamical systems
depending fundamentally on their initial conditions, and
it is crucial in many applications (e.g., both social [39, 40]
and biological contagions [41–43]).

For example, Facebook’s Data Team and its collabo-
rators have demonstrated that one can view Facebook
as a collection of egocentric networks that have been
patched together into a network whose global structure

is very sparse [44, 45]. The above three community-
identification methods have the virtue of combining the
prevalent structural perspective with the idea that one
is often interested in structure that is located “near” (in
terms of both network topology and edge weights) an
exogenously-specified “seed set” of nodes [46]. The per-
spective in point (2) underscores the fact that one should
not expect answers to be “universal.” The differences be-
tween the aforementioned three methods lie in the spe-
cific dynamical processes that underlie them. We also
note that, although we focus on the measure of commu-
nity quality known as “conductance” (which is intimately
related to the problem of characterizing the mixing rates
of random walks [47]), one can view other quality func-
tions (e.g., based on non-conservative dynamics [48–50]
or geodesic-based dynamics [38]) as solving other prob-
lems, and they thus can reveal different aspects of com-
munity structure in networks.

The global NCPs that we compute from the three
community-identification procedures are rather similar
in some respects, suggesting that the characteristic fea-
tures of NCPs are actual features of networks and not
just artifacts of a particular way of sampling local com-
munities. However, we observe significant differences in
their local behaviors because they are based on different
dynamical processes. In concert with other recent work
(e.g., [34, 51, 52]), our results with these three procedures
suggest that “local” methods that focus on finding com-
munities centered around an exogenously-specified seed
node (or seed set of nodes) might have better theoretical
grounding and more practical utility than other methods
for community detection.

Our “local” (and “size-resolved”) perspective on com-
munity structure also yields several other interesting in-
sights. By design, it allows us to discern how community
structure depends both on the seed node and on the size
scales and time scales of a dynamical process running on
a network. Similar perspectives were discussed in recent
work on detecting communities in networks using Markov
processes [9, 32–34, 53–55], and our approach is in the
spirit of research on dynamical systems more generally, as
bottlenecks to diffusion and other dynamics depend fun-
damentally on initial conditions. Local information al-
gorithms are also an important approach for many other
optimization problems and for practical purposes such as
friend recommendation systems in online social networks
[56]. Moreover, taking a local perspective on commu-
nity structure is also consistent with the sociological idea
of egocentric networks (and with real-world experience of
individuals, such as users of Facebook [44, 45], who expe-
rience their personal neighborhood of a social network).
The local community experienced by a given node should
be similarly locally-biased, and we demonstrate this fea-
ture quantitatively for several real networks. Using our
perspective, we also demonstrate subtle yet fundamental
differences between different networks: some networks
have high-quality communities of different sizes (espe-
cially small ones), whereas others do not possess commu-
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nities of any size that give bottlenecks to diffusion-based
dynamics. This is consistent with, and helps explain,
prior direct observations of networks in which algorith-
mically computed communities seemed to have little or
no effect on several dynamical processes [57]. More gener-
ally and importantly, whether small or large communities
are “better” with respect to some measure of community
quality has significant consequences not only for algo-
rithms that attempt to identify communities but also for
the dynamics of processes such as viral propagation and
information diffusion.

The rest of this paper is organized as follows. Because
our approach to examining network communities is un-
common in the physics literature, we start in Section II
with an informal description of our approach. We then
introduce NCPs in Section III. In Section IV, we present
our main empirical results on community quality as a
function of size, and we provide a detailed comparison
of our three community-identification procedures when
applied to real networks. This illustrates the three dis-
tinct scenarios of community quality versus community
size that we described above. In Section V, we illustrate
the behavior of these methods on the well-known LFR
benchmark networks that are commonly used to evalu-
ate the performance of community-detection techniques.
We find that their NCPs have a characteristic shape for
a wide range of parameter values and are unable to re-
produce the different scenarios that one observes for real
networks. We then conclude in Section VI with a discus-
sion of our results. In Appendix A, we provide a brief dis-
cussion of expander graphs (a.k.a. “expanders”). In Ap-
pendix B, we describe the three specific procedures that
we use to identify communities in detail. Appendices C
and D contain empirical results for the two methods that
we mentioned but did not discuss in detail in Section IV.

II. BACKGROUND AND PRELIMINARIES

In this section, we describe some background and pre-
liminaries that provide the framework that we use to in-
terpret our results on size-resolved community structure
in Sections IV and V. We start in Section II A by defining
the notation that we use throughout this paper, and we
continue in Section II B with a brief discussion of possible
ways that a network might “look like” if one is interested
in its meso-scale or large-scale structure. To convey the
basic idea of our approach, much of our discussion in this
section is informal. In later sections, we will make these
ideas more precise.

A. Definitions and Notation

We represent each of the networks that we study as
an undirected graph. We consider both weighted and
unweighted graphs.

LetG = (V,E,w) be a connected and undirected graph
with node set V , edge set E, and set w of weights on the
edges. Let n = |V | denote the number of nodes, and let
m = |E| denote the number of edges. The edge {i, j} has
weight wij . Let A = AG ∈ Rn×n denote the (weighted)
adjacency matrix of G. Its components are AG(i, j) =
wij if {i, j} ∈ E and AG(i, j) = 0 otherwise. The matrix
D = DG ∈ Rn×n denotes the diagonal degree matrix of
G. Its components are DG(i, i) = di =

∑
{i,j}∈E wij ,

where di is called the “strength” or “weighted degree”
of node i. The combinatorial Laplacian of G is LG =
DG − AG, and the normalized Laplacian of G is LG =

D
−1/2
G LGD

−1/2
G .

A path P inG is a sequence of edges P = {{ik, jk}}sk=1,
such that jk = ik+1 for k = 1, . . . , s − 1. The length of
path P is |P | =

∑
{i,j}∈P lij , where lij is the length of

the edge that connects nodes i and j. For an unweighted
network, lij = 1 for all edges. For weighted networks,
wij is a measure of closeness of the tie between nodes i
and j, a common choice for l is lij = 1

wij
. Let Pij be the

set of all paths between i and j. The geodesic distance
∆ij = minP∈Pij |P | between nodes i and j is the length
of a shortest path between i and j. The k-neighborhood
Nk(i) = {j ∈ V : ∆ij ≤ k} of i is the set of all nodes
that are at most a distance k away from i, and the k-
neighborhood of a set of nodes S is Nk(S) =

⋃
i∈S Nk(i).

B. What Can Networks “Look Like”?

Before examining real networks, we start with the fol-
lowing question: What are possible ways that a network
can “look like,” very roughly if one “squints” at it? This
question is admittedly vague, but the answer to it gov-
erns how small-scale network structure “interacts” with
large-scale network structure, and it informs researchers’
intuitions and the design decisions that they make when
analyzing networks (and when developing methods to an-
alyze networks). As an example of this idea, it should
be intuitively clear that if one “squints” at the nearest-
neighbor Z2 network (i.e., the uniform lattice of pairs of
integers on the Euclidean plane), then they “look like”
the Euclidean plane R2. Distances are approximately
preserved, and up to boundary conditions and discretiza-
tion effects, dynamical processes on one approximate the
analogous dynamic processes on the other. In the fields
of geometric group theory and coarse geometry, this in-
tuitive connection between Z2 and R2 has been made
precise using the notions of coarse embeddings and quasi-
isometries [58].

Establishing quasi-isometric relationships on networks
that are expander graphs (a.k.a. “expanders”; see Ap-
pendix A) is technically brittle [60]. Thus, for the present
informal discussion, we rely on a simper notion. Suppose
that we are interested in the “best fit” of the adjacency
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(a) Low-dimensional structure (b) Core-periphery structure

(c) Expander or complete
graph

(d) Bipartite structure

FIG. 1. Idealized block models of network adjacency matri-
ces; darker blocks correspond to denser connections among
its component nodes. Figure 1a illustrates a low-dimensional
“hot dog” or “pancake” structure; Fig. 1b illustrates a “core-
periphery” structure; Fig. 1c illustrates an unstructured ex-
pander or complete graph; and Fig. 1d illustrates a bipar-
tite graph. Our example networks are the Zachary Karate
Club [59] in Fig. 1a and a realization of a random-graph
block model in Figs. 1b–1d. For Fig. 1b we only show the
largest connected component (LCC), whereas the networks
in Figs. 1c and 1d are connected. The parameters for the
block models are as follows: (b) α11 = 0.3, α22 = 0.001,
α12 = 0.005, n1 = 50 nodes, and n2 = 950 nodes (the
LCC has 615 nodes); (c) α11 = α22 = α12 = 0.01, and
n1 + n2 = 1000 nodes; (d) α11 = α22 = 0, α12 = 0.02, and
n1 = n2 = 500 nodes.

matrix A to a 2× 2 block matrix:

A =

(
A11 AT12
A12 A22

)
,

where Aij = αij~1~1
T , where the “1-vector” ~1 is a column

vector of the appropriate dimension that contains a 1
in every entry and αij ∈ R+. Thus, each block in A has
uniform values for all its elements, and larger values of αij
correspond to stronger interactions between nodes. The
structure of A is then determined based on the relative
sizes of α11, α12, and α22. The various relative sizes of
these three scalars have a strong bearing on the structure
of the network associated with A. We illustrate several
examples in Fig. 1. For the block models that we use for
three of its panels, one block has n1 nodes and the second
block has n2 nodes, and a node in block i is connected
to a node in block j with probability αij [61].

• Low-dimensional structure. In Fig. 1a, we il-
lustrate the case in which α11 ≈ α22 � α12. In this
case, each half of the network interacts with itself
more densely than it interacts with the other half of
the network. This “hot dog” or “pancake” struc-
ture corresponds to the situation in which there
are two (or any number, in the case of networks
more generally) dense communities of nodes that
are reasonably well-balanced in the sense that each

community has roughly the same number of nodes.
In this case, the network embeds relatively well in
a one-dimensional, two-dimensional, or other low-
dimensional space. Spectral clustering or other
clustering methods often find meaningful commu-
nities in such networks, and one can often readily
construct meaningful and interpretable visualiza-
tions of network structure.

• Core-periphery structure. In Fig. 1b, we illus-
trate the case in which α11 � α12 � α22. This
is an example of a network with a density-based
“core-periphery” structure [24, 25, 62–64]. In these
cases, there is a core set of nodes that are rela-
tively well-connected amongst themselves as well
as to a peripheral set of nodes that interact very
little amongst themselves.

• Expander or complete graph. In Fig. 1c, we
illustrate the case in which α11 ≈ α12 ≈ α22.
This corresponds to a network with little or no dis-
cernible structure. For example, if α11 = α12 =
α22 = 1, then the graph is a clique (i.e., the
complete graph). Alternatively, if the graph is
a constant-degree expander, then α11 ≈ α12 ≈
α22 � 1. As discussed in Appendix A, constant-
degree expanders are the metric spaces that embed
least well in low-dimensional Euclidean spaces. In
terms of the idealized block model in Fig. 1, they
“look like” complete graphs, and partitioning them
would not yield network structure that one should
expect to construe as meaningful. Informally, they
are largely unstructured when viewed at large size
scales.

• Bipartite structure. In Fig. 1d, we illustrate
the case in which α12 � α11 ≈ α22. This cor-
responds to a bipartite or nearly-bipartite graph.
Such networks arise, e.g., when there are two dif-
ferent types of nodes, such that one type of node
connects only to (or predominantly to) nodes of the
other type [65].

Most methods for algorithmic detection of communi-
ties have been developed and validated using the intuition
that networks have some sort of low-dimensional struc-
ture [5, 25, 36]. As an example, consider the infamous
Zachary Karate Club network [59], which we show in
Fig. 1a. This well-known benchmark graph, which seems
to be an almost obligatory example to discuss in papers
that discuss community structure [66, 67], clearly “looks
like” it has a nice low-dimensional structure. For exam-
ple, there is a clearly identifiable left half and right half,
and two-dimensional visualizations of the network (such
as that in Fig. 1a) highlight that bipartition. Indeed, the
Zachary Karate Club network possesses well-balanced
and (quoting Herbert Simon [68]) “nearly decomposable”
communities; and the nodes in each community are more
densely connected to nodes in the same community than
they are to nodes in the other community. Relatedly,
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reordering the nodes of the Zachary Karate Club appro-
priately yields an adjacency-matrix representation with
an almost block-diagonal structure with two blocks (as
typified by the cartoon in Fig. 1a); and any reasonable
community-detection algorithm should be able to find
(exactly or approximately) the two communities.

Another well-known network that (slightly less obvi-
ously) “looks like” it has a low-dimensional structure is
a so-called caveman network, which we illustrate later
(in Fig. 2c). Arguably, a caveman network has many
more communities than the Zachary Karate Club, so
details such as whether an algorithm “should” split it
into two or a somewhat larger number of reasonably
well-balanced communities might be different than in the
Zachary Karate Club network. However, a caveman net-
work also has a natural well-balanced partition that re-
spects intuitive community structure. Reasonable two-
dimensional visualizations of this network (such as the
one that we present in Fig. 2c) shed light on that struc-
ture; and any reasonable community-detection algorithm
can be adjusted to find (exactly or approximately) the
expected communities. In this paper, we will demon-
strate that most realistic networks do not “look like”
these small examples. Instead, realistic networks are of-
ten poorly-approximated by low-dimensional structures
(e.g., with a small number of relatively well-balanced
communities, each of which is more densely connected
internally than it is with the rest of the network). Realis-
tic networks often include substructures that more closely
resemble core-periphery graphs or expander graphs (see
Fig. 1b and Fig. 1c); and networks that partition into nice
nearly-decomposable communities tend to be the excep-
tion rather than typical [24, 25, 36].

III. NETWORK COMMUNITY PROFILES
(NCPS) AND THEIR INTERPRETATION

Recall from Section I that an NCP measures the qual-
ity of the best possible community of a given size as a
function of the size of the purported community [24–26].
In this section, we provide a brief description of NCPs
and how we will use it.

A. The Basic NCP: Measuring Size-Resolved
Community Quality

We start with the definition of conductance and the
original conductance-based definition of an NCP from
Ref. [25], and we then discuss our extensions of such
ideas. For more details on conductance and NCPs, see
Refs. [25, 37, 69, 70]. If G = (V,E,w) is a graph with
weighted adjacency matrix A, then the “volume” be-
tween two sets S1 and S2 of nodes (i.e., Si ⊂ V ) equals
the total weight of edges with one end in S1 and one end

in S2. That is,

vol(S1, S2) =
∑
i∈S1

∑
j∈S2

Aij . (1)

In this case, the “volume” of a set S ⊂ V of nodes is

vol(S) = vol(S, V ) =
∑
i∈S

∑
j∈V

Aij . (2)

In other words, the set volume equals the total weight
of edges that are attached to nodes in the set. The vol-
ume vol(S, S) between a set S and its complement S
has a natural interpretation as the “surface area” of the
“boundary” between S and S. In this study, a set S is
a hypothesized community. Informally, the conductance
of a set S of nodes is the “surface area” of that hypothe-
sized community divided by “volume” (i.e., size) of that
community. From this perspective, studying community
structure amounts to an exploration of the isoperimetric
structure of G.

Somewhat more formally, the conductance of a set of
nodes S ⊂ V is

φ(S) =
vol(S, S)

min(vol(S), vol(S))
. (3)

Thus, smaller values of conductance correspond to bet-
ter communities. The conductance of a graph G is the
minimum conductance of any subset of nodes:

φ(G) = min
S⊂V

φ(S) . (4)

Computing the conductance φ(G) of an arbitrary graph
is an intractable problem (in the sense that the associated
decision problem is NP-hard [71]), but this quantity can
be approximated by the second smallest eigenvalue λ2 of
the normalized Laplacian [69, 70].

If the “surface area to volume” (i.e., isoperimetric) in-
terpretation captures the notion of a good community as
a set of nodes that is connected more densely internally
than with the remainder of a network, then computing
the solution to Eq. (4) leads to the “best” (in this sense)
community of any size in the network.

Instead of defining a community quality score in terms
of the best community of any size, it is useful to define a
community quality score in terms of the best community
of a given size k as a function of the size k. To do this,
Ref. [25] introduced the idea of a network community
profile (NCP) as the lower envelope of the conductance
values of communities of a given size:

φk(G) = min
S⊂V,|S|=k

φ(S) . (5)

An NCP plots a community quality score (which, as in
Ref. [25], we take to be the set conductance of communi-
ties) of the best possible community of size k as a function
of k. Clearly, it is also intractable to compute the quan-
tity φk(G) in Eq. (5) exactly. Previous work has used
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(a) Three possible NCPs (b) Realistic NCP from [25]

(c) A caveman network
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(d) NCP of caveman network

FIG. 2. Illustration of network community profiles (NCPs).
(a) Stylized versions of possible shapes for an NCP:
downward-sloping (black, solid), upward-sloping (red, dot-
ted), and flat (blue, dashed). (b) NCP of a LiveJournal net-
work that illustrates the characteristic upward-sloping NCP
that is typical for many large empirical social and informa-
tion networks [25]. (c) A toy “caveman network” with 10
cliques of 10 nodes each, where one edge from each clique
has been rewired to create a ring [72]. (d) NCP for a simi-
lar caveman network with 100 cliques of 10 nodes each (the
NCP for the network in panel (c) is identical for communi-
ties with fewer than 50 nodes), illustrating the characteristic
downward-sloping NCP that is typical of networks that are
embedded in a low-dimensional space.

spectral-based and flow-based approximation algorithms
to approximate it [24–26].

To gain insight into how to understand an NCP and
what it reveals about network structure, consider Fig. 2.
In Fig. 2a, we illustrate three possible ways that an NCP
can behave. In each case, we are using conductance as a
measure of community quality.

• Upward-sloping NCP. In this case, small com-
munities are “better” than large communities.

• Flat NCP. In this case, community quality is in-
dependent of size. (As illustrated in this figure, the
quality tends to be comparably poor for all sizes.)

• Downward-sloping NCP. In this case, large
communities are “better” than small communities.

For ease of visualization and computational considera-
tions, we only show NCPs for communities up to half of
the size of a network. An NCP for very large commu-
nities that we do not show in figures as a result of this
choice roughly mirrors that for small communities, as the
complement of a good small community is a good large
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(a) Low-dimensional structure

100 101 102 103
10−2

10−1

100

size

co
n
d
u
ct
a
n
ce

(b) Core-periphery structure

100 101 102 103
10−2

10−1

100

size

co
n
d
u
ct
a
n
ce

(c) Expander or complete
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(d) Bipartite structure

FIG. 3. Network community profiles (NCPs) of the ideal-
ized example networks from Fig. 1. (a) NCP for the Zachary
Karate Club network. (b) NCP for an example network gen-
erated from a block model with core-periphery structure. (c)
NCP for an Erdős-Rényi graph. (d) NCP for an example
network generated from a bipartite block model.

community because of the inherent symmetry in conduc-
tance (see Eq. (3)).

In Fig. 2b, we show an NCP of a LiveJournal network
from Ref. [25]. It demonstrates an empirical fact about
a wide range of large social and information networks:
there exist good small conductance-based communities,
but there do not exist any good large conductance-based
communities in many such networks. See Refs. [24–
26, 37, 69, 70]) for more empirical evidence that large
social and information networks tend not to have large
communities with low conductances. On the contrary,
Fig. 2c illustrates a small toy network—a so-called “cave-
man network”— formed from several small cliques con-
nected by rewiring one edge from each clique to create a
ring [72]. As illustrated by its downward-sloping NCP
in Fig. 2d, this network possesses good conductance-
based communities, and large communities are better
than small ones. One obtains a similar downward-sloping
NCP for the Zachary Karate Club network [59] as well as
for many other networks for which there exist meaningful
visualizations [25]. The wide use of networks that have
interpretable visualizations (such as the Zachary Karate
Club and planted partition models [73] with balanced
communities) to help develop and evaluate methods for
community detection and other procedures can lead to a
strong selection bias when evaluating the quality of those
methods.

We now consider the relationship between the phenom-
ena illustrated in Fig. 2 and the idealized block models
of Fig. 1. As a concrete example, Fig. 3 shows the NCPs
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for the example networks in the right panels of Fig. 2.
First, note that the best partitions consist roughly of

well-balanced communities in the low-dimensional case
of Figs. 1a and 3a, and the “lowest” point on an NCP
tends to be for large community sizes. Thus, an NCP
tends to be downward-sloping.

Networks with pronounced core-periphery structure—
i.e., networks that “look like” the example network in
Fig. 1b—tend to have many good small communities but
no equally good or better large communities. This situa-
tion arises in many large, extremely sparse networks [24–
26]. The good small communities in such networks are
sets of connected nodes in the extremely sparse periphery,
and they do not combine to form good, large communi-
ties, as they are only connected via a set of core nodes
with denser connections than the periphery. Thus, an
NCP of a network with core-periphery structure tends
to be upward-sloping, as illustrated in Figs. 1b and 3b.
However, this observation does not apply to all networks
with well-defined density-based core-periphery structure.
If the periphery is sufficiently well-connected (though still
much sparser than the core), then one no longer observes
good, small communities. Such networks act like ex-
panders from the perspective of the behavior of random
walkers, so they have a flat NCP. One can generate ex-
amples of such networks by modifying the parameters of
the block-model that we used to generate the example
network in Fig. 1b [61].

For a complete graph or a degree-homogeneous ex-
pander (see Figs. 1c and 3c), all communities tend to
have poor quality, so an NCP is roughly flat. (See Ap-
pendix A for a discussion of expander graphs.)

Finally, bipartite structure itself does not have any
characteristic influence on an NCP. Instead, an NCP of
a bipartite network reveals other structure present in a
network. For the example network in Fig. 1d, the two
types of nodes are connected uniformly at random, so
its NCP (Fig. 3d) has the characteristic flat shape of an
expander.

B. Robustness and Information Content of NCPs

It is important to discuss the robustness properties
of NCPs. These are not obvious a priori, as the NCP
is an extremal diagnostic. Importantly, though, the
qualitative property of being downward-sloping, upward-
sloping, or roughly flat is very robust to the removal
of nodes and edges, variations in data generation and
preprocessing decisions, and similar sources of perturba-
tion [24–26]. For example, upward-sloping NCPs typi-
cally have many small communities of good quality, so
losing some communities via noise or some other per-
turbations has little effect on a realistic NCP. Naturally,
whether a particular set of nodes achieves a local mini-
mum is not robust to such modifications. In addition, one
can easily construct pathological networks whose NCPs
are not robust.

It is also important to consider the robustness of a net-
work NCPs with respect to the use of conductance versus
other measures of community quality. (Recall that many
other measures have been proposed to capture the crite-
ria that a good community should be densely-connected
internally but sparsely connected to the rest of a net-
work [5, 25].) Indeed, it has been shown that measures
that capture both criteria of community quality (internal
density and external sparsity) behave in a roughly similar
manner to conductance-based NCPs, whereas measures
that capture only one of the two criteria exhibit qualita-
tively different behavior, typically for rather trivial rea-
sons [26].

Although the basic NCP that we have been discussing
yields numerous insights about both small-scale and
large-scale network structure, it also has important lim-
itations. For example, an NCP gives no information on
the number or density of communities with different com-
munity quality scores. (This contributes to the robust-
ness properties of NCP with respect to perturbations of
a network.) Accordingly, the communities that are re-
vealed by an NCP need not be representative of the ma-
jority of communities in a network. However, the ex-
tremal features that are revealed by an NCP have im-
portant system-level implications for the behavior of dy-
namical processes on a network: they are responsible for
the most severe bottlenecks for associated dynamical pro-
cesses on networks [74].

Another property that is not revealed by an NCP is the
internal structure of communities. Recall from Eq. (3)
that the conductance of a community measures how well
(relative to its size) that it is separated from the remain-
der of a network, but it does not consider the internal
structure of a community (except for size and edge den-
sity). In an extreme case, a community with good con-
ductance might even consist of several disjoint pieces.
Recent work has addressed how spectral-based approx-
imations to optimizing conductance also approximately
optimize measures of internal connectivity [75].

We augment the information from basic NCPs with
some additional computations. To obtain an indication of
a community’s internal structure, we compute the inter-
nal conductance of the communities that form an NCP.
The internal conductance φin(C) of a community C is

φin(C) = φ(G|C) , (6)

where G|C is the subgraph of G induced by nodes in the
community C. The internal conductance is equal to the
conductance of the best partition into two communities of
the network G|C viewed as a graph in isolation. Because
a good community should be well-separated from the re-
mainder of a network and also relatively well-connected
internally, we expect good communities to have low con-
ductance but high internal conductance. We thus com-
pute the conductance ratio

Φ(C) =
φ(C)

φin(C)
(7)
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to quantify this intuition. A good community should
have a small conductance ratio, and thus we also plot
so-called conductance ratio profiles (CRPs) [25] to illus-
trate how conductance ratio depends on community size
in networks.

C. Our Application and Extension of NCPs

In this paper, we examine the small-scale, medium-
scale, and large-scale community structure using
conductance-based NCPs and CRPs. We employ three
different methods, which we introduce in detail in Ap-
pendix B, for sampling an NCP: one based on local dif-
fusion dynamics (the AclCut method), one based on a
local spectral optimization (the MovCut method), and
one based on geodesic distance from a seed node (the
EgoNet method). In each case, we find communities of
different sizes, and we then plot the conductance of the
best community for each size as a function of size.

An NCP provides a signature of community structure
in a network, and we can thereby compare community
structure across different networks. This helps one to
discern which properties are attributable predominantly
to network structure and which are attributable predom-
inantly to choice of algorithms for community detection.
Our approach of comparing community structures in net-
works using NCPs and CRPs is very general: one can of
course follow a similar procedure with other community-
quality diagnostics on the vertical axis, other procedures
for community generation, and so on.

IV. EMPIRICAL RESULTS ON REAL
NETWORKS

In this section, we present the results of our empirical
evaluation of the small-scale, medium-scale, and large-
scale community structure in our example networks.

A. Example Network Data Sets

We will examine six empirical networks in depth. They
fall into three classes: coauthorship networks, Facebook
networks, and voting similarity networks. For each class,
we consider two networks of two different sizes.

• Collaboration graphs. The two (unweighted)
coauthorship networks were constructed from pa-
pers submitted to the arXiv preprint server in the
areas of general relativity and quantum cosmology
(CA-GrQc) and Astrophysics (CA-AstroPh).
In each case, two authors are connected by an edge
if they coauthored at least one paper, so a paper
with k authors appears as a k-clique (i.e., a com-
plete k-node subgraph) in the network. These net-
work data are available as part of the Stanford Net-

work Analysis Package (SNAP), and they were ex-
amined previously in Refs. [24–26].

• Facebook graphs. The two (unweighted) Face-
book networks are anonymized data sets that con-
sist of a snapshot of “friendship” ties on one partic-
ular day in September 2005 for two United States
(U.S.) universities: Harvard (FB-Harvard1) and
Johns Hopkins (FB-Johns55). They form a subset
of the Facebook100 data set from Refs. [11, 12].
In addition to the friendship ties, note that we pos-
sess node labels for gender and class year as well
as numerical identifiers for student or some other
(e.g., faculty) status, major, and high school.

• Congressional voting graphs. The two
(weighted) Congressional voting networks repre-
sent similarities in voting patterns among mem-
bers of the U.S. House of Representatives (US-
House) and U.S. Senate (US-Senate). Our con-
struction follows prior work [9, 76]. In particu-
lar, we represent these two data sets as “multi-
layer” temporal networks [9, 77]. Each layer cor-
responds to a single two-year Congress, and edge
weights within a layer represent the voting similar-
ity between two legislators during the correspond-
ing Congress. In layer s, this yields adjacency el-

ements of A
(s)
ij = 1

bij(s)

∑
k γijk, where γijk = 1 if

both legislators voted the same way on the kth bill,
γijk = 0 if they voted in different ways on that
bill, bij(s) is the number of bills on which both leg-
islators voted during that Congress, and the sum
is over bills. A tie between the same legislator in
consecutive Congresses is represented by an inter-
layer edge with weight ω [9]. (We use ω = 1; the
effect of changing ω has been investigated previ-
ously [76, 78].) We represent each multilayer vot-
ing network using a single “supra-adjacency ma-
trix” (see Refs. [77, 79–81]) in which the different
Congresses correspond to diagonal blocks and inter-
layer edges correspond to off-block-diagonal terms
in the matrix. Note that throughout this paper we
treat the Congressional voting graphs at the level
of this supra-adjacency matrix, without any addi-
tional labeling or distinguished treatment of inter-
and intra-layer edges (cf. [9]).

We chose these three sets of networks because (as we
will see in later sections) they have very different prop-
erties with respect to their large-scale versus small-scale
community structures. We thus emphasize that, with
respect to the topic of this paper, these six networks
are representative of several broad classes of previously-
studied networks: CA-GrQc and CA-AstroPh are
representative of the SNAP networks that were examined
previously in Refs. [24–26]; both FB-Harvard1 and FB-
Johns55 (aside from a few very small communities in
FB-Harvard1) are representative of the Facebook100
networks that were examined previously in Refs. [11, 12];
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and US-House and US-Senate give examples of net-
works (that are larger than the Zachary Karate Club and
caveman networks) on which conventional notions of and
algorithms for community detection have been validated
successfully [9, 76].

In Table I, we provide summary statistics for each of
the six networks. We give the numbers of nodes and
edges in the largest connected component, the mean de-
gree/strength (〈ki〉), the second-smallest eigenvalue (λ2)
of the normalized Laplacian matrix, and mean clustering
coefficient (〈Ci〉). We use the local clustering coefficient

Ci = 1
ki(ki−1)

∑
j,k (ŵijŵikŵjk)

1
3 , where ŵij =

wij

maxij wij
,

which reduces to the usual expression for local clustering
coefficients in unweighted networks [82–84]. The high
values for mean clustering coefficient in both the U.S.
Congress and coauthorship networks are unsurprising,
given how those networks have been constructed. How-
ever, the latter is noteworthy, as the coauthorship net-
works are much sparser than the Facebook networks.

Recall that the second smallest eigenvalue λ2 of the
normalized Laplacian provides a qualitative notion of
connectivity that can be used to bound the mixing time of
diffusion-based dynamics on networks [47] (where larger
values of λ2 imply that there are fewer bottlenecks to
mixing) and that can also be used to partition a graph
into communities [3, 65, 70] (where smaller values of λ2
correspond to better communities). We show the values
of λ2 for our six networks in Table I. For comparison, we
show in Fig. 4 a scatter plot of λ2 versus the size of the
network (i.e., the number of nodes in the network) for
these six networks; for the remaining networks from the
Stanford Network Analysis Project (SNAP) [85] (black
circles) that were also studied in [24, 25]; and for the
remaining 98 networks from the Facebook100 data set
(red stars) studied in [11, 12].

The first point to note about Fig. 4 is that λ2 for
nearly all of the Facebook100 graphs is much larger
than those for the two collaboration graphs and the two
voting graphs. Figure 4 and previous empirical results
(from Refs. [24, 25]) clearly demonstrate that the λ2 val-
ues for the two collaboration graphs are representative
of (and, in many cases, higher than) those of the other
SNAP graphs studied empirically in Refs. [24, 25]. That
is, nearly all of the networks have λ2 values that are much
smaller than those in the Facebook100 graphs. This
implies, in particular, that those graphs contain more
substantial bottlenecks to mixing. (Note, though, that
the value of λ2 says nothing about the size or cardinal-
ity of the set of nodes that achieves the minimum.) In
order to understand these differences, we study two net-
works from the Facebook100 data set in detail: one
(FB-Johns55) with a typical value of λ2 and another
(FB-Harvard1) that is an “outlier,” in that it has
the lowest value of λ2 in the entire Facebook100 data
set. (The FB-Caltech36 network is the smallest net-
work in the Facebook100 data set—it has 762 nodes
in its largest connected component (LCC)—and it has
the largest value of λ2.)

FIG. 4. Scatter plot of the second smallest eigenvalue (λ2) of
the normalized Laplacian versus size of the network for: the
networks from the SNAP data [85] that were studied in [24,
25]; all 100 networks in the Facebook100 data set [11, 12];
and the two US-Congress temporal networks [9, 76, 78].

The second point to note about Fig. 4 and Table I is
that they suggest that FB-Johns55 (and possibly also
FB-Harvard1) are better connected than the other four
networks, and that the connectivity properties of the two
collaboration graphs and the two voting graphs (and per-
haps also FB-Harvard1) might be very similar. As
we will see below, however, the situation is considerably
more subtle.

In Fig. 5, we visualize the adjacency matrices of each
of these networks using a sparsity-pattern (Spy) plot. We
draw the nonzero entries of the adjacency matrix as black
dots. The grayscale visualization in Fig. 5 is a result of
coarsening the dpi-resolution and illustrates the density
of connections in an area of the adjacency matrix. This
yields a visualization comparable to the idealized block
models in Fig. 1. The node order in a Spy plot is arbi-
trary and, by permuting the nodes, can sometimes yield
visualizations that are suggestive of structural features in
a network. For the coauthorship and Facebook networks,
we use results from a single run of an implementation [86]
of a Louvain-like heuristic [30] for modularity optimiza-
tion to partition these networks into communities. We
then sorted nodes by community assignment: we chose
the order of communities manually to suggest potential
large-scale structures. For the voting similarity networks,
time provides a natural order for the nodes. We started
with nodes from the 1st Congress and ended with the
nodes from the 110th Congress. The small blocks on the
diagonal are the individual Congresses, which are almost
fully connected internally, and the off-diagonals result
from the interlayer coupling between the same individu-
als from different Congresses.

While certainly not definitive, Fig. 5 suggests several
hypotheses about the relationship between small-scale
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Nodes Edges 〈k〉 λ2 〈C〉 Refs. Description

CA-GrQc 4 158 13 422 6.5 0.0019 0.56 [24–26] Coauthorship network: arXiv general relativity

CA-AstroPh 17 903 196 972 22.0 0.0063 0.63 [24–26] Coauthorship network: arXiv astrophysics

FB-Johns55 5 157 186 572 72.4 0.1258 0.27 [11, 12] Johns Hopkins Facebook network

FB-Harvard1 15 086 824 595 109.3 0.0094 0.21 [11, 12] Harvard Facebook network

US-Senate 8 974 422 335 60.3 0.0013 0.50 [9, 76, 78] Network of voting patterns in U.S. Senate

US-House 36 646 6 930 858 240.5 0.0002 0.58 [9, 76, 78] Network of voting patterns in U.S. House

TABLE I. Six medium-sized networks. For each network, we show the number of nodes and edges in the largest connected
component (LCC), the mean degree/strength (〈ki〉), the second-smallest eigenvalue (λ2) of the normalized Laplacian matrix,
the mean clustering coefficient (〈Ci〉), prior references that used these networks, and a brief description.

(a) CA-GrQc (b) FB-Johns55 (c) US-Senate

(d) CA-AstroPh (e) FB-Harvard1 (f) US-House

FIG. 5. Sparsity-pattern (Spy) plots for the largest con-
nected component of each of our six example networks. The
coauthorship networks (CA-GrQc and CA-AstroPh) and
Facebook networks (FB-Johns55 and FB-Harvard1) are ar-
ranged by communities that we obtained using an implemen-
tation [86] of a Louvain-like heuristic for modularity optimiza-
tion [30]. For US-Congress, we preserve the temporal order
of the nodes starting with the first Congress in the top left
and ending with the 110th Congress in the bottom right.

structure and the large-scale structure—and, in particu-
lar, between small communities and large communities—
in these six networks. First, from Figs. 5c and 5f, it
appears that the large-scale structure in US-Senate
and US-House corresponds to that of a “banded” ma-
trix [87]. This banded structure is a result of the in-
terlayer edges in these networks. Second, from Figs. 5a
and 5d, it appears that CA-GrQc and CA-AstroPh
both have many small-scale communities. It appears
that they have a large-scale structure that is roughly
banded; but there also appear to be many “long-range”
off-diagonal interactions between distant nodes in the de-
picted ordering. Third, from Figs. 5b and 5e, we observe
that both FB-Johns55 and FB-Harvard1 appear to
have roughly 10 communities that are both relatively

large and relatively good.
From these visuals, it appears that nearly all of these

communities have dense internal connections and sparse
connections to other communities. Given the usual no-
tion that communities are sets of nodes with denser con-
nections among its constituent nodes than with the rest
of the network, the visualizations in Fig. 5 appear to
suggest that there might be interesting large-scale struc-
ture that might be exploitable in FB-Johns55 and FB-
Harvard1 but not in the other networks; and, in par-
ticular, that FB-Johns55 and FB-Harvard1 seem to
be examples of the case α11 ≈ α22 � α12 illustrated in
Fig. 1a.

The focus of the present investigation is to test the
extent to which the above hypotheses about the relation-
ship between small-scale structure and large-scale struc-
ture in these six networks is correct. As we have dis-
cussed, intuition like what we have illustrated in Fig. 5
is common in the development and validation of meth-
ods for community detection, so it is useful to delve into
great depth on a set of networks to explore the connec-
tions between small-scale and large-scale connections in
networks. As we will see in the next several sections,
the situation is considerably more subtle than these fig-
ures (and commonly-employed intuition) might suggest.
For example, with the exception of the small commu-
nities in CA-GrQc/CA-AstroPh and the large-scale
structure (i.e., the one-dimensional temporal ordering)
in US-Senate and US-House, these intuitive hypothe-
ses about the relationship between the local structure
and the global structure in these networks are not unam-
biguously supported by other evidence. Similarly, many
communities that appear to be “good” based on the usual
intuition and visualizations like that in Fig. 5 often are
judged to be largely artifactual from the perspective of
quantitative measures of community quality.

B. Network Community Profiles

We start by presenting our main results from using the
AclCut method (see Figs. 6 and 7). One obtains similar
insights about global structure using the MovCut (see



12

100 101 102 103 104
10−3

10−2

10−1

100

size

co
n
d
u
ct
a
n
ce

CA-GrQc

FB-Johns55

US-Senate

(a) NCP

100 101 102 103 104
10−3

10−2

10−1

100

101

102

size

co
n
d
u
ct
a
n
ce

ra
ti
o

CA-GrQc

FB-Johns55

US-Senate

(b) CRP

(c) CA-GrQc (d) FB-Johns55
 

 

0
0.5
1

(e) US-Senate

FIG. 6. NCP plots [in panel (a)] and conductance ratio profile (CRP) plots [in panel (b)] for CA-GrQc, FB-Johns55, and US-
Senate (i.e., the smaller network in each of the three pairs of networks from Table I) generated using the AclCut method. In
panels (c)–(e), we show modified Kamada-Kawai [88] spring-embedding visualizations that emphasize community structure [89]
of corresponding (color-coded) communities and their neighborhoods (2-neighborhood for CA-GrQc, a 1-neighborhood for FB-
Johns55, and all Senates that have at least one Senator in common with the communities for US-Senate). We find good
small communities but no good large communities in CA-GrQc; some weak large-scale structure in FB-Johns55 that does
not create substantial bottlenecks to the random-walk dynamics; and signatures of low-dimensional structure (i.e., good large
communities but no good small communities) for US-Senate, which results from the multilayer structure that encapsulates
the network’s temporal properties.

Appendix C) and EgoNet (see Appendix D), although
they can exhibit rather different local behavior.

In Fig. 6, we show the NCPs and CRPs for the smaller
network from each of the three pairs of networks from Ta-
ble I. In Fig. 7, we show the results for the corresponding
larger networks. Note the logarithmic scale for both the
vertical and horizontal axes in these figures as well as in
subsequent NCP and CRP plots. Observe from Figs. 6a
and 7a that the NCPs for networks of the same type are
qualitatively similar, whereas NCPs for networks of dif-
ferent types have qualitatively distinct shapes.

• For the co-authorship networks CA-GrQc and
CA-AstroPh, the NCPs have a mostly upward-
sloping shape, except for the region with fewer than
100 nodes. We conclude that CA-GrQc and CA-

AstroPh have good small (e.g., consisting of tens
of nodes) communities, but they do not have good
large (e.g., consisting of hundreds or thousands of
nodes) communities. These results are consistent
with the NCPs of LiveJournal from Fig. 2b and
with the results of [24–26]. Additionally, the high
values for the CRPs for the co-authorship networks
(see Figs. 6b and 7b) for communities with hun-
dreds or thousands of nodes reveals that these large
communities are loosely connected collections of
good, small communities. This feature is also vis-
ible in Fig. 6c, which shows selected communities
and their neighborhoods for the CA-GrQc net-
work.
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FIG. 7. NCP plots [in panel (a)] and CRP plots [in panel (b)] for CA-AstroPh, FB-Harvard1, and US-House (i.e., the
larger network in each of the three pairs of networks from Table I) generated using the AclCut method.

• For the Facebook networks FB-Johns55 and FB-
Harvard1, all of the communities at every size
(except for two small “communities” with 5 and
10 nodes in FB-Harvard1 [90]) have very large
conductances (greater than 10−1). This indicates
that the communities in this network all have very
poor community quality, in sharp contrast (though
for different reasons) with both the co-authorship
and voting networks. The essentially flat shape for
the NCPs of the Facebook networks illustrate that
these networks have strong expander-like proper-
ties (see Appendix A) and relatedly that there
are no substantial bottlenecks to the rapid mixing
of random walks on these networks. Both Face-
book networks have noticeable dips in their NCPs
at larger community sizes (about 220 and 1100
nodes for FB-Johns55, and about 1500 nodes for
FB-Harvard1), and the sets of nodes associated
with each of these dips correlate strongly with self-
reported demographic information [91].

• For the voting networks US-Senate and US-
House, the NCP has a predominantly downward-
sloping shape. This is characteristic of “low-
dimensional” networks, in the sense that we de-
scribed informally in Section II B. Informally, the
reason for the downward-sloping shape is that
US-Senate and US-House consist of a low-
dimensional structure that is evolving along a one-
dimensional scaffolding (i.e., time), upon which the
detailed structure of individual Congresses (i.e., a
good partition that is nearly along party lines) is
superimposed. (One can examine such structures
by using smaller values of the interlayer coupling
parameter; see Ref. [76].) This is consistent with
previous results [92].

These results, which illustrate that community qual-
ity changes very differently with size in each of the three
pairs of networks, also indicate that these three types
of networks have very different properties with respect
to large-scale versus small-scale community structure.
Moreover, the qualitative similarity in behavior between
the two networks in each pair suggests that the coarse
behavior of an NCP (downward-sloping, upward-sloping,
or flat) is indicative of large classes of networks and not
an artifact of our particular choice of example networks.
One obtains similar insights about global structure us-
ing the MovCut (see Appendix C) and EgoNet (see
Appendix D) methods, although they can exhibit rather
different local behavior. We investigate these differences
in local behavior in Section IV C.

C. Comparison of Results from AclCut, MovCut,
and EgoNet

The NCPs generated using either AclCut or Mov-
Cut (see Appendix C), and to a slightly lesser ex-
tent using EgoNet (see Appendix D), have similar
global features—i.e., they exhibit the same general trends
and have dips at small size scales that correspond to
nearly identical communities—indicating that we obtain
a broadly similar picture of the large-scale community
structure by using any of the methods. However, the
detailed local behavior of the three methods can dif-
fer considerably. Such behavior depends sensitively on
the choice of seed node, the choice of the parameters in
the different methods, and the specific details of each
method. In this section, we discuss the similarities and
differences in the results from these methods. In this
section, we only do calculations for the smaller networks
from each of the three network pairs in Table I (but we
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have observed similar results on the larger networks).

To compare different methods, we note that any mean-
ingful difference between them should manifest itself as a
difference in the rank order of nodes, as this determines
the assignment of nodes to local communities. We quan-
tify rank differences by computing the Spearman rank
correlation [93] between the (exact for MovCut and ap-
proximate for AclCut) PPR and EgoRank ranking vec-
tors. To make results from AclCut and MovCut com-
parable, we exploit the relation between γ and α (see Ap-
pendix B) to parametrize the MovCut method in terms
of α. We also restrict all comparisons to the support
of the corresponding approximate PPR vector that we
obtained using the AclCut method. This induces an
indirect dependency of the results from MovCut and
EgoNet on α and ε (in addition to the direct depen-
dency of MovCut on α).

In Tables II–IV, we show the results of our calculations
of Spearman rank correlations. For each of the three net-
works, we select 50 seed nodes by sampling uniformly
without replacement. We then compute PPR vectors
for these seed nodes using the AclCut and MovCut
method for different values of the truncation parameter ε
and teleportation parameter α, and we also compute the
EgoRank vector for each of the seed nodes. Recall that
smaller values of α correspond to more local versions of
the procedures, but that larger values of ε correspond to
more local versions of the procedures.

The AclCut and MovCut methods give very simi-
lar results for most of the 50 seed nodes in our sample,
although (as discussed below) some seed nodes do yield
noticeable differences. The two methods give the most
similar results for FB-Johns55 (mean: 0.92, minimum:
0.43), whereas we find larger deviations in both CA-
GrQc (mean: 0.85, minimum: −0.13) and US-Senate
(mean: 0.86, minimum: −0.44). Note that we calculated
the mean, maximum, and minimum over all sampled seed
nodes and parameter values.

Interestingly, the larger deviations between the two
methods for CA-GrQc and US-Senate occur at differ-
ent values of the truncation parameter ε. For CA-GrQc
(and, to a lesser extent, for FB-Johns55), we obtain the
largest deviations for smaller values (e.g., ε = 10−6). For
US-Senate, however, we obtain the largest deviations
for ε = 10−4. See the bold values in Tables II–IV. This
is consistent with the very different isoperimetric proper-
ties of these three networks, as revealed by their NCPs,
as well as with well-known connections between conduc-
tance and random walks.

There are two potential causes for the differences be-
tween the AclCut and MovCut method. First, there
is a truncation effect, governed by the parameter ε, in ap-
proximating the PPR vector using the AclCut method.
As ε becomes smaller, the approximation in AclCut be-
comes more accurate and this effect diminishes. Second,
the two methods differ in the precise way that they use
a seed vector to represent a seed node. Recall that the
AclCut method uses an indicator vector ~s to represent

a seed node i; thus, we use ~si = 1 whenever i is a seed
node, and we set all other entries in that vector to 0.
In contrast, the MovCut method projects the indicator
vector onto the orthogonal complement of the strength
vector to ensure that ~sTD~1 = 0 (see Appendix B). This
effect decreases as α→ 1.

The larger deviations between the two methods occur
for smaller values of ε in CA-GrQc and FB-Johns55;
for these, the truncation effect is small, suggesting that
the different way of representing a seed node is partially
responsible for the difference between the results of the
two methods for these networks. For larger values of
ε (in particular, ε ≥ 10−4), where the support of the
approximate PPR vector from the AclCut method is
small, the behavior of the two methods is very similar.
Consequently, the differences in the choice of seed vector
become more important for nodes that are “far away”
from the seed node, in the sense that they are rarely
visited by the personalized PageRank dynamics that un-
derlie these methods. As a result, the “local NCPs” for
the two methods in Figs. 8a and 9a are largely identical
for small community sizes but diverge for large commu-
nity sizes. (We use the term local NCP to refer to an
NCP that we computed using only a single seed node
without optimizing over the results from multiple seed
choices; see Ref. [37] for details on the construction of
local NCPs.)

For US-Senate, the two methods behave almost iden-
tically for small ε (see Table IV), so we conclude that
the different ways of representing a seed node have only
a small effect on this network. However, the trunca-
tion effect is more pronounced in this network compared
with CA-GrQc or FB-Johns55. This feature mani-
fests as larger deviations between AclCut and Mov-
Cut in Table IV for large ε and small α (i.e., where the
truncation has the strongest impact). The discrepancy
occurs because the AclCut method initially pushes a
large amount of probability to the interlayer neighbors
of the seed node (i.e., to the same Senator in different
Congresses). This probability does not diffuse to other
nodes for sufficiently large values of ε.

In Figs. 8–10, we illustrate the results from Tables II–
IV. In these figures, we plot the local NCPs for CA-
GrQc, FB-Johns55, and US-Senate for the seed
nodes (from the sample of 50) that yield the highest
and lowest mean Spearman rank correlation between the
AclCut and MovCut methods. In these figures, we
also include visualizations of example communities that
we obtained from the AclCut and MovCut methods
using a Kamada-Kawai-like spring-embedding visualiza-
tion [89] of the k-ego-nets of these seed nodes.

From the visualizations of the local communities, it
seems for CA-GrQc (see Fig. 8) and FB-Johns55 (see
Fig. 9) that nodes included in local communities obtained
from AclCut tend to be closer in geodesic distance than
those obtained from MovCut to the seed node. (To see
this, observe that red nodes tend to be larger than light
blue nodes in the visualization of the k-neighborhoods.)
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α
0.6 0.7 0.8 0.9 0.99

A-M A-E M-E A-M A-E M-E A-M A-E M-E A-M A-E M-E A-M A-E M-E

ε

10−3
max 1.00 0.99 0.99 1.00 0.98 0.98 1.00 0.97 0.97 1.00 0.95 0.95 0.98 0.89 0.86

mean 0.98 0.78 0.77 0.98 0.76 0.73 0.98 0.72 0.68 0.97 0.68 0.62 0.91 0.60 0.48

min 0.92 0.26 0.23 0.91 0.18 0.14 0.94 0.21 0.15 0.85 −0.01 −0.05 0.74 0.25 0.06

10−4
max 1.00 0.97 0.97 1.00 0.97 0.97 1.00 0.94 0.94 0.99 0.89 0.85 0.92 0.69 0.53

mean 0.99 0.74 0.72 0.98 0.73 0.68 0.97 0.70 0.64 0.95 0.63 0.54 0.89 0.51 0.36

min 0.96 0.16 0.10 0.91 −0.05 −0.19 0.84 0.35 −0.02 0.88 0.43 0.25 0.85 0.32 0.18

10−5
max 1.00 0.96 0.95 0.97 0.92 0.87 0.94 0.81 0.67 0.89 0.73 0.55 0.93 0.75 0.60

mean 0.91 0.74 0.58 0.89 0.69 0.51 0.85 0.65 0.42 0.78 0.62 0.33 0.84 0.63 0.36

min 0.24 0.21 −0.20 0.42 0.30 −0.10 0.42 0.39 −0.13 0.25 0.43 −0.10 0.49 0.44 0.05

10−6
max 0.84 0.85 0.68 0.79 0.81 0.49 0.70 0.79 0.39 0.80 0.81 0.47 0.93 0.75 0.60

mean 0.62 0.72 0.25 0.57 0.69 0.17 0.51 0.69 0.12 0.51 0.72 0.13 0.85 0.63 0.37

min 0.01 0.57 −0.36 0.07 0.52 −0.30 −0.06 0.50 −0.27 −0.13 0.57 −0.32 0.52 0.46 0.08

TABLE II. Pairwise comparison of the three methods using the Spearman rank correlation between the rank vectors from the
AclCut (A), MovCut (M), and EgoNet (E) methods for CA-GrQc. We use a uniform random sample of 50 nodes for each
of several values for the teleportation parameter α and truncation parameter ε. We take the maximum, mean, and minimum
over the seed nodes. Bold values highlight the largest deviations between AclCut and MovCut methods for a given value
of α.

α
0.6 0.7 0.8 0.9 0.99

A-M A-E M-E A-M A-E M-E A-M A-E M-E A-M A-E M-E A-M A-E M-E

ε

10−3
max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mean 1.00 0.85 0.84 1.00 0.82 0.81 0.99 0.79 0.79 0.98 0.78 0.77 0.98 0.78 0.75

min 0.95 0.61 0.56 0.94 0.54 0.47 0.80 0.55 0.53 0.80 0.55 0.49 0.77 0.40 0.39

10−4
max 1.00 0.89 0.89 1.00 0.93 0.93 1.00 0.91 0.91 1.00 0.89 0.89 1.00 0.88 0.88

mean 0.98 0.48 0.47 0.97 0.45 0.44 0.96 0.43 0.41 0.95 0.41 0.37 0.94 0.38 0.33

min 0.81 0.06 0.05 0.78 0.05 0.04 0.74 0.07 0.06 0.69 0.07 0.07 0.69 0.07 0.00

10−5
max 1.00 0.85 0.85 1.00 0.86 0.85 1.00 0.84 0.83 0.99 0.84 0.82 1.00 0.81 0.78

mean 0.98 0.58 0.54 0.97 0.59 0.54 0.97 0.63 0.57 0.96 0.61 0.54 0.95 0.53 0.46

min 0.90 0.24 0.18 0.91 0.26 0.17 0.91 0.23 0.14 0.89 0.22 0.07 0.88 0.18 0.04

10−6
max 0.99 0.75 0.46 0.97 0.69 0.46 0.91 0.71 0.39 0.90 0.73 0.47 0.97 0.69 0.57

mean 0.79 0.41 0.20 0.75 0.45 0.13 0.72 0.56 0.20 0.77 0.62 0.32 0.88 0.59 0.41

min 0.57 0.23 −0.07 0.49 0.24 −0.06 0.43 0.32 −0.02 0.49 0.32 0.01 0.60 0.26 0.07

TABLE III. Pairwise comparison of the three methods using the Spearman rank correlation between the ranking vectors from
the AclCut (A), MovCut (M), and EgoNet (E) methods for FB-Johns55. We use a uniform random sample of 50 nodes
for each of several values for the teleportation parameter α and truncation parameter ε. We take the maximum, mean, and
minimum over the seed nodes. Bold values highlight the largest deviations between AclCut and MovCut methods for a given
value of α.

If this observation holds more generally and is not just
an artifact of the particular communities that we show
in Figs. 8 and 9, then we should obtain higher Spearman
rank correlations between AclCut and EgoNet than
between MovCut and EgoNet. Indeed, Tables II–IV
consistently show this effect for all choices of ε and α
and for all three networks. Note that this effect is also
present in US-Senate, though it is less prominent in
its k-neighborhood visualization than is the case for the

other two networks.

Figures 8–10 also reveal that the three networks look
very different from a local perspective. For FB-Johns55
(see Fig. 9), both seed nodes that we considered result in
reaching a large fraction of all nodes after just 2 steps.
This is consistent with known properties of the full Face-
book graph (circa 2012) of individuals connected by re-
ciprocal “friendships.” For example, the mean geodesic
distance between pairs of nodes of the Facebook graph
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α
0.6 0.7 0.8 0.9 0.99

A-M A-E M-E A-M A-E M-E A-M A-E M-E A-M A-E M-E A-M A-E M-E

ε

10−3
max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mean 0.65 0.66 0.40 0.68 0.71 0.30 0.74 0.77 0.46 0.74 0.85 0.57 0.80 0.80 0.56

min 0.02 0.50 −0.05 0.38 0.32 −0.24 0.46 0.53 −0.07 0.50 0.68 −0.02 0.51 0.62 −0.00

10−4
max 1.00 0.93 0.87 1.00 0.92 0.77 1.00 0.93 0.82 1.00 0.89 0.75 0.93 0.81 0.61

mean 0.75 0.61 0.36 0.54 0.59 0.17 0.67 0.62 0.34 0.86 0.50 0.34 0.92 0.36 0.23

min −0.03 −0.16 −0.51 −0.32 −0.11 −0.63 −0.44 0.15 −0.36 0.50 −0.08 −0.26 0.77 −0.20 −0.38

10−5
max 1.00 0.91 0.90 1.00 0.89 0.87 1.00 0.85 0.83 1.00 0.80 0.78 1.00 0.85 0.84

mean 0.99 0.58 0.54 0.99 0.48 0.46 0.99 0.42 0.40 0.96 0.44 0.40 0.95 0.43 0.39

min 0.86 0.03 0.01 0.88 −0.02 −0.02 0.88 −0.09 −0.13 0.80 −0.17 −0.20 0.80 0.07 0.01

10−6
max 1.00 0.84 0.84 1.00 0.84 0.84 1.00 0.84 0.85 1.00 0.87 0.86 1.00 0.96 0.96

mean 0.94 0.54 0.48 0.98 0.55 0.50 0.99 0.62 0.60 1.00 0.69 0.68 0.99 0.91 0.89

min 0.85 0.30 0.22 0.89 0.08 0.19 0.98 0.25 0.21 0.98 0.30 0.29 0.96 0.83 0.73

TABLE IV. Pairwise comparison of the three methods using the Spearman rank correlation between the ranking vectors from
the AclCut (A), MovCut (M), and EgoNet (E) methods for US-Senate. We use a uniform random sample of 50 nodes
for each of several values for the teleportation parameter α and truncation parameter ε. We take the maximum, mean, and
minimum over the seed nodes. Bold values highlight the largest deviations between AclCut and MovCut methods for a given
value of α.
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FIG. 8. CA-GrQc: (a) Local NCPs for the seed nodes (out of the 50 nodes that we sampled) with the highest and lowest mean
Spearman correlation over the sampled parameter values. These NCPs highlight the difference in behavior for the two methods
for large communities. (b) Kamada-Kawai-like spring-embedding visualization [89] of (bottom right) the 9-neighborhood of the
seed node with the smallest difference between the two methods and (top left) the 6-neighborhood of the seed node with the
largest difference. In these two visualizations, the node size decreases as a function of geodesic distance from the seed node.
We color the nodes according to whether they belong to the local community that we obtained using the AclCut method, the
one we obtained using the MovCut method, or both methods.

is very small: it was recently estimated by Facebook’s
Data Team and their collaborators to be about 4.74 [94].
Additionally, as reported by Facebook’s Data Team, one
can view Facebook as a collection of ego networks that
have been patched together into a network whose global
structure is sparse [44] (and such structure is an impor-
tant motivation for the locally-biased notion of commu-

nity structure that we advocate in this paper).

For CA-GrQc, we obtain very different neighbor-
hoods starting from our two different seed nodes. The
node that exhibits the largest difference in behavior for
both the AclCut and MovCut methods appears to be
better connected in the network in the sense that the k-
neighborhood (for any k until saturation occurs) is much
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FIG. 9. FB-Johns55: (a) Local NCPs for the seed nodes (out of the 50 nodes that we sampled) with the highest and lowest
mean Spearman correlation over the sampled parameter values. These NCPs highlight the difference in behavior for the two
methods for large communities. (b) Kamada-Kawai-like spring-embedding visualization [89] of the 2-neighborhoods of both
seed nodes. The one with the smallest difference in the bottom right and the one with the largest difference in the top left.
In these two visualizations, the node size decreases as a function of geodesic distance from the seed node. The smallest nodes
are more than 2 steps away from the seed node, but they appear in at least one of the local communities. We color the nodes
according to whether they belong to the local community that we obtained using the AclCut method, the one we obtained
using the MovCut method, or both methods.
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FIG. 10. US-Senate: (a) Local NCP for the seed nodes out of the 50 nodes sampled with the highest and lowest average
Spearman correlation over sampled parameter values. These NCPs highlight the difference in behavior for the two methods
for large communities. (b) Kamada-Kawai-like spring-embedding visualization [89] of the 3-neighborhoods of both seed nodes.
The one with the smallest difference in the bottom right and the one with the largest difference in the top left. In these two
visualizations, the node size decreases as a function of geodesic distance from the seed node. We color the nodes according
to whether they belong to the local community that we obtained using the AclCut method, the one we obtained using the
MovCut method, or both methods.

larger than that of the node that showed the smallest
difference. (That is, it is more in the “core” than in
the “periphery” of the nested core-periphery structure of
Refs. [24, 25].) We observe a similar phenomenon for FB-

Johns55 and US-Senate. Furthermore, its 1-ego-net
and 2-ego-net are highly clustered, in the sense that they
contain many closed triangles. For the seed node that
showed the smallest difference between the AclCut and
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MovCut methods, we need to consider the 6-ego-net
(which has 20 nodes) to obtain a network of similar size
to the 2-ego-net for the seed node with the largest differ-
ence (which has 15 nodes). In the case of the seed node in
our sample that showed the least difference between the
two methods, even the 6-ego-net appears rather tree-like;
it contains few closed triangles and no larger cliques.

For US-Senate, the 1-neighborhood of any seed node
contains only the node itself and those corresponding to
the same Senator in different Congresses [95]. As one
begins to consider nodes that are further away, one first
reaches corresponding Senators in other Congresses be-
fore reaching other Senators with similar voting patterns
from the same Congress. This behavior of the EgoNet
method contrasts with the (PageRank-based) AclCut
and MovCut methods, which tend to initially select
all Senators from one Congress before reaching Senators
from other Congresses.

D. Meso-Scale Structure

From the perspective of the locally-biased community-
detection methods that we use in this paper, one can
view intermediate-sized (i.e., meso-scale) structures in
networks as arising from collections of local features—
e.g., via overlaps of local communities that one obtains al-
gorithmically using locally-biased dynamics such as those
that we consider. Such local features depend not only on
the network adjacency matrix but also on the dynamical
process under study, the initial seed(s) from which one
is viewing a network, and the locality parameters of the
method (which corresponds to the dynamical process)
that determine how locally one is viewing the network.
Although a full discussion of the relationship between lo-
cal structure and meso-scale structure and global struc-
tures is beyond the scope of this paper, here we provide
an initial example of such results.

To try to visualize meso-scale and global network struc-
tures that we obtain from the local communities that we
identify, we define an n× n association matrix Ã (where
n is again the number of nodes in the network), which en-
codes pairwise relations between nodes based on a sample
of local communities. For a given sample S of local com-
munities (obtained, e.g., by running a given method with
many seed nodes and values of a locality parameter), the
entries of the association matrix are given by the number
of times that a pair of nodes appear together in a local
community, normalized by the number of times either of
them appeared. That is, the elements of the association
matrix are

Ãij =
|{S ∈ S : i ∈ S and j ∈ S}|
|{S ∈ S : i ∈ S or j ∈ S}| . (8)

Our procedure for extracting global network structure
from a sampled set of communities is similar in spirit
to computing association (or “co-classification”) matri-
ces that have been constructed from sampling a land-

scape of the modularity objective function [96], and one
can in principle analyze these matrices further using the
same methods. The additional normalization in our def-
inition of association matrices is necessary to correct for
the oversampling of large communities relative to small
communities (which results from sampling nodes uni-
formly at random). At first glance, association matrices
computed by sampling a modularity landscape appear to
reveal much clearer community structure in these net-
works than what we obtain by sampling local communi-
ties. However, this is largely an artifact of the well-known
resolution limit of modularity optimization [35]. One can
mitigate this effect by using one of the multi-resolution
generalizations of modularity [97, 98] to sample the mod-
ularity landscape across different values of the resolution
parameter. This yields association matrices that are sim-
ilar in appearance to the ones that we obtain by sampling
local communities.

To visualize the association matrices in a way that re-
veals global network structure, it is important to find a
good node order. We found the sorting method suggested
in Ref. [96] to be impractically slow for the networks that
we study. Instead, we sort the nodes based on the op-
timal leaf ordering [99] for the average-linkage hierarchi-
cal clustering tree of the association matrix. (For US-
Senate, we do this procedure within a given Congress,
and we then use the natural temporal ordering to define
the inter-Congressional ordering.)

In addition, to see small-scale structure using samples
S obtained from MovCut, we use a community-size pa-
rameter c that limits the volume of the resulting com-
munity based on the desired correlation with the seed
vector. In this paper, we use c ∈ {10i : i = 1, . . . , 5}.
See Ref. [37] for details. We summarize our results in
Figs. 11–14.

In Fig. 11, we show the result of applying this pro-
cedure with communities that we sampled using the
AclCut, MovCut, and EgoNet methods. In each
case, we keep only the best conductance community
for each sampled ranking vector. The most obvious
feature of the visualizations in Fig. 11 is that—except
for US-Senate, for which there is a natural large-scale
global structure defined by the one-dimensional temporal
ordering—the visualizations are much more complicated
than any of the idealized structures in Fig. 1 (which sug-
gests that the visualizations might be revealing at least
as much about the inner workings of the visualization
algorithm as about the networks being visualized). The
structures in Fig. 1 are trivially interpretable, whereas
those in real networks (e.g., as illustrated in Fig. 11) are
extremely messy and very difficult to interpret. In the
paragraphs below, we will discuss the structural features
in Fig. 11 in more detail.

For CA-GrQc (see Fig. 12 as well as Fig. 11), we
observe many small communities that are composed of
about 10–100 nodes. These communities, which corre-
spond to the dark red blocks along the diagonal (see
the inset in Fig. 11a), are responsible for the dips in the
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FIG. 11. Visualizations of association matrices for CA-GrQc, FB-Johns55, and US-Senate illustrate how meso-scale and
global structures emerge from the superposition and overlap of many local communities. See the main text for a description
of how we construct the association matrices. For each of the three networks, we generate the subfigures using the same three
sampling procedures that we use to generate the NCPs: we use AclCut for panels (a)–(c), we use MovCut for panels (d)–(f),
and we use EgoNet for panels (g)–(i).

NCPs (see Figs. 6a, 16a, and 18a) for this network. How-
ever, these small communities do not combine to form
large communities, which would result in large diagonal
blocks in the association matrices. Instead, the small
communities appear to amalgamate into a single large

block (or “core”). In Fig. 12, we aim to make this ob-
servation more intuitive by showing how the local com-
munities for three different seed nodes spread through
the network as we change the resolution, i.e., the local-
ity bias parameter. We construct the weighted network
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(a) ε = 10−2 (b) ε = 10−3

(c) ε = 10−4 (d) ε = 10−5

FIG. 12. Visualization of global structure in CA-GrQc. We
constructed the network layout by weighting each edge us-
ing the corresponding entry of the association matrix for the
AclCut method (Fig. 11a). We then applied the spring em-
bedding visualization algorithm [89] to the resulting weighted
network. For ease of visualization, we only plot edges with
weight larger than the mean edge weight. Colored nodes cor-
respond to local communities for three different seed nodes.
Nodes that are a member of more than one community are
drawn in a mixed color (e.g., blue and yellow become green;
and blue, yellow, and red become blackish, in panel (d)). As
we decrease the resolution parameter ε, the different commu-
nities first explore local structure before merging and each
covering most of the network, in panel (d).

G̃ = (V,E, w̃) shown in Fig. 12 from the unweighted CA-
GrQc network G = (V,E) using the association matrix
for the AclCut method (Fig. 11a). We assign each edge
(i, j) ∈ E a weight based on the corresponding entry of

the association matrix, i.e., w̃ij = Ãij if (i, j) ∈ E and
w̃ij = 0 otherwise. Based on our earlier results with
the slowly-increasing NCP, as well as previous results in
Refs. [24–26], we interpret these features shown in Fig. 12
in terms of a nested core-periphery structure, in which
the network periphery consists of relatively good com-
munities and the core consists of relatively densely con-
nected nodes.

For FB-Johns55 (see Fig. 13 as well as Fig. 11), we ob-
serve two relatively large communities, which correspond
to the two large diagonal blocks in Figs. 11b and 11e
and which underlie the dips in the NCPs in Figs. 6a
and 16a. Note, however, from the scale of the vertical axis

(a) ε = 10−3 (b) ε = 10−4

(c) ε = 10−5 (d) ε = 10−6

FIG. 13. Visualization of global structure in FB-Johns55.
We constructed the network layout by weighting each edge
using the corresponding entry of the association matrix for
the AclCut method (Fig. 11b) and then applying the same
procedure as in Fig. 12. Colored nodes correspond to local
communities for three different seed nodes. Note the differ-
ence in behavior for the red community versus the blue and
yellow communities. The blue and yellow communities grad-
ually spread as we decrease ε, and they eventually merge to
cover a large part of the network. However, the red com-
munity quickly spreads initially as we decrease ε but then
remains localized as we decrease ε further.

in Figs. 6a and 16a that the community quality of these
communities is very low, so one should actually construe
the visualization in Figs. 11b and 11e as highlighting
a low-quality community that is only marginally better
than the other low-quality communities that are present
in that network. Based on this visualization as well as our
earlier results, the remainder of FB-Johns55 does not
appear to have much community structure (at least based
on using the conductance diagnostic to measure internal
versus external connectivity). However, there do appear
to be some remnants of highly overlapping communities
that one could potentially identify using other methods
(e.g., the one in Ref. [36]). The EgoNet method (see
Fig. 11h) is unable to resolve not only these small commu-
nities but also the larger low-quality communities. Fig-
ure 13 shows how the local communities for two seed
nodes that do not belong to one of the two large com-
munities slowly spread and eventually merge (blue and
yellow nodes), whereas the red community (which corre-
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(a) ε = 10−3 (b) ε = 10−4

(c) ε = 10−5 (d) ε = 10−6

FIG. 14. Visualization of global structure in US-Senate. We
constructed the network layout by reweighting each edge us-
ing the corresponding entry of the association matrix for the
AclCut method (Fig. 11c) and then applying the same pro-
cedure as in Figs. 12 and 13. Colored nodes correspond to
local communities for three different seed nodes. The spread-
ing behavior of the different local communities largely follows
the temporal structure of the network.

sponds to the smaller of the two communities) is quickly
identified and remains separate from the other commu-
nities.

For US-Senate (see Fig. 14 as well as Fig. 11), we
clearly observe the signature of temporal-based commu-
nity structure at a large size scale. See Figs. 11c, 11f, and
11i. Using AclCut and MovCut, we also obtain parti-
tions at the scale of individual Congresses (see the insets
in Figs. 11c and 11f), which sometimes split into two or
occasionally three individual communities. These latter
partitions have been discussed previously in terms of po-
larization between parties [9, 92, 100]. Because we fixed
the temporal order of Congresses for US-Senate and
only sort Senators within the same Congress, this visu-
alization reveals communities within each Senate as well
as more temporally-disparate communities. In particu-
lar, for the EgoNet method, this ordering introduces a
checkerboard pattern that correspond to temporal com-
munities that contain Senators from several Congresses.
Figure 14 clearly shows that this temporal structure also
dominates the behavior of local communities for individ-
ual seed nodes.

An important point from these visualizations is that,

for both CA-GrQc and FB-Johns55, the meso-scale
and large-scale structures that result from the superpo-
sition of local communities does not correspond partic-
ularly well to intuitive good-conductance communities.
Relatedly, it also does not correspond particularly well
to an intuitive low-dimensional structure or a nearly de-
composable block-diagonal matrix of community assign-
ments (see our illustration in Fig. 1a), one or both of
which are often assumed (typically implicitly) by many
global methods for algorithmically detecting communi-
ties in networks [5, 6, 37, 101, 102]. Of the networks
that we investigate, only the temporal structure in US-
Senate (as well as in US-House, which is a related
temporally-dominant network) closely resembles such an
idealization. This is reflected clearly in its downward-
sloping NCP (see Figs. 6a, 16a, and 18a) and in the vi-
sualizations in Fig. 11.

Instead, in the other (e.g., collaboration, Facebook,
and many many other realistic [24, 25]) networks, com-
munity structure as a function of size is much more sub-
tle and complicated. Fortunately, our locally-biased per-
spective provides one means to try to resolve such intri-
cacy. By averaging over results from different seed nodes,
a local approach like ours leads naturally to the presence
of strongly overlapping communities. Overlapping com-
munity structure has now been studied for several years
[103–105], and recent observations continue to shed new
light on the ubiquity of community overlap [36]. Overlap
of communities in networks is a pervasive phenomenon
[36, 106]; and our expectation is that most large real-
istic networks have communities with significant over-
lap, rather than merely a small amount of overlap that
would amount to a small perturbation of the idealized,
nearly decomposable communities in Fig. 1a. Addition-
ally, such overlaps imply that larger communities tend to
have lower quality in terms of their internal versus exter-
nal connectivity (i.e., in terms of how much they resemble
the intuitive communities that many researchers know
and love) than smaller communities—in agreement with
our empirical results on both the collaboration networks
and Facebook networks, but in strong disagreement with
popular intuition. In these latter cases, recent work that
fits related networks with upward-sloping NCPs to hi-
erarchical Kronecker graphs resulted in parameters that
are consistent with the core-periphery structure that we
illustrated in Fig. 1b [107].

V. EMPIRICAL RESULTS ON SYNTHETIC
BENCHMARKS

Synthetic benchmark networks with a known, planted
community structure can be helpful for validating and
gaining a better understanding of the behavior of
community-detection algorithms. For such an approach
to be optimally useful, it is desirable for the synthetic
benchmarks to reproduce relevant features of real net-
works with community structure; and it is challenging
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(c) AclCut, 〈k〉 = 20, kmax = 50, τ1 = −2,
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FIG. 15. NCPs of LFR synthetic benchmark networks [108] with n = 10000 nodes. Colors correspond to different values of
the mixing parameter µ. Our choices for the mean degree 〈k〉, maximum degree kmax, exponent of the degree distribution τ1,
exponent of the community size distribution τ2, minimum community size cmin, and maximum community size cmax correspond
to the ones used in Refs. [28, 109] to benchmark community-detection algorithms.

to develop good benchmarks that reproduce community
structure and other structural properties of medium-sized
and larger realistic networks. An extremely popular—
and in some ways useful—family of benchmark net-
works that aims to reproduce some features of real net-
works are the so-called LFR (Lancichinetti-Fortunato-
Radicchi) networks [108, 110]. By design, LFR networks
have power-law degree distributions as well as power-law
community-size distributions, they are unweighted, and
they have non-overlapping planted communities. Moti-
vated by our empirical results on networks constructed
from real data, we also apply our methods to LFR net-
works to test the extent to which they are able to repro-
duce the three classes of NCP behavior (upward-sloping,
flat, and downward-sloping) that we have observed with
real networks.

To parametrize the family of LFR networks, we specify
its power-law degree distribution using its exponent τ1,
mean degree 〈k〉, and maximum degree kmax. Similarly,
we specify its power-law community size distribution us-
ing its exponent τ2, minimum community size cmin, and
maximum community size cmax, with the additional con-
straint that the sum of community sizes should equal
the size of the network n. Furthermore, we specify the
strength of community memberships using a mixing pa-
rameter µ, where each node shares a fraction 1−µ of its
edges with nodes in its own community. A simple calcu-
lation shows that this definition of the mixing parameter
implies that each community in the planted partition has
conductance µ (up to rounding effects).

To construct a network with these parameters, we
sample n degrees from the degree distribution and sam-
ple community sizes from the community size distribu-
tion. We then assign nodes to communities uniformly at
random, with the constraint that a node cannot be as-
signed to a community that is too small for the node to
have the correct mixing-parameter value. We then con-
struct inter-community and intra-community edges sep-

arately by connecting the corresponding stubs (i.e., ends
of edges) uniformly at random. We use the implementa-
tion by Lancichinetti [111] to generate LFR networks.

In Fig. 15, we show representative NCPs for LFR net-
works for three choices of parameters for the degree dis-
tribution and community-size distribution that have been
used previously to benchmark community-detection al-
gorithms [28, 108, 109]. (We generated the results pre-
sented in Fig. 15 using the AclCut method, but we ob-
tain nearly identical NCPs using the MovCut method.)
The three subfigures demonstrate that all three parame-
ter choices yield networks with similar NCPs. In partic-
ular, we observe that—above a certain critical size—the
best communities have comparable quality, as a function
of increasing size. Depending on the particular param-
eter values, this can be of similar quality to or some-
what better than that which would be obtained by, e.g.,
a vanilla (not extremely sparse) ER random graph, across
all larger size scales. That is, above the critical size, the
NCP is approximately flat. Increasing the topological
mixing parameter µ in the LFR network generative mech-
anism at first shifts the entire NCP upwards because the
number of inter-community edges increases. For µ ≈ 1,
it levels off to the characteristic flat shape for an NCP
of a network generated from the configuration model of
random graphs.

Importantly, the behavior for the LFR benchmark net-
works from Ref. [108] that we illustrate in Fig. 15 does
not resemble the NCPs for any of the real-world networks
in either the present paper or in Ref. [24, 25]. In addition,
we have been unable to find parameter values for which
the qualitative properties of realistic NCPs—in particu-
lar, a relatively gradually upward-sloping NCP—are re-
produced, which suggests that the community structure
generated by the LFR benchmarks is not realistic in
terms of its size-resolved properties.

To verify that this behavior is not an artifact
of the particular choices of parameters shown in
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Fig. 15, we sampled sets of parameters uniformly
at random with n ∈ {1000, 10 000, 50 000}, τ1, τ2 ∈
{−1,−2, . . . ,−5}, 〈k〉 ∈ {10, 11, . . . , 100}, kmax ∈
{〈k〉, 〈k〉 + 1, . . . , 250}, cmin ∈ {10, 11, . . . , 250}, and
cmax ∈ {max(cmin, kmax), . . . , 250}. The aggregate trends
of the NCPs for the LFR benchmark networks with the
different parameters we sample are similar to and consis-
tent with the results shown in Fig. 15. Hence, although
the LFR benchmark networks are useful as tests for
community-detection techniques, our calculations sug-
gest that they are unable to reproduce a fundamental
feature of many real networks with respect to varia-
tion in community quality (and, in particular, worsening
community quality) as a function of increasing commu-
nity size.

Based on our empirical observations, our locally-biased
perspective on community detection suggests a natural
approach to determine whether synthetic benchmarks
possess small-scale, medium-scale, and large-scale com-
munity structure that resembles that of large realis-
tic networks: namely, a family of synthetic benchmark
networks ought to include parameter values that gen-
erate networks with (robust) upward-sloping, flat, and
downward-sloping NCPs (as observed in Figs. 2a and 6a).

VI. CONCLUSIONS AND DISCUSSION

In this paper, we have conducted a thorough inves-
tigation of community quality as a function of commu-
nity size in a suite of realistic networks, and we have
reached several conclusions with important implications
for the investigation of realistic medium-sized to large-
scale networks. Our results build on previous work on
using network community profiles (NCPs) to study large-
scale networks [24–26]. In this paper, we have employed a
wider class of community-identification procedures, and
we have discovered a wider class of community-like be-
haviors (as a function of community size) in realistic
networks than what had been reported previously in
the literature [112]. In addition, using NCPs, we have
discovered that the popular LFR synthetic benchmark
networks, which are often used to validate community-
detection algorithms—and which are the most realistic
synthetic benchmark networks that have been produced
to test methods for community detection [113]—exhibit
behavior that is markedly different from many realistic
networks. Our result thus underscores the importance of
developing realistic benchmark graphs whose NCPs are
qualitatively similar to those of real networks. Taken
together, our empirical results yield a much better un-
derstanding of realistic community structure in large re-
alistic networks than was previously available, and they
provide promising directions for future work. More gen-
erally, because our approach for comparing community
structures in networks (using NCPs and conductance ra-
tio profiles) is very general—e.g., one can follow an anal-
ogous procedure with other community-quality diagnos-

tics, other procedures for community generation, etc.—
our locally-biased and size-resolved methodology is an
effective way to investigate size-resolved meso-scale net-
work structures much more generally.

The main conclusion of our work is that commu-
nity structure in real networks is much more intricate
than what is suggested by the block-diagonal assump-
tion that is (either implicitly or explicitly) made by most
community-detection methods (including ones that al-
low overlapping communities [103]) and when using the
synthetic benchmark networks that have been developed
to test those methods. Community structure interplays
with other meso-scale features, such as core-periphery
structure [36, 62, 64], and investigating only community
structure without consideration of other structures can
lead to misleading results. A local perspective on com-
munity detection, like the one that we have advocated
in the present paper, allows pervasive community over-
lap in a natural way—which is an important feature to
capture when considering real social networks. Addition-
ally, the large-scale consensus community structure that
we obtain subsequently by “pasting together” local com-
munities is not constrained to resemble a global block-
diagonal structure. This is a key consideration in the
study of meso-scale structures in real networks.

Although most algorithmic methods for community de-
tection take a different approach from ours, the observa-
tion that network community structure depends not only
on the network structure per se but also on the dynami-
cal processes that take place on a network and the initial
conditions (i.e., seed node or nodes) for those processes,
is rather traditional in many ways. Recall, for example,
Granovetter’s observation that a node with many weak
ties is ideally suited to initialize a successful social con-
tagion process [114]. Our perspective also meshes better
than global ones with real-life experience in our own net-
works. Both of these observations underscore our point
that whether particular network structures form bottle-
necks for a dynamical process depends not only on the
process itself but also on the initial conditions of that pro-
cess.

More generally, one might hope that our size-resolved
and locally-biased perspective on community detection
can be used to help develop new diagnostics that comple-
ment widely-used and intuitive concepts such as closeness
centrality, betweenness centrality, and the many other
existing global notions. These will be of particular inter-
est for investigating large networks—or even modestly-
sized networks such as those that we have considered—
where traditional algorithmic and visualization methods
have serious difficulties. Because the study of meso-scale
structure in networks is important for understanding how
local and small-scale properties of a network interact with
global or large-scale properties, we expect that taking a
locally-biased perspective on community detection and
related problems will yield interesting and novel insights
on these and related questions.
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Appendix A: Expander Graphs

In this section, we provide a brief introduction to the
concept of an expander graph (or, more simply, an ex-
pander) [115]. Essentially, expanders are graphs that
are very well-connected and thus do not have any good
communities (when measured with respect to diagnos-
tics such as conductance). Because our empirical re-
sults indicate that many large social and information
networks are expanders—at least when viewed at large
size-scales—it is useful to review basic properties about
expander graphs. Although most of the technical aspects
of expander graphs are beyond the scope of this paper,
Ref. [116] provides an excellent overview of this topic.

Let G = (V,E) be a graph, which we assume for sim-
plicity is undirected and unweighted. For the moment,
we assume that all nodes have the same degree d (i.e., G
is d-regular). For S1, S2 ⊂ V , the set of edges from S1 to
S2 is then

E(S1, S2) = {(u, v) : u ∈ S1, v ∈ S2, (u, v) ∈ E} . (A1)

In this case, the number |S| of nodes in S is a natu-
ral measure of the size of S. Additionally, the quantity
|E(S, S)|, which indicates the number of edges that cross
between S and S, is a natural measure of the size of the
boundary between S and S.

We also define the edge expansion of a set of nodes
S ⊂ V as

h(S) =
|E(S, S)|
|S| , (A2)

in which case the edge expansion of a graph G is the
minimum edge expansion of any subset (of size no greater
than n/2) of nodes:

h(G) = min
S⊂V :|S|≤n

2

h(S) . (A3)

A sequence of d-regular graphs {Gi}i∈N is a family of
expander graphs if there exists an ε > 0 such that h(Gi) ≥
ε for all i ∈ N. Informally, a given graph G is an expander
if its edge expansion is large.

As reviewed in Ref. [116], one can view expanders from
several complementary viewpoints. From a combinato-
rial perspective, expanders are graphs that are highly
connected in the sense that one has to sever many edges
to disconnect a large part of an expander graph. From
a geometric perspective, this disconnection difficulty im-
plies that every set of nodes has a relatively very large
boundary. From a probabilistic perspective, expanders
are graphs for which the natural random-walk process
converges to its limiting distribution as rapidly as pos-
sible. Finally, from an algebraic perspective, expanders
are graphs in which the first nontrivial eigenvalue of the
Laplacian operator is bounded away from 0. (Because
we are talking here about d-regular graphs, note that this
statement holds for both the combinatorial Laplacian and
the normalized Laplacian.) In addition, constant-degree

(i.e., d-regular, for some fixed value of d) expanders are
the metric spaces that (in a very precise and strong
sense [116]) embed least well in low-dimensional spaces
(such as those discussed informally in Section II B). All
of these interpretations imply that smaller values of ex-
pansion correspond more closely to the intuitive notion of
better communities (whereas larger values of expansion
correspond, by definition, to better expanders.)

Note the similarities between Eq. (A2) and Eq. (A3),
which define expansion, with Eq. (3) and Eq. (4), which
define conductance. These equations make it clear that
the difference between expansion and conductance sim-
ply amounts to a different notion of the size (or volume)
of sets of nodes and the size of the boundary (or surface
area) between a set of nodes and its complement. This
difference is inconsequential for d-regular graphs. How-
ever, because of the deep connections between expansion
and rapidly-mixing random walks, the latter notion (i.e.,
conductance) is much more natural for graphs with sub-
stantial degree heterogeneity. The interpretation of fail-
ing to embed well in low-dimensional spaces (like lines or
planes) is not as extremal in the case of conductance and
degree-heterogeneous graphs as it is in the case of expan-
sion and degree-homogeneous graphs; but the interpre-
tations of being well-connected, failing to provide bot-
tlenecks to random walks, etc. all hold for conductance
and degree-heterogeneous graphs such as those that we
consider in the main text of the present paper. Accord-
ingly, it is insightful to interpret our empirical results
on small-scale versus large-scale structures in networks
should be in light of known facts about expanders and
expander-like graphs.

Appendix B: Community Quality, Dynamics on
Graphs, and Bottlenecks to Dynamics

In this section, we describe in more detail how we al-
gorithmically identify possible communities in graphs.
Because we are interested in local properties and how
they relate to meso-scale and global properties, we take
an operational approach and view communities as the
output of various dynamical processes (e.g., diffusions or
geodesic hops), and we discuss the relationship between
the output of those procedures to well-defined optimiza-
tion problems. The idea of using dynamics on a net-
work has been exploited successfully by many methods
for finding “traditional” communities (of densely con-
nected nodes) [9, 32, 53, 117–120] as well as for find-
ing sets of nodes that are related to each other in other
ways [48, 54, 117, 121, 122].

In this paper, we build on the idea that random walks
and related diffusion-based dynamics, as well as other
types of local dynamics (e.g., ones, like geodesic hops,
that depend on ideas based on egocentric networks),
should get “trapped” in good communities. In partic-
ular, we consider the following three dynamical methods
for community identification.
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1. Dynamics Type 1: Local Diffusions (the
“AclCut” method).

In this procedure, we consider a random walk that
starts at a given seed node s and runs for some small
number of steps. We take advantage of the idea that
if a random walk starts inside a good community and
takes only a small number of steps, then it should be-
come trapped inside that community. To do this, we use
the locally-biased personalized PageRank (PPR) proce-
dure of Refs. [123, 124]. Recall that a PPR vector is
implicitly defined as the solution of the equation

pr(α,~s) = αD−1Apr(α,~s) + (1− α)~s , (B1)

where 1 − α is a “teleportation” probability and ~s is a
seed vector. From the perspective of random walks, evo-
lution occurs either by the walker moving to a neighbor
of the current node or by the walker “teleporting” to a
random node (e.g., determined uniformly at random as
in the usual PageRank procedure, or to a random node
that is biased towards ~s in the PPR procedure). In gen-
eral, teleportation results in a bias to the random walk,
which one usually tries to minimize when detecting com-
munities. (See Ref. [125] for clever ways to choose ~s with
this goal in mind.)

The algorithm of Refs. [123, 124] deliberately exploits
the bias from teleportation to achieve localized results.
It computes an approximation to the solution of Eq. (B1)
(i.e., it computes an approximate PPR vector) by strate-
gically “pushing” mass between the iteratively-updated
approximate solution vector and a residual vector in such
a way that most of the nodes in the original network are
not reached. Consequently, this algorithm is typically
much faster for moderately-large to very large graphs
than is the näıve algorithm to compute a solution to
Eq. (B1). The algorithm is parametrized in terms of a
“truncation” parameter ε where larger values of ε corre-
spond to more locally-biased solutions. We refer to this
procedure as the AclCut method.

2. Dynamics Type 2: Local Spectral Partitioning
(the “MovCut” method).

In this procedure, we formalize the idea of a locally-
biased version of the leading nontrivial eigenvector of the
normalized Laplacian L that can be used in a locally-
biased version of traditional spectral graph partitioning.

Following Ref. [37], consider the following optimization
problem:

minimize
~x

~xTL~x

subject to ~xT~x = 1 ,

~xTD1/2~1 = 0

(~xTD1/2~s)2 ≥ κ ,

(B2)

where κ is a locality parameter and ~s is a vector, which
satisfies the constraints ~sTD~s = 1 and ~sTD~1 = 0, and
which represents a seed set of nodes. That is, in the
norm defined by the diagonal D matrix, the seed vec-
tor ~s is unit length and is exactly orthogonal to the all-
ones vector. This locally-biased version of standard spec-
tral graph partitioning (which becomes the usual global
spectral-partitioning problem if the locality constraint
(~xTD1/2~s)2 ≥ κ is removed) was introduced in [37],
where it was shown that the solution vector ~x∗ inherits
many of the nice properties of the solution to the usual
global spectral-partitioning problem. The solution ~x∗ is
of the form

~x∗ = c (LG − γDG)
+
DG~s , (B3)

where the parameter γ ∈ (−∞, λ2(G)) is related to the
teleportation parameter α via the relation γ = α−1

α
(see [37]) and c ∈ [0,∞] is a normalization constant.

As one can see from Eq. (B3), the solution ~x∗ of
Eq. (B2) is an exact PPR vector with personalized tele-
portation vector ~s. Consequently, it can be computed as
the solution to a system of linear equations. In addition,
if one performs a sweep cut (see the discussion below)
of this solution vector to obtain a locally-biased network
partition, then one obtains Cheeger-like guarantees on
approximation quality for the associated network com-
munity. Moreover, if the seed vector ~s corresponds to
the indicator vector of a single node i, then this is a re-
laxation of the following locally-biased graph partitioning
problem: given as input a graph G = (V,E,w), an input
node u, and a positive integer k; find a set of nodes S ⊆ V
that is the best conductance set of nodes of volume no
greater than k that contains the input node i [37]. We
refer to this procedure (with a seed vector corresponding
to a single seed node) as the MovCut method.

3. Dynamics Type 3: Local Geodesic Spreading
(the “EgoNet” method).

In this procedure, we perform a geodesic-based (i.e.,
ego-network-based) dynamics that is analogous to the lo-
cal random walks that we described above. This method
is similar to the technique for finding local communities
that was introduced in Ref. [38] and that was generalized
to weighted networks in Ref. [126]. Starting with a seed
node s and a distance parameter k, this method considers
all nodes j whose geodesic distance from s is at most k
away—i.e., all nodes j such that ∆sj ≤ k—to form a local
community. In the unweighted case, the egocentric net-
work (i.e., ego network or ego-net [127]) for a seed node
(the ego) is the subgraph induced by the seed node’s 1-
neighborhood—i.e., the network that consists of all nodes
that are in the 1-neighborhood (including the seed node)
and all edges between these nodes that are present in the
original network. (The traditional definition of an ego-
net excludes the seed node and its edges, but we specif-
ically include them.) We use the term k-ego-net for the
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subgraph that is induced by the k-neighborhood of a seed
node. Consequently, the local communities that we ob-
tain using this method are simply the k-ego-nets of the
seed node. For consistency with the other two methods,
it is useful to think of this method as inducing a ranking
of the nodes:

EgoRanki(s) =
1

1 + ∆is
, (B4)

where i is some node in a network. Given the rank-
ing interpretation in Eq. (B4), we recover local geodesic-
based communities from the EgoRank vector by using
the sweep cut procedure that we describe below. The
underlying dynamics for this method is analogous to the
extreme case of a susceptible-infected (SI) spreading pro-
cess [43, 128], in which an infected node infects all its
neighbors with probability 1 at the time step following
the one in which it is infected. One can then interpret
the EgoRank of node i for a seed node s as the inverse of
the time that it takes for node i to first become infected
when only the seed node s is infected initially. We refer
to this procedure as the EgoNet method.

4. Sampling Procedures and Parameter Choices

To obtain an accurate picture of local community
structure at different size scales throughout a network,
we run each of the above community-identification pro-
cedures many times, starting at different seed nodes and
running for different numbers of steps, and we then ex-
amine which nodes get visited as the dynamical processes
unfold. For each seed node and value of the parameters,
each of the AclCut, MovCut, and EgoNet methods
returns a vector that can be used to “rank” the nodes
of a network (in a locally-biased and size-resolved man-
ner): AclCut and MovCut return a variant of the
PPR vector, and EgoNet returns the EgoRank vector in
Eq. (B4). Then, given a ranking vector ~p, the so-called
“sweep sets” are given by St = {i ∈ V : ~pi ≥ t}; and
thus there are at most n + 1 distinct sweep sets (where
we recall that n is the number of nodes in the graph).
A corresponding “sweep cut” is then the partition of the
network obtained from a sweep set that has minimal con-
ductance, over all n+ 1 possible sweep set partitions. By
computing the conductance for each of the sweep sets,
one obtains a locally-biased estimate for an NCP, cen-
tered around a seed node. One can then estimate a global
NCP by taking the lower envelope over local NCPs for
different seed nodes and parameter values. Our Matlab
code that implements these methods is available at [129].

Recall that AclCut has two parameters (the telepor-
tation parameter α and the truncation parameter ε), but
that MovCut only has a single parameter (a teleporta-
tion parameter).

For AclCut, theoretical results [123] suggest that the
method should find good communities of volume roughly
ε−1, where we have ignored constants and logarithmic

factors. Furthermore, for a seed node i with strength
ki, AclCut returns empty communities for ε < k−1i .
This suggests that sampling using ε ∈

[
k−1max, vol(G)−1

]
gives good coverage of different size scales in practice.
In this paper, we use 20 logarithmically-spaced points
in
[
k−1max, vol(G)−1

]
(including the endpoints) to gener-

ate Figs. 6, 7, and 15. In addition, we use α̃ = 0.001,
where α̃ is the teleportation parameter of the “lazy ran-
dom walk” defined in [123]. The (conventional) telepor-
tation parameter that we use satisfies α = 1 − 2α̃

1+α̃ , so

that α ≈ 0.998 in Eq. (B1). In our computations, we
observed that increasing α leads to more accurate NCPs
at the cost of longer computation times.

For MovCut, we use 20 equally-spaced values of α
in the interval

[
0.7, (1− λ2)−1 − 10−10

]
(including the

endpoints), where (1−λ2)−1 is the theoretical maximum
for α (see [37]).

To sample seed nodes, we modified the strategy de-
scribed in Ref. [25] to be applicable to the MovCut
method as well as the AclCut method. For each choice
of parameter values, we sampled nodes uniformly at ran-
dom without replacement and stopped the sampling pro-
cess either when all nodes were sampled or when the
sampled local communities sufficiently covered the entire
network. To determine sufficient coverage, we tracked
how many times each node was included in the best lo-
cal community that we obtained from the sweep sets and
stopped the procedure once each node was included at
least 10 times. This procedure ensures that good com-
munities are sampled consistently.

The EgoNet method does not have any size-scale pa-
rameters. For the network sizes that we consider, it is
feasible to use all nodes rather than sampling them. We
use this approach to generate Figs. 18 and 19.

Finally, for readability, we only plotted the NCPs for
communities that contain at most half of the nodes in a
network. The symmetry in the definition of conductance
(see Eq. (3)) implies that the complement of a good small
community is necessarily a good large community and
vice versa. Hence, a sampled NCP is roughly symmetric,
though this is hard to see on a logarithmic scale, and an
NCP without sampling is necessarily symmetric.

Appendix C: Detailed Results for the MovCut
Method

The MovCut method provides an alternative way of
sampling local community profiles to construct an NCP.
Unlike AclCut, which uses only local information to
obtain good communities, MovCut also incorporates
some global information about a network to construct
local communities around a seed node. In particular,
this implies that there can be sweep sets and thus com-
munities that consist of disconnected components of a
network. Such communities have infinitely large conduc-
tance ratios. We observe this phenomenon often for the
coauthorship and Facebook networks, but it almost never
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FIG. 16. NCP plots [in panel (a)] and CRP plots [in panel (b)] for FB-Johns55, CA-GrQc, and US-Senate (i.e., the smaller
network in each of the three pairs of networks from Table I) generated using the MovCut method. The thin curves are the
NCPs that we obtain when also consider disconnected sweep sets.
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FIG. 17. NCP plots [in panel (a)] and CRP plots [in panel (b)] for CA-AstroPh, FB-Harvard1, and US-House (i.e., the
larger network in each of the three pairs of networks from Table I) generated using the MovCut method. The thin curves are
the NCPs that we obtain when also consider disconnected sweep sets.

occurs for the Congressional voting networks. Upon ex-
amination, these sweep sets consist of several small sets
of peripheral nodes, each of which has moderate to very
low conductance, but which are otherwise unrelated. Al-
though one would not usually think of such a set of
nodes as a single good community, optimization-based
algorithms often clump several unrelated communities
into a single community for networks with a global core-
periphery structure. For completeness and comparison,
we include our results both when we keep the discon-
nected sweep sets and when we restrict our attention to
connected communities. As we discuss below, the NCP
does not change substantially, although there are some

small differences.
The resulting NCPs for the MovCut method (see

Figs. 16a and 17a) are similar to those that we obtained
for the AclCut method (see Figs. 6a and 7a), although
there are a few differences worth discussing. The CRP
plots are also very similar (compare Figs. 16b and 17b to
Figs. 6b and 7b). For the coauthorship networks (CA-
GrQc and CA-AstroPh), as well as FB-Harvard1,
both MovCut and AclCut identify the same good
small communities that are responsible for the spikes in
the NCP plots. In addition, the communities that yield
the dips in the NCPs for FB-Johns55 near 220 and 1100
nodes, and for FB-Harvard1 near 1500 nodes, all share
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FIG. 18. NCP plots [in panel (a)] and CRP plots [in panel (b)] for CA-GrQc, FB-Johns55, and US-Senate (i.e., the smaller
network in each of the three pairs of networks from Table I) using the EgoNet method. We find qualitatively similar behavior
as with the other two methods, although the NCPs are shifted upwards and some of the large-scale structure is no longer
present (especially in the Facebook network).

100 101 102 103 104 105
10−3

10−2

10−1

100

size

co
n
d
u
ct
a
n
ce

CA-AstroPh

FB-Harvard1

US-House

(a) NCP

100 101 102 103 104 105
10−2

10−1

100

101

102

103

size

co
n
d
u
ct
a
n
ce

ra
ti
o

CA-AstroPh

FB-Harvard1

US-House

(b) CRP

FIG. 19. NCP plots [in panel (a)] and CRP plots [in panel (b)] for CA-AstroPh, FB-Harvard1, and US-House (i.e., the
larger networks in each of the three pairs of networks from Table I) using the EgoNet method. We find qualitatively similar
behavior as with the other two methods, although the NCPs are shifted upwards and some of the large-scale structure is no
longer present (especially in the Facebook network).

more than 98% of their nodes. This indicates that both
methods are able to find roughly the same community-
like structures. However, the results from the MovCut
NCP for CA-GrQc is higher and less choppy than the
one that we computed using AclCut—because the trun-
cation employed by AclCut performs a form of implicit
sparsity-based regularization that is absent from Mov-
Cut. See Refs. [101, 102, 130] for a discussion and precise
characterization of this regularization. For the coauthor-
ship and Facebook networks, we also note that there are
regions of the computed NCPs, when using the Mov-

Cut method, in which one finds disconnected sweep sets
(see the thin curves) with lower conductance than that
for the best connected sets of the same size. At other
sizes, we see some differences between the NCPs from
MovCut and AclCut. This illustrates that the two
methods can have somewhat different local behavior, al-
though both methods produce similar insights regard-
ing the large-scale structure in these networks. In Sec-
tion IV C, we discuss some of these differences between
our results from the two methods in more detail.
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Appendix D: Detailed Results for the EgoNet
Method

The EgoNet method was not originally developed to
optimize conductance, although there is some recent ev-
idence that k-neighborhoods can be good conductance
communities [131]. The assumption that underlies the
EgoNet method is that nodes in the same community
should be connected by short paths. However, unlike the
spectral-based methods (AclCut and MovCut), the
EgoNet method does not take into account the num-
ber of paths between nodes. In contrast to Ref. [131],
which considered only 1-neighborhoods, here we also ex-
amine k-neighborhoods with k > 1. We can then use this
method to sample a complete NCP for a network.

Despite its simplicity, and in agreement with Ref. [131],
the EgoNet method produces NCP’s that are qualita-
tively similar to those from both the AclCut and Mov-
Cut methods, for all of the networks that we considered;
see Figs. 18 and 19. The NCPs for the EgoNet method
are shifted upwards compared to those for the AclCut
and MovCut methods; and this is particularly notice-
able at larger community size. This is unsurprising, be-
cause the latter two methods more aggressively optimize
the conductance objective. However, for all six of our
networks, this method preserves an NCP’s small-scale
structure as well as the global tendency to be upward-
sloping, flat, or downward-sloping. This provides further
evidence that the qualitative features of an NCP pro-

vide a signature of community structure in a network
and are not just an artifact of a particular way to sample
communities. In Section IV C, we give a more detailed
comparison between the results of these methods.
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Phys. Rev. X 3, 041022 (2013).

[81] S. Gómez, A. Diaz-Guilera, J. Gómez-Gardenes, C. J.
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