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Networks studied in many disciplines, including neuroscience and mathematical biology, have
connectivity that may be stochastic about some underlying mean connectivity represented by a
nonnormal matrix. Furthermore the stochasticity may not be i.i.d. across elements of the connec-
tivity matrix. More generally, the problem of understanding the behavior of stochastic matrices with
nontrivial mean structure and correlations arises in many settings. We address this by characterizing
large random N ×N matrices of the form A = M + LJR, where M , L and R are arbitrary deter-
ministic matrices and J is a random matrix of zero-mean independent and identically distributed
elements. M can be nonnormal, and L and R allow correlations that have separable dependence
on row and column indices. We first provide a general formula for the eigenvalue density of A. For
A nonnormal, the eigenvalues do not suffice to specify the dynamics induced by A, so we also pro-
vide general formulae for the transient evolution of the magnitude of activity and frequency power
spectrum in an N-dimensional linear dynamical system with a coupling matrix given by A. These
quantities can also be thought of as characterizing the stability and the magnitude of the linear re-
sponse of a nonlinear network to small perturbations about a fixed point. We derive these formulae
and work them out analytically for some examples of M , L and R motivated by neurobiological
models. We also argue that the persistence as N → ∞ of a finite number of randomly distributed
outlying eigenvalues outside the support of the eigenvalue density of A, as previously observed, arises
in regions of the complex plane Ω where there are nonzero singular values of L−1(z1−M)R−1 (for
z ∈ Ω) that vanish as N → ∞. When such singular values do not exist and L and R are equal to
the identity, there is a correspondence in the normalized Frobenius norm (but not in the operator
norm) between the support of the spectrum of A for J of norm σ and the σ-pseudospectrum of M .

PACS numbers: 87.18.Sn, 87.19.L-, 02.10.Yn, 89.75.-k

I. INTRODUCTION

Knowledge of the statistics of eigenvalues and eigen-
vectors of random matrices has applications in the mod-
eling of phenomena relevant to a wide range of disciplines
[1–3]. In many applications, however, the matrices of in-
terest are not entirely random, but feature substantial
deterministic structure. Furthermore this structure, as
well as the disorder on top of it, are in general described
by nonnormal matrices.

In neuroscience, for example, connections between neu-
rons typically have restricted spatial range and show
specificity with respect to neuronal type, location and re-
sponse properties. Experience-based synaptic plasticity,
which underlies learning and memory, naturally gives rise
to synaptic connectivity matrices that encode aspects of
the statistical structure of the sensory environment, while
containing significant randomness partly due to the in-
herent stochasticity of particular histories of sensory ex-
perience. Another simple example of structured neural
connectivity is due to what is known as Dale’s princi-
ple [4–6]: neurons come in two main types, excitatory
and inhibitory. This empirical principle imposes a cer-
tain structure on the synaptic connectivity matrix, forc-
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ing all elements in each column of the matrix, describing
the synaptic projections of a certain neuron, to have the
same sign. Particularly when the typical weight magni-
tude is much larger than typical differences between the
magnitudes of excitatory and inhibitory weights, such a
matrix can be extremely nonnormal by some measures,
much more so than a fully random matrix [7]. Similarly,
biological knowledge imparts a great deal of structure
to models of biochemical [8–11] or ecological networks
[12–16], and matrices characterizing such interactions are
typically nonnormal. Yet our knowledge of connectivity
or interactions is at best probabilistic. To describe re-
alistic biological behavior, we must generalize from the
behavior of a fixed, regular connectivity to the expected
behavior of a typical sample from an appropriate connec-
tivity ensemble.

Furthermore, nonnormality can lead to important dy-
namical properties not seen for normal matrices [17]. In
general, networks with a recurrent connectivity pattern
described by a nonnormal matrix can be described as
having a hidden feedforward connectivity structure be-
tween orthogonal activity patterns, each of which can also
excite or inhibit itself [7, 18, 19]. In neural networks such
hidden feedforward connectivity arises from the natural
separation of excitatory and inhibitory neurons, yielding
so-called “balanced amplification” of patterns of activ-
ity without any dynamical slowing [7]. Underlying this
is the phenomenon of “transient amplification”: a small
perturbation from a fixed point of a stable system with
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nonnormal connectivity can lead to a large transient re-
sponse over finite time [17]. Transient amplification also
yields unexpected results in ecological networks [20–22],
and has been conjectured to play a key role in many
biochemical systems [23]. Networks that yield long hid-
den feedforward chains can also generate long time scales
and provide a substrate for working memory [18, 19].
Systems with nonnormal connectivity can also exhibit
pseudo-resonance frequencies in their power-spectrum at
which the system responds strongly to external inputs,
even though the external frequency is not close to any
of the system’s natural frequencies as determined by its
eigenvalues [17].

While Hermitian random matrices and fully random
non-Hermitian matrices with zero-mean, independent
and identically distributed (iid) elements have been
widely studied, there is a shortage of results on quantities
of interest for nonnormal matrices that fall in between
the two extremes of fully random or fully determinis-
tic. A natural departure from a nonnormal deterministic
structure, described by a connectivity matrix M , is to
additively perturb it with a fully random matrix J with
zero-mean, iid elements. In many important examples,
however, the strength of disorder (deviations from the
mean structure) is not uniform and itself has some struc-
ture (e.g. for each connection it can depend on the types
of the connected nodes or neurons). Moreover, the devi-
ations of the strength of different connections or interac-
tions from their average need not be independent. Hence
it is important to move beyond a simple iid deviation
from the mean structure. Here, we study ensembles of
large N ×N random matrices of the form A = M +LJR
where M , L and R are arbitrary (M) or arbitrary invert-
ible (L and R) deterministic matrices that are in general
nonnormal, and J is a completely random matrix with
zero-mean iid elements of variance 1/N . The matrixM is
thus the average of A, and describes average connectivity.
Note that when L and R are diagonal, they specify vari-
ances that depend separably on the row and column of A;
while when they are not diagonal, the elements of A are
not statistically independent. As we show in Sec. II C 3,
this form arises naturally, for example, in linearizations
of dynamical systems involving simple classes of nonlin-
earities. This type of ensemble is also natural from the
random matrix theory viewpoint, as it describes a clas-
sical fully random ensemble – an iid random matrix J –
modified by the two basic algebraic operations of matrix
multiplication and addition.

We study the eigenvalue distribution of such matri-
ces, but also directly study the dynamics of a linear sys-
tem of differential equations governed by such matrices.
Specifically, for matrices of the above type, using the
Feynman diagram technique in the large N limit (we fol-
low the particular version of this method developed by
Refs. [24, 25]), we have derived a general formula for
the density of their eigenvalues in the complex plane,
which generalizes the well-known circular law for fully
random matrices [26–30]. It also generalizes a result [31]

obtained for the case where L and R are scalar multi-
ples of 1, the N -dimensional identity matrix (the same
result was obtained in [32] using the methods and lan-
guage of free probability theory; the eigenvalue density
for the case L ∝ R ∝ 1 and a normal M was also cal-
culated in Ref. [24] in the limit N → ∞, and that result
was extended to finite N in Ref. [33]). Apart from gener-
alization to arbitrary invertible L and R, we also provide
a correct regularizing procedure for finding the support
of the eigenvalue density in the limit N → ∞, in certain
highly nonnormal cases of M ; the naive interpretation of
the formulae fails in these cases, which were not previ-
ously discussed. Furthermore, with the aim of studying
dynamical signatures of nonnormal connectivity, we fo-
cused on the dynamics directly, deriving general formulae
for the magnitude of the response of the system to a delta
function pulse of input (which provides a measure of the
time-course of potential transient amplification), as well
as the frequency power spectrum of the system’s response
to external time-dependent inputs.
These general results are presented in the next section.

There, we also present the explicit results of analytical
or numerical calculations based on these general formulae
for some specific examples of M , L and R. Sections III
and IV contain the detailed derivations of our general for-
mulae for the eigenvalue density and the response mag-
nitude formulae, respectively. Section V contains the de-
tailed analytical calculations of these quantities for the
specific examples presented in Sec. II, based on the gen-
eral formulae. We conclude the paper in Sec. VI.

II. SUMMARY OF RESULTS

We study ensembles of large N ×N random matrices
of the form

A = M + LJR, (2.1)

where M , L and R are arbitrary (M) or arbitrary invert-
ible (L and R) deterministic matrices [59], and J is a ran-
dom matrix of independent and identically distributed
(iid) elements with zero mean and variance 1/N . Since
J and therefore LJR have zero mean, M is the ensemble
average of A. The random fluctuations of A around its
average are given by the matrix LJR, which for general L
and/or R has dependent and non-identically distributed
elements, due to the possible mixing and non-uniform
scaling of the rows (columns) of the iid J by L (R).
We are firstly interested in the statistics of the eigen-

values of Eq. (2.1). While the statistics of the eigenvalues
and eigenvectors of A are of interest in their own right,
we also directly consider certain properties of the linear
dynamical system

dx(t)

dt
= −γx(t) +Ax(t) + I(t), (2.2)

for an N -dimensional state vector x(t), when A is a sam-
ple of the ensemble Eq. (2.1). Here, γ is a scalar and I(t)
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is an external, time-dependent input. In studying this
system, we generally assume that Eq. (2.2) is asymp-
totically stable. This means that M , L, R and γ must
be chosen such that for any typical realization of J , no
eigenvalue of −γ1+ M + LJR has a positive real part;
this can normally be achieved, for example, by choosing
a large enough γ > 0.
Using the diagrammatic technique in the non-crossing

approximation, which is valid for large N , we have de-
rived general formulae for several useful properties of
such matrices involving their eigenvalues and eigenvec-
tors (see Sec. III–IV for the details of the derivations and
the definition of the non-crossing approximation). We
present these results in in this section. In our derivation
of these results, we assume the random J belongs to the
complex Ginibre ensemble [26], i.e. the distribution of the
elements of J is complex Gaussian. However, we empha-
size that universality theorems ensure that, for given M ,
L and R, the obtained result for the eigenvalue density
in the limit N → ∞ will not depend on the exact choice
of the distribution of the elements of J , beyond its first
two moments, and extend to any iid J (including, e.g., J
with real binary or log-normal elements) whose elements
have the same first two moments, i.e. zero mean and vari-
ance 1/N ; the universality of the eigenvalue density for
general M , L and R was established in Ref. [34], follow-
ing earlier work on the universality of the circular law
established and successively strengthened in Refs. [26–
30]. Furthermore, empirically, from limited simulations,
we have thus far found (but have not proved) such uni-
versal behavior to also hold for the other quantities we
compute here (however, it is possible that universality
for these quantities might require the existence of some
higher moments beyond the second, as has been found for
universality of certain other properties of random matri-
ces; see e.g. Ref. [35]). To demonstrate the universality
of our results, we have used non-Gaussian and/or real J ’s
in most of the numerical examples below.
Hereinafter, we adopt the following notations. For any

matrix B, we denote its operator norm (its maximum
singular value) by ‖B‖ and we define its (normalized)
Frobenius norm via

‖B‖2
F
≡ 1

N

∑

ij

|Bij |2 =
1

N
Tr(BB†) (2.3)

(equivalently, ‖B‖
F

is the root mean square of the sin-
gular values of B). For general matrices, A and B,

tr(A)≡ 1

N
Tr(A), A−†≡(A†)−1,

1

A
≡A−1,

A

B
≡AB−1,

and when adding a scalar to a matrix, it is implied that
the scalar is multiplied by the appropriate identity ma-
trix. We denote the identity matrix in any dimension
(deduced from the context) by 1. For a complex variable
z = x+ iy, the Dirac delta function is defined by δ2(z) ≡
δ(x)δ(y), and we define ∂z̄ ≡ ∂/∂z̄ = (∂/∂x+ i∂/∂y)/2,
and ∂z ≡ ∂/∂z = (∂/∂x − i∂/∂y)/2. For simplicity,

we use the notation f(z) (instead of f(z, z̄)) for general,
nonholomorphic functions on the complex plane. We say
a quantity is O(f(N)) (resp. Θ(f(N))) when, for large
enoughN , the absolute value of that quantity is bounded
above (resp. above and below) by a fixed positive multi-
ple of |f(N)|. Finally, we say a quantity is o(f(N)) when
its ratio to |f(N)| vanishes as N → ∞.
The only conditions we impose on M , L and R are

that ‖M‖
F
, ‖L‖

F
, ‖R‖

F
, ‖L−1MR−1‖

F
and ‖(LR)−1‖

are bounded as N → ∞. We use the bound on ‖(LR)−1‖
in Appendices A and B; the Frobenius norm conditions
are assumptions in the universality theorem of Ref. [34]
which we use as discussed above. Finally, we assume
that for all z ∈ C, the distribution of the eigenvalues of
MzM

†
z , where Mz is defined below in Eq. (2.6), tends

to a limit distribution as N → ∞. This last condition
simply makes precise the requirement that M , L and
R are defined consistently as functions of N , such that
a limit spectral density for M + LJR is meaningful; in
particular, it does not impose any further limits on the
growth of the eigenvalues of MzM

†
z with N , beyond the

various norm bounds imposed above.

A. Spectral density

1. Summary of results

The density of the eigenvalues of M+LJR in the com-
plex plane for a realization of J (also known as the em-
pirical spectral distribution) is defined by

ρJ(z) =
1

N

∑

α

δ2(z − λα), (2.4)

where λα are the eigenvalues of M + LJR. It is known
[34] that ρJ(z) is asymptotically self-averaging, in the
sense that with probability one ρJ (z) − ρ(z) converges
to zero (in the distributional sense) as N → ∞, where
ρ(z) ≡ 〈ρJ (z)〉J is the ensemble average of ρJ(z). Thus
for large enough N , any typical realization of J yields an
eigenvalue density ρJ(z) that is arbitrarily close to ρ(z).
Our general result is that for large N , with certain

cautions and excluding certain special cases as described
below (Eqs. (2.19)–(2.20) and preceding discussion), ρ(z)
is nonzero in the region of the complex plane satisfying

tr
[

(MzM
†
z )

−1
]

≥ 1 (2.5)

where we defined

Mz ≡ L−1(z −M)R−1. (2.6)

Using the definition Eq. (2.3), we can also express
Eq. (2.5) as

∥

∥

∥

∥

R
1

z −M
L

∥

∥

∥

∥

F

≥ 1. (2.7)
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Inside this region, ρ(z) is given by

ρ(z) =
1

π

∂

∂z̄
tr

[

(RL)−1M †
z

MzM
†
z + g(z)2

]

, (2.8)

where g(z) is a real, scalar function found by solving

tr

[

1

MzM
†
z + g2

]

= 1, (2.9)

for g for each z. As a first example, for the well-
known case of M = 0, L = 1, and R = σ1, we have
Mz = z/σ and the circular law follows immediately from
Eq. (2.5), which yields σ2/|z|2 ≥ 1 or |z| ≤ σ for the sup-
port, and from Eqs. (2.8)–(2.9) which yield the uniform
ρ(z) = 1/(πσ2) within that support. As we noted in the
introduction, formulae (2.5)–(2.9) generalize the results
of Refs. [31] and [32] for the special case L ∝ R ∝ 1 to
arbitrary invertible L and R (the eigenvalue density for
the case L ∝ R ∝ 1 and a normal M was also calculated
in Ref. [24]).
It is possible and illuminating to express Eqs. (2.7)–

(2.9) exclusively in terms of the singular values of Mz,
which we denote by si(z) (we include possibly vanishing
singular values among si(z), so that we always have N of
them). First, noting that the squared singular values of
Mz are the eigenvalues of the Hermitian MzM

†
z , we can

evaluate the trace in Eq. (2.9) in the eigen-basis of the
latter matrix, and rewrite this equation as

1

N

N
∑

i=1

1

si(z)2 + g2
= 1. (2.10)

Similarly, Eq. (2.5) can be equivalently rewritten as

1

N

N
∑

i=1

si(z)
−2 ≥ 1. (2.11)

As we prove at the end of Sec. III, Eq. (2.8) can also be
written in a form that makes it explicit that the depen-
dence of ρ(z) on M , L and R is only through the singular
values of Mz and their derivatives with respect to z and
z̄. We have

ρ(z) =
1

π
∂z̄

[

1

N

N
∑

i=1

∂z(si(z)
2)

si(z)2 + g(z)2

]

. (2.12)

For the special case ofM = 0 and general L and R, our
formulas can be simplified considerably. The spectrum is
isotropic around the origin in this case, i.e. ρ(z) depends
only on r ≡ |z|, and its support is a disk centered at the
origin with radius

r0 = ‖RL‖
F
=

[

1

N

N
∑

i=1

σ2
i

]1/2

, (2.13)

where σi are the singular values of RL (this follows from
Eq. (2.11) by noting that for M = 0, the singular val-
ues of Mz = z(RL)−1 are si(z) = |z|/σi). Within this
support the spectral density is given by

ρ(r) = − 1

2πr
∂r
(

g(r)2
)

, (2.14)

where g(r)2 > 0 is found by solving

1 =
1

N

N
∑

i=1

1

σ−2
i r2 + g(r)2

. (2.15)

Integrating Eq. (2.14), we see that the proportion of
eigenvalues lying a distance larger than r from the origin
is, in this case, given by

n>(r) =

{

g(r)2 (r < r0)
0 (r ≥ r0).

(2.16)

In Sec. III we prove that the eigenvalue density, given
by Eqs. (2.14)–(2.15), is always a decreasing function of
r = |z|, i.e. for r > 0 its derivative with respect to r is
strictly negative, as long as the limit distribution of the
{σi} as N → ∞ has nonzero variance (otherwise ρ(z) is
given by the circular law with radius Eq. (2.13)). The
values of spectral density at r = 0 and r = r0 can be
calculated explicitly for general L and R:

ρ(r = 0) =
1

π

1

N

N
∑

i=1

σ−2
i (2.17)

ρ(r = r0) =
1

π
r20

[

1

N

N
∑

i=1

σ4
i

]−1

≤ ρ(r = 0). (2.18)

As noted above, certain cautions apply in using the
above formulae for the eigenvalue density and its bound-
ary ((2.5)–(2.9), or equivalently Eqs. (2.10)–(2.12), and
for M = 0, Eqs. (2.14)–(2.15)). We have written these
formulas for finite N (assuming it is large). However,
the non-crossing approximation used in deriving these
formulas is only guaranteed to yield the correct result
for the eigenvalue density in the limit, i.e. limN→∞ ρ(z)
(see Appendix A); finite-size corrections obtained from
Eqs. (2.5)–(2.9) are not in general correct, and o(1) con-
tributions to g(z)2 or ρ(z) obtained from Eqs. (2.9) and
(2.8) should be discarded.
Furthermore, in general, the correct way of finding the

support of limN→∞ ρ(z) using Eq. (2.5) is by setting the
left side of the inequality (2.5) to lim g2 → 0+ limN →
∞ of the left side of Eq. (2.9), as discussed in Sec. III
and Appendix A. However, in writing Eq. (2.5) we have
simply set g = 0 in Eq. 2.9, and thus implicitly taken
the limit g2 → 0+ before the N → ∞ limit. To correctly
express the support, we must first define the function

K(g, z) ≡ lim
N→∞

tr

[

1

MzM
†
z + g2

]

= lim
N→∞

1

N

N
∑

i=1

[

1

si(z)2 + g2

]

(2.19)
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for fixed, strictly positive g, which serves to regularize
the denominators in Eq. (2.19) for si(z) which are zero
or vanishing in the limit N → ∞. The generally correct
way of expressing Eq. (2.5) or Eq. (2.11) is then

K(0+, z) ≡ lim
g→0+

K(g, z) ≥ 1. (2.20)

Let us denote the the support of limN→∞ ρ(z), given by
Eq. (2.20), by S0+ and the region specified by the limit
N → ∞ of Eq. (2.5) or Eq. (2.11) by S0. For many ex-
amples of M , L and R, the limits N → ∞ and g → 0+

commute everywhere and hence S0+ = S0. However, if
there are z’s at which some of the smallest si(z) are ei-
ther zero or vanish in the limit N → ∞, the two limits
may fail to commute, and the naive use of Eq. (2.5) can
yield a region, S0, strictly larger than and containing S0+ ,
the correct support of limN→∞ ρ(z). For example, at z’s
for which a Θ(1) number of si(z) are zero or o(1), these
singular values do not make a contribution to K(g, z)
for g > 0 (their contribution to the sum in Eq. (2.19)
is O(N−1)) and hence to K(0+, z), but if they vanish
sufficiently fast as N → ∞ they can make a nonzero con-
tribution to the left side of Eq. (2.11); such z may fall
within S0, but not within S0+ . For finite N , the si(z)
can vanish exactly when z coincides with an eigenvalue
of M ; thus the above situation can, e.g., arise close to
eigenvalues of M that are isolated and far from the rest
of M ’s spectrum, so that they fall outside the support of
limN→∞ ρ(z). In such cases, the spectrum of M + LJR
will nonetheless typically also contain isolated eigenval-
ues (which do not contribute to limN→∞ ρ(z)) with ef-
fectively deterministic location, i.e. within o(1) distance
of corresponding isolated eigenvalues of M ; examples of
this phenomenon, for which S0 − S0+ is not empty but
has zero measure, have been studied in Refs. [36, 37]
(for symmetric matrices, outlier eigenvalues correspond-
ing to eigenvalues of the mean matrix were first studied
in Ref. [38]). For some choices ofM , L and R, however, a
more interesting case can arise such that for z in a certain
region of the complex plane with nonzero measure, all
si(z) are nonzero at finite N (hence M has no eigenvalue
there), but a few si(z) are o(1) and vanish sufficiently
fast as N → ∞; in particular when L ∝ R ∝ 1, this
can occur for certain highly nonnormal M [60]. In such
cases the non-commutation of the two limits can lead to
a difference S0 − S0+ with nonzero measure. In cases
we have examined this signifies that there exists a finite,
non-vanishing region outside the support of limN→∞ ρ(z)
(typically surrounding it) where, although ρ(z) is o(1),
it nonetheless converges to zero sufficiently slowly that
a Θ(1) number of “outlier” eigenvalues lie there (note
that the vast majority of eigenvalues, i.e. (1− o(1))N of
them, lie within the support of the limit density). We
will discuss examples of this phenomenon in Sec. II C be-
low; in one of the examples (discussed in Sec. II C 2), the
existence of such outlier eigenvalues was first noted in
Ref. [39], and their distribution was quantitatively char-
acterized in Ref. [36]. However, the connection between

such outlier eigenvalues and nonzero but o(1) singular
values of Mz, which arise, e.g., for highly nonnormal M ,
were not noted before to the best of our knowledge. We
have observed in simulations (and also supported by [36])
that the distribution of these outliers remains random as
N → ∞, is in general less universal than limN→∞ ρ(z)
(e.g. it could depend on the choice of real vs. complex
ensembles for J), and its average behavior may not be
correctly given by the non-crossing approximation.

2. Relationship to pseudospectra

Finally, we note a remarkable connection between our
general result for the support of the spectrum Eq. (2.5)
and the notion of pseudospectra, in the case in which
the limits g2 → 0+ and N → ∞ commute (so that
Eq. (2.5) correctly describes the support). Pseudospectra
are generalizations of eigenvalue spectra, which are par-
ticularly useful in the case of nonnormal matrices (see
Ref. [17] for a review). The eigenvalue spectrum of ma-
trix M can be thought of as the set of points, z, in
the complex plane where (z − M)−1 is singular, i.e. it
has infinite norm. Given a fixed choice of matrix norm,
‖ · ‖, the pseudospectrum of M at level σ, or its “σ-
pseudospectrum” in the given norm, is the set of points z
for which ‖(z −M)−1‖ ≥ σ−1 (thus as σ → 0 we recover
the spectrum). For the specific choice of the operator
norm (i.e. when ‖A‖ is taken to be the maximum singu-
lar value of A), the σ-pseudospectrum can equivalently
be characterized as the set of points, z, for which there
exists a matrix perturbation ∆M , with ‖∆M‖ ≤ σ, such
that z is in the eigenvalue spectrum of M +∆M [17][61].
In words, in the operator norm, the σ-pseudospectrum of
M is the set to which its spectrum can be perturbed by
adding to it arbitrary perturbations of size σ or smaller.

In our setting we can think of LJR as a perturbation
of M . Let us focus on the case where L and R are pro-
portional to the identity, i.e., we have ∆M = σJ , with
a positive scalar σ. Our result Eq. (2.7), in this case
reads ‖σ(z − M)−1‖

F
≥ 1 or ‖(z − M)−1‖

F
≥ σ−1. In

other words, as N → ∞, the spectrum of M + σJ , for
an iid random J with zero mean and variance 1/N , is
the σ-pseudospectrum of M in the normalized Frobenius
norm defined by Eq. 2.3. Interestingly, the perturba-
tion, ∆M = σJ , has normalized Frobenius norm σ as

N → ∞: this norm is σ
√

∑

ij J
2
ij/N , which, by the law

of large numbers, converges to σ for large N . That is, as
N → ∞, the spectrum in response to the random per-
turbation σJ , which has size σ (in normalized Frobenius
norm), is the σ-pseudospectrum of M in the normalized
Frobenius norm.

This result sounds similar to the equivalence of the two
definitions of pseudospectra for the operator norm which
we noted above (one based on the norm of (z − M)−1,
and one based on the spectra of bounded perturbations),
but it differs in two key respects. First, unlike in the
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case of the operator norm, the general equivalence of the
two notions of pseudospectra noted above does not hold
for the normalized Frobenius norm. Second, for the op-
erator norm, it is not in general the case that the σ-
pseudospectrum of M is equivalent to the spectrum ob-
tained from a single random perturbation of M of size
σ, even in the limit N → ∞ (although the spectra aris-
ing from such random perturbations are sometimes used
as a “poor man’s version” or approximation of the pseu-
dospectra [17]). This can be seen as follows. The op-
erator norm of the random iid perturbation, σJ , i.e. its
maximum singular value, converges almost surely to 2σ
as N → ∞ [40]. Condition 2.7 for z to be in the spectrum
under this random perturbation is

∥

∥(z −M)−1
∥

∥

F
≥ σ−1,

or rms({si(z)−1}) ≥ 1 where the si(z) are the singular
values of z−M

σ and rms({xi}) represents the root-mean-
square of the set of values {xi}. This is not equivalent to
the condition that z be in the 2σ-pseudospectrum of M
in the operator norm, i.e. that

∥

∥(z −M)−1
∥

∥ ≥ (2σ)−1

or smin(z)
−1 ≥ 1

2 , where smin(z) is the minimum of the

si(z); in fact, noting that smin(z)
−1 ≥ rms({si(z)−1}), it

is easy to see that the spectrum under random iid per-
turbations with operator norm ‖σJ‖ = 2σ is strictly a
proper subset of the 2σ-pseudospectrum in the operator
norm. For example, for M = 0, the “poor man’s 2σ-
pseudospectrum” in the limit N → ∞ is a ball of radius
σ about the origin (the circular law), while the true 2σ-
pseudospectra of the zero matrix is the ball of radius 2σ
about the origin.

In sum, in the operator norm, the σ-pseudospectrum of
M for any N is equivalent to the set of points z for which
some perturbation ∆M with ‖∆M‖ ≤ σ can be found
such that z is in the spectrum ofM+∆M [17]. In the nor-
malized Frobenius norm in the limit N → ∞, however,
the σ-pseudospectrum ofM is equivalent to the spectrum
of M +∆M where ∆M is any random perturbation with
zero-mean iid elements with ‖∆M‖

F
= σ. This state-

ment for the normalized Frobenius norm holds when the
two limits N → ∞ and g → 0+ commute; when the two
limits do not commute, the support of the spectral distri-
bution of M +∆M is a subset of the σ-pseudospectrum
of M in the normalized Frobenius norm.

B. Average norm squared and power spectrum

As we mentioned in the introduction, an important
phenomenon encountered in dynamics governed by non-
normal matrices, as described by Eq. (2.2) with I(t) = 0,
is transient amplification in asymptotically stable sys-
tems. In any stable system, the size of the response to
an initial perturbation eventually decays to zero, with an
asymptotic rate set by the system’s eigenvalues. In stable
nonnormal systems, however, after an initial perturba-
tion, the size of the network activity, as measured, e.g.,
by its norm squared ‖x(t)‖2 = x(t)Tx(t), can nonethe-
less exhibit transient, yet possibly large and long-lasting

growth, before it eventually decays to zero. By contrast,
in stable normal systems, ‖x(t)‖2 can only decrease with
time. The strength and even the time scale of transient
amplification are set by properties of the matrix A be-
yond its eigenvalues; they depend on the degree of non-
normality of the matrix, as measured, e.g., by the degree
of non-orthogonality of its eigenvectors, or alternatively
by its hidden feedforward structure (see Eq. (2.34) for
the latter’s definition).

Nonnormal systems can also exhibit pseudo-resonances
at frequencies that could be very different from their nat-
ural frequencies as determined by their eigenvalues; such
pseudo-resonances will be manifested in the frequency
power spectrum of the response of the system to time
dependent inputs. ‖x(t)‖2 and the power spectrum of
response are examples of quantities that depend not only
on the eigenvalues of M + LJR but also on its eigenvec-
tors.

Here, we present a few closely related formulas for gen-
eral M , L and R. These include a formula for

〈

‖x(t)‖2
〉

J
,

i.e. the ensemble average of the norm squared of the state
vector, x(t), as it evolves under Eq. (2.2) with I(t) = 0,
as well as a formula for the ensemble average of the power
spectrum of the response of the network to time-varying
inputs. The results of this section are valid, and in the
case of the power spectrum meaningful, when the system
Eq. (2.2) is asymptotically stable. As we mentioned after
Eq. (2.2), this means that M , L, R and γ must be chosen
such that for any typical realization of J , all eigenvalues
of −γ1+M+LJR have negative real part. In particular,
the entire support of the eigenvalue density of M +LJR,
as determined by Eq. (2.5), must fall to the left of the
vertical line of z’s with real part γ; this is a necessary
condition, but may not be sufficient either at finite N
or in cases where an O(1) number of eigenvalues remain
outside this region of support even as N → ∞.

First, we consider the time evolution of the squared
norm, ‖x(t)‖2, of the response of the system to an im-
pulse input, I(t) = x0δ(t), at t = 0, before which we
assume the system was in its stable fixed point x = 0
(for t > 0 this is equivalent to the squared norm of the
activity as it evolves according to Eq. (2.2) with I(t) = 0,
starting from the initial condition x(0) = x0). We pro-
vide a formula for the ensemble average of the more
general quadratic function, x(t)TBx(t), where B is any
N ×N symmetric matrix; the norm squared corresponds
to B = 1. The result for general B, M , L and R is given
as a double inverse Fourier transform

〈x(t)TBx(t)〉J = (2.21)
∫∫

dω1

2π

dω2

2π
eit(ω1−ω2)Tr[B Cx(ω1, ω2;x0x

T

0 )] ,

in terms of the N × N Fourier-domain “covariance ma-
trix,” Cx(ω1, ω2;x0x

T
0 ) ≡

〈

x̃(ω1)x̃(ω2)
†〉
J
(where x̃(ω) is

the Fourier transform of x(t)). The expression for the
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latter is given by

Cx(ω1, ω2;C
I) = Cx

0 (ω1, ω2;C
I) + ∆Cx(ω1, ω2;C

I)
(2.22)

where

Cx
0 (ω1, ω2;C

I) ≡ 1

γ + iω1 −M
CI 1

γ − iω2 −M † , (2.23)

yields the result obtained by ignoring the randomness in
the connectivity (i.e. by setting A = M), and

∆Cx(ω1, ω2;C
I) ≡ 1

γ + iω1 −M
LL† 1

γ − iω2 −M †

×
tr
(

R†R 1
γ+iω1−MCI 1

γ−iω2−M†

)

1− tr
(

R†R 1
γ+iω1−MLL† 1

γ−iω2−M†

) , (2.24)

is the contribution of the random part of connectivity
LJR. For later use, we have provided these expres-
sions for a general third argument in Cx(·, ·; ·); for use
in Eq. (2.21) CI must be substituted with x0x

T
0 . In the

special case of
〈

‖x(t)‖2
〉

J
corresponding to B = 1, and

iid disorder (L = 1, R = σ1), the contributions from
Eqs. (2.23)–(2.24) can be more compactly combined into

〈

‖x(t)‖2
〉

J
=

∫∫

dω1

2π

dω2

2π
eit(ω1−ω2) (2.25)

xT
0

1
γ−iω2−M†

1
γ+iω1−M x0

1− σ2 tr
(

1
γ+iω1−M

1
γ−iω2−M†

)

(we used Tr( 1
z1−M x0x

T
0

1
z2−M† ) = xT

0
1

z2−M†
1

z1−M x0 to

write the numerator in Eq. (2.25)).
Next, we look at the power spectrum of the response

of the system to a noisy input, I(t), that is temporally
white, with zero mean and covariance

Ii(t1)Ij(t2) = δ(t1 − t2)C
I
ij . (2.26)

Here the bar indicates averaging over the input noise (or
by ergodicity, over a long enough time). Our general re-
sult for the ensemble average of the matrix power spec-
trum of the response, which by definition is the Fourier
transform of the steady-state response covariance,

Cx
ij(ω) ≡

∫

dτ e−iωτ xi(t+ τ)xj(t), (2.27)

is given by

〈Cx(ω)〉J = Cx
0 (ω) + ∆Cx(ω). (2.28)

Here we defined

Cx
0 (ω) ≡ Cx

0 (ω, ω;C
I) (2.29)

and

∆Cx(ω) ≡ ∆Cx(ω, ω;CI) (2.30)

are the power spectrum matrices obtained by ignoring
the randomness in connectivity (i.e. by setting A = M),
and the contribution of quenched randomness LJR, re-
spectively.
A closely related quantity is the total power of the

steady-state response of the system to a sinusoidal in-
put I(t) = I0

√
2 cosωt (the

√
2 serves to normalize the

average power of
√
2 cosωt to unity, so that the total

power in the input is ‖I0‖2). For such an input, the
steady-state activity, which we denote by xω(t), is also
sinusoidal (with a possible phase shift). By total power
of the steady-state response we mean the time average of
the squared norm of the activity, ‖xω(t)‖2, where now
the bar indicates temporal averaging (we call this to-

tal power, because the squared norm sums the power
in all components of xω(t)). As in Eqs. (2.21)–(2.24), we
present a formula for the ensemble average of the more
general quantity xT

ωB xω . We have
〈

xT
ωB xω

〉

J
= Tr(B 〈Cx(ω)〉J) , (2.31)

where 〈Cx(ω)〉J is given by Eqs. (2.28)–(2.30) with CI

replaced by I0I
T
0 . For the special case of B = 1, corre-

sponding to the total power of the response at frequency
ω, using Eq. (2.23)–(2.24) with ω1 = ω2 = ω, this for-
mula can be simplified into

〈

‖xω‖2
〉

J
= (2.32)

∥

∥

∥

∥

1

z −M
I0

∥

∥

∥

∥

2

+

∥

∥

∥

1
z−ML

∥

∥

∥

2

F

∥

∥

∥
R 1

z−M I0

∥

∥

∥

2

1−
∥

∥

∥R 1
z−ML

∥

∥

∥

2

F

,

where z = γ+ iω, ‖·‖ denotes the vector norm, and ‖·‖
F

denotes the Frobenius norm defined in Eq. (2.3). Finally,
for the case that the random part of the matrix is iid, i.e.
L = σ1 and R = 1, we can further simplify Eq. (2.32)
into

〈

‖xω‖2
〉

J
=

∥

∥(γ + iω −M)−1I0
∥

∥

2

1− σ2 ‖(γ + iω −M)−1‖2
F

. (2.33)

The stability of the x = 0 fixed point guarantees the pos-
itivity of the expressions Eqs. (2.32)–(2.33) for the power
spectrum. This is true because, as we noted above, sta-
bility requires that the support of the eigenvalue density
of A is entirely to the left of the vertical line Re(z) = γ.
By our result Eq. (2.7) for that support, this can only be
true if the denominators of the last terms in Eq. (2.32)
–(2.33) are positive, which guarantees the positivity of
the full expressions.
Note that the first term in Eq. (2.32) and the numer-

ator in Eq. (2.33) represent the power spectrum in the
absence of randomness, i.e. if A, in Eq. (2.2) is replaced
with M . Thus, formulae (2.32)–(2.33) show that the
correct average power spectrum is always strictly larger
than the naive power spectrum obtained by assuming
that random effects will “average out”. Furthermore,
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due to the denominators of the last terms in Eqs. (2.32)–
(2.33), the power spectrum will be larger for frequencies
where the support of the eigenvalue density, Eq. (2.7),
is closer to the vertical line with Re(z) = γ. Similar,
but less precise statements can also be made about the
strength of transient amplification using formulae (2.21)–
(2.25) for the squared norm of the impulse response. One
measure of the strength of transient amplification up to

time T is
∫ T

0 ‖x(t)‖2dt. Integrating formulae Eq. (2.21)
(with B = 1) or Eq. (2.25) over t, one obtains formu-

lae for
∫ T

0
‖x(t)‖2dt that are the same as Eqs. (2.21)–

(2.25), except for the factor eit(ω1−ω2) in the integrands of

Eqs. (2.21) and (2.25) being replaced by i[1−eiT (ω1−ω2+iǫ)]
ω1−ω2+iǫ

(with ǫ → 0+). Due to the denominator in this factor (for
T sufficiently large the numerator is constant), the main
contribution to the integrals over ω1 and ω2 should typ-
ically arise for ω1 ≈ ω2. On the other hand, note that
for ω1 = ω2 the denominators in Eqs. (2.24)–(2.25) re-
duce to the those in Eqs. (2.32)–(2.33), with the connec-
tion to the support of the spectral density noted above.

Thus this dominant contribution to
∫ T

0
‖x(t)‖2dtmust be

larger, the closer the support of the eigenvalue density,
Eq. (2.7), is to the vertical line with Re(z) = γ. This
also suggests that, as in the case of the power spectrum,
the strength of transient amplification would typically be
underestimated if randomness of connectivity is ignored
and only its ensemble average M is taken into account in
solving Eq. (2.2).

Numerical simulations indicate that the quantities
‖x(t)‖2 and ‖xω‖2 are self-averaging in the large N limit;

that is, for large N , ‖x(t)‖2 or ‖xω‖2 for any typical ran-
dom realization of J will be very close to their ensem-
ble averages, given by Eq. (2.25) and Eq. (2.32) respec-
tively, with the random deviations from these averages
approaching zero as N goes to infinity (see Figs. 1, 3
and 8, below). This conclusion is also corroborated by
rough estimations (not shown) based on Feynman dia-
grams (the diagrammatic method is introduced in Secs.
III and IV) of the variance of fluctuations of these quan-
tities for different realizations of J .

Finally, we note that the general formulae presented
in this section are valid only for cases where the initial
condition, x0, or the input structure, I0 or C

I, are chosen
independently of the particular realization of the random
matrix J (e.g., cases where x0 is itself random but inde-
pendent of J , or when x0 is chosen based on properties
of M , L or R). In particular, our results do not apply
to cases in which the initial condition or the input is tai-
lored or optimized for the particular realization of the
quenched randomness, J , in which case the true result
could be significantly different from those given by the
formulae of this section.

C. Some specific examples of M , R and L

In this section we present the results of explicit cal-
culations of the eigenvalue density Eq. (2.8), the aver-
age squared norm of response to impulse Eqs. (2.21) and
(2.25), and the total power in response to sinusoidal input
Eq. (2.33), for specific examples of M , L and R (the de-
tails of the calculations for the results presented here can
be found in Sec. V). For many of the examples presented
here, L and R are both proportional to the identity ma-
trix; thus in these examples the full matrix is of the form
M +σJ where σ > 0 determines the strength of disorder
in the matrix. In Secs. II C 2 and IIC3, we also present
examples with nontrivial L and/or R.
Any matrix,M , can be turned into an upper-triangular

form by a unitary transformation, i.e.

M = UTU †, (2.34)

where U is unitary and T is upper-triangular (i.e. Tij = 0
if i > j) with its main diagonal consisting of the eigenval-
ues of M . The difference between nonnormal and nor-
mal matrices is that for the latter, T can be taken to
be strictly diagonal. Equation (2.34) is referred to as a
Schur decomposition of M [41], and we refer to the or-
thogonal modes of activity represented by the columns
of U as Schur modes. The Schur decomposition provides
an intuitive way of characterizing the dynamical system
Eq. (2.2). Rewriting Eq. (2.2), with J and I(t) set to zero,
in the Schur basis by defining y = U †x (i.e. yi is the ac-

tivity in the i-th Schur mode), we obtain dy
dt = −γy+Ty.

We see that activity in the j-th Schur mode provides an
input to the equation for the i-th mode only when i ≤ j
(as Tij = 0 for i > j). Thus the coupling between modes
is feedforward, going only from higher modes to lower
ones, without any feedback. We refer to Tij ’s for j > i as
feedforward weights. As these vanish for normal matri-
ces, we can say a matrix is more nonnormal the stronger
its feedforward weights are.
Due to the invariance of the trace, the norm, and

the adjoint operation under unitary transforms, our gen-
eral formulae for the spectral density Eq. (2.8) and
the average squared norm in time and frequency space,
Eqs. (2.25) and (2.33), take the same form in any basis, so
in particular we can work in the Schur basis of M . Hence
M can be replaced by T , provided L and R are also ex-
pressed in M ’s Schur basis and x0 or I0 are replaced by
U †x0 or U †I0, respectively [62]. Thus we use the feed-
forward structure of the Schur decomposition to char-
acterize the different examples we consider below. Our
examples are chosen to demonstrate interesting features
of nonnormal matrices in the simplest possible settings.

1. Single feedforward chain of length N

In the first example, each and every Schur mode is
only connected to its lower adjacent mode, forming a long
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FIG. 1: (Color online) Top panel: the total power spectrum of

steady state response ‖xω‖2 as a function of input frequency
ω, Eq. (2.33), for the system Eq. (2.2) with A = M + σJ ,
and M given by Eq. (2.35) with w = 1 and λn = ±i (with +i
and −i alternating), respectively. Here, N = 700, σ = 0.5,
and γ = 0.8. The input was fed into the last component of
x (the beginning of the feedforward chain characterized by
Eq. (2.35)), which for the matrix M has natural frequency
-1. That is, the input was I0

√
2 cosωt where I0 was 1 for the

last component and 0 for all other components. The green
(thick dashed) curve is the ensemble average of the total power

spectrum,
〈

‖xω‖2
〉

J
, calculated numerically using the general

formula Eq. (2.33), which is compared with an empirical av-
erage over 100 realizations of real Gaussian J (solid red line,
mostly covered by the dashed green line). The pink (light
gray) area shows the standard deviation among these 100 re-
alizations around this average. The blue (thin) line shows
the result when disorder, σJ , is ignored, i.e. A is replaced
by its ensemble average M . Bottom panel: the eigenvalue
spectrum of M + σJ (black dots). Red big dots at ±i show
the eigenvalues of M . The red curve is the outer boundary of
the eigenvalue spectrum of A as computed numerically using
Eq. (2.5). The real and imaginary axes of the complex plane
are interchanged, so that the frequency axis in the top panel
can be matched with the imaginary part of the eigenvalues,
i.e. the natural frequencies of Eq. (2.2).

feedforward chain of length N . For simplicity, we take all
feedforward weights in this chain to have the same value
w, so that

M = T =







λ1 w 0 · · ·
0 λ2 w · · ·
...

...
...
. . .






(2.35)

or more succinctly Mnm = w δn+1,m + λnδnm.
Figure 1 shows the power spectrum of response (top

panel) and the eigenvalue distribution (bottom panel) of
A = M + σJ for an example M of the form Eq. (2.35)
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FIG. 2: (Color online) The eigenvalue spectra of A = M +
σJ for N = 2000 and M given by Eq. (2.35) with λn = 0,
w = 1 for single realizations of real Gaussian J . σ = 0.95
and 0.5 in the left and rights panels, respectively. The red
circles mark the circular boundaries of the spectral support
given by Eq. (2.36). The insets show a comparison of the
analytic formula Eq. (2.37) for the spectral density (black
smooth trace) and histograms corresponding to the particular
realization shown in the main plot (red jagged trace).

with alternating imaginary eigenvalues, λn = (−1)n+1i.
The black dots in the bottom panel of Fig. 1 show the
eigenvalues of A for one realization of J , scattered around
the highly degenerate spectrum of M at ±i (red dots).
The top panel shows the ensemble average of the total

power spectrum of response,
〈

‖xω‖2
〉

J
, of the system

Eq. (2.2) to sinusoidal stimuli as given by our general for-
mula Eq. (2.33) (green curve), showing that it perfectly
matches the empirical average (red curve) over a set of
100 realizations of J (the latter was obtained by gen-

erating 100 realizations of J , calculating ‖xω‖2 for each
realization, which is given by the numerator of Eq. (2.33)
with M replaced by M + σJ , and then averaging the re-
sults over the 100 realizations). The pink (light gray)
shading shows the standard deviation of the power spec-
trum over these 100 realizations. This will shrink to zero
as N goes to infinity, so that for large N the power spec-
trum of any single realization of A = M + σJ will lie
very close to the ensemble average. The system (2.2) in
the zero disorder case, σ = 0, has two highly degenerate
resonant frequencies (imaginary parts of the eigenvalues
of M), ω±

0 = ±1, leading to possible peaks in the power
spectrum at these frequencies. The smaller the decay of
these modes (in this case given by γ) is, i.e. the closer
the eigenvalues of the combined matrix −γ + M are to
the imaginary axis, the sharper and stronger are the res-
onances. Comparing the zero disorder power spectrum
(blue curve) with that for A = M + σJ , we see that the
disorder has led to strong but unequal amplification of
the two resonances relative to the case without disorder.
This is partly due to the disorder scattering some of the
eigenvalues of −γ+A much closer to the imaginary axis,
creating larger resonances.
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For M of the form (2.35) with all eigenvalues zero
we have analytically calculated the eigenvalue den-
sity, Eq. (2.8), the magnitude of response to impulse
Eq. (2.25), and the power-spectrum Eq. (2.33). In this

case, using Eq. (2.5) naively yields |z| ≤
√

|w|2 + σ2 for
the support of the eigenvalue density. However, using the
correct procedure, Eqs. (2.19)–(2.20), we find that this
formula is only correct for σ ≥ |w|, while for σ < |w|,
the true support of the eigenvalue density in the limit
N → ∞ is the annulus

√

|w|2 − σ2 ≤ |z| ≤
√

|w|2 + σ2, (2.36)

(this result was obtained in Ref. [31]). Within this sup-
port the eigenvalue density in either case is

ρ(z) =
1

πσ2

[

1− |w|2
√

4|w|2|z|2 + σ4

]

. (2.37)

Figure 2 demonstrates the close agreement of Eqs. (2.36)–
(2.37) with the empirical spectrum of M+σJ for a single
realization of J , for N = 2000 and two different values
of σ. The discrepancy between the results obtained by
the naive use of Eq. (2.5) and Eq. (2.36) is due to the
fact that for |z| < |w|, Mz = (z−M)/σ has an exponen-
tially small, O(e−cN ), singular value (see next paragraph)
which makes the result of Eqs. (2.19)–(2.20) dependent
on the order of the two limits N → ∞ and g → 0+. As we
discussed after Eq. (2.12), such a discrepancy can signify
the existence of an O(1) number of outlier eigenvalues
outside the support of limN→∞ ρ(z). Simulations show

that this is the case for |z| <
√

|w|2 − σ2 (see Fig. 2).
The most striking aspect of these results is revealed in

the limit σ → 0. For σ = 0, the spectrum is that of M ,
which is concentrated at the origin. Remarkably, how-
ever, as seen from Eqs. (2.36)–(2.37), for very small but
nonzero σ the bulk of the eigenvalues are concentrated
in the narrow ring with modulus |z| ≈ |w|. Thus in the
limit N → ∞ the spectrum has a discontinuous jump
at σ = 0. This is a consequence of the extreme non-
normality of M , which manifests itself in the extreme
sensitivity of its spectrum to small perturbations, which
is well-known (see Ref. [17], Ch. 7). The notion of pseu-
dospectra quantifies this sensitivity: the (operator norm)
ǫ-pseudospectrum of M is the region of complex plane
to which its spectrum can be perturbed by adding to
M a matrix of operator norm no larger than ǫ. As we
mentioned in Sec. II A, this is precisely the set of com-
plex values z for which ‖(z − M)−1‖ > ǫ−1 [17], and
therefore by the definition of the operator norm ‖ · ‖,
the region in which ‖(z −M)−1‖−1 = smin(z −M) < ǫ,
where smin(z −M) is the least singular value of z −M .
As noted above, for |z| < |w|, smin(z − M) is exponen-
tially small: smin(z−M) ≤ |w|| zw |N (for a proof see after
Eq. (5.15) in Sec. VA). Thus the ǫ-pseudospectrum of
M contains the set of points z satisfying |w|| zw |N < ǫ,

i.e. the centered disk with radius |w|( ǫ
|w|)

1/N which ap-

proaches |w| as N → ∞. In other words, for large enough
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FIG. 3: (Color online) The norm squared of the response to
impulse, ‖x(t)‖2, of the system Eq. (2.2), for A = M + σJ ,
with binary J , and M given by Eq. (2.35) (with λn = 0)
describing a N-long feedforward chain with uniform weights
w. Here, w = 1, σ = 0.5, γ = 1.005

√
σ2 +w2 ≃ 1.124,

and N = 700. The green (thick dashed) curve shows our
result, Eq. (2.38), for the average squared impulse response,
〈

‖x(t)‖2
〉

J
, which lies on top of the red (thick solid) curve

showing the empirical average of ‖x(t)‖2 over 100 realizations
of binary J . The five thin dashed black curves show the re-
sult for five particular realizations of J , and the pink (light
gray) area shows the standard deviation among the 100 real-
izations. The standard deviation shrinks to zero as N → ∞,
and ‖x(t)‖2 for any realization lies close to its average for
large N . For comparison the purple (thin, lowest) curve shows
‖x(t)‖2 obtained by ignoring the effect of quenched disorder,
i.e. by setting A = M .

N , any point |z| < |w| is in the ǫ-pseudospectrum for
any fixed ǫ, no matter how small. It has been stated [17]
that dense random perturbations, of the form σJ consid-
ered here, tend to trace out the entire ǫ-psuedospectrum
(where ǫ = σ‖J‖ ≈ 2σ). Our result shows that, for
ǫ, σ ≪ |w|, the spectrum of such perturbations traces
out the ǫ-psuedospectrum in quite an uneven fashion; the
vast majority (Θ(N)) of the perturbed eigenvalues only
trace out the boundary of the pseudospectrum, |z| ≈ |w|,
while only a few (O(1)) eigenvalues lie in its interior.
Thus, dense random perturbations can fail as a way of
visualizing (operator norm based) pseudospectra.
We now turn to the dynamics. We have explicitly cal-

culated the average evolution of the magnitude of x(t),
Eq. (2.25), and the total power spectrum of steady-
state response, Eq. (2.33), for the case where the ini-
tial condition is (or the input is fed into) the last Schur
mode, i.e. the beginning of the feedforward chain: x0 =
(0, · · · , 0, 1)T ( or I0 ∝ (0, · · · , 0, 1)T). For the evolution
of the average norm squared, with the initial condition
x0 = (0, · · · , 0, 1)T, we obtain

〈

‖x(t)‖2
〉

J
= e−2γtI0(2t

√

|w|2 + σ2), (t ≥ 0)

(2.38)
where Iν(x) is the ν-th modified Bessel function. Fig-
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ure 3 plots the function Eq. (2.38) and compares it with
the result obtained by ignoring the disorder (correspond-
ing to σ = 0). The main difference between the two
curves is the slower asymptotic decay of the σ 6= 0 re-
sult (green) compared with the zero-disorder case (pur-
ple). This is the result of the disorder spreading some
of the eigenvalues of −γ + A closer to the imaginary
axis, creating modes with smaller decay. Importantly,
in neither case do we see transient amplification. By
contrast, in the σ = 0 and for small enough decay, i.e.
for γ < |w|, the system Eq. (2.2) exhibits very strong
transient amplification. In this case, starting from the
initial condition x0 = (0, · · · , 0, 1)T, the solution for the

(N − n)-th Schur component is xN−n(t) = (wt)n

n! e−γt

(for 0 ≤ n ≤ N − 1), which is maximized at t = n/γ

with a value max |xN−n| ∼ ( |w|
γ )n for n ≫ 1. Thus up

to time t ∼ N/γ the norm of the activity grows expo-

nentially; ‖x(t)‖2 & ( |w|
γ )2γt for t . N/γ. For larger

times the activity reaches the end of the N -long feedfor-
ward chain and starts decaying to zero; asymptotically
‖x(t)‖2 ∼ e−2γt for t ≫ N/γ. However, as we have seen,
the spectrum of M is extremely sensitive to perturba-
tions; even for very small but nonzero σ, the spectrum of
−γ1+A has eigenvalues with real part as large as |w|−γ.
Therefore, in the limit N → ∞, the system Eq. (2.2) is
unstable for |w| > γ, as soon as σ 6= 0. Conversely, in the
presence of disorder (even infinitesimally small disorder
in the N → ∞ limit), as long as the system is stable

(which from Eq. (5.15) requires γ >
√

|w|2 + σ2) it ex-
hibits no transient amplification for the initial condition
along the last Schur mode. Let us note, however, that
as we mentioned after Eq. (2.33), Eq. (2.25) and hence
Eq. (2.38) do not yield the correct answer when the di-
rection of the impulse is optimized for the specific real-
ization of the quenched disorder J ; such disorder-tuned
initial conditions can yield significant transient amplifi-
cation even for the stable σ 6= 0 system.

Incidentally, we can also read the result for M = 0
from Eq. (2.38), by setting w = 0, obtaining

〈

‖x(t)‖2
〉

J
=

e−2γtI0(2σt). Since in this case, all directions are equiv-
alent, this is the answer for the (normalized) initial con-
dition along any direction, again as long as the direction
is chosen independently of the specific realization of J .

Finally, the total power of response to a sinusoidal in-
put with amplitude I0 = (0, · · · , 0, I0)T is given by

〈

‖xω‖2
〉

J
=

‖I0‖2
ω2 + γ2 − |w|2 − σ2

. (2.39)

The main effect of the disorder is to reduce the width

of the resonance (the peak of
〈

‖xω‖2
〉

J
at ω = 0) and

increase its height. This is partly a consequence of the
scattering of the eigenvalues of −γ+A closer to the imag-
inary line by the disorder, creating modes with smaller
decay.

2. Examples motivated by Dale’s law: 1 or N/2 feedforward

chains of length 2

In this section we consider examples motivated by
Dale’s law [4–6] in neurobiology. Dale’s law is the ob-
servation (which holds generally but with some excep-
tions [42, 43]) that individual neurons release the same
neurotransmitter at all of their synapses. In the context
of many theoretical papers including this one, it refers
more specifically to the fact that an individual neuron
either makes only excitatory synapses or only inhibitory
synapses; that is, each column of the synaptic connectiv-
ity matrix has a fixed sign, positive for excitatory neurons
and negative for inhibitory ones. We will first consider
two examples of connectivity matrices respecting Dale’s
law which take the form Eq. (2.1) with L = σ−1R = 1,
and a scalar σ. At the end of this subsection we consider
an example with nontrivial L and R.
In the first example, we consider a matrix M , which

as we will show, has a Schur form T that is composed
of N/2 disjoint feedforward chains, each connecting only
two modes (we assume N is even). For simplicity we will
focus on the case where all eigenvalues are zero. Thus in
the Schur basis we have

T =













0 w1 0 0 · · ·
0 0 0 0 · · ·
0 0 0 w2 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .













= W ⊗
(

0 1
0 0

)

(2.40)

where we defined W to be the N/2×N/2 diagonal ma-
trix of Schur weights W = diag(w1, w2, . . . , wN/2). T in
Eq. (2.40) arises as the Schur form of a mean matrix of
the form

M =
1

2

(

K −K
K −K

)

=
1

2

(

1 −1
1 −1

)

⊗K (2.41)

whereK is a normal (but otherwise arbitrary)N/2×N/2
matrix (note that M is nonetheless nonnormal). The
feedforward weights in Eq. (2.40) are then the eigenvalue
of K. When K has only positive entries, matrices
of the form Eq. (2.41) satisfy Dale’s principle, and
were studied in Ref. [7], in the context of networks
of excitatory and inhibitory neurons. We imagine a
grid of N/2 spatial positions, with an excitatory and
an inhibitory neuron at each position. 1

2K, a matrix
with positive entries, describes the mean connectivity
strength between spatial positions, which is taken to
be identical regardless of whether the projecting, or
receiving, neuron is excitatory or inhibitory. The sign of
the weight, on the other hand, depends on the excitatory
or the inhibitory nature of the projecting or presynaptic
neuron; the first (last) N/2 columns of M represent
the projections of the excitatory (inhibitory) neurons
and are positive (negative). Since K is normal it can
be diagonalized by a unitary transform: K = EWE†,
where W is as above, and E = (e1, e2, . . .) is the matrix
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FIG. 4: (Color online) The eigenvalue spectra of A = M+σJ
for a binary J with σ = 0.1 and M given by Eq. (2.41) with
K = 1 (corresponding to wb = 1 for all the diagonal 2 × 2
blocks in Eq. (2.40)). The main panels show the eigenvalues
for single realizations of J , with N = 600 (left) and N = 60
(right). The red circles mark the boundaries of the spectral
support, Eq. (2.44). Since A is real in this case, its eigenvalues
are either exactly real, or come in complex conjugate pairs;
the spectrum is symmetric under reflections about the real
axis. However, such signatures of the reality of the matrix
appear only as subleading corrections to the spectral density
ρ(z); they are finite size effects which vanish as N → ∞. The
insets show a comparison of the analytic formula Eq. (2.45)
(black curve) and the empirical result, based on the eigenval-
ues of the realizations in the main panels, for the proportion,
n< (r), of eigenvalues lying within a radius r of the origin
(red dots). The random fluctuations and the average bias of
the empirical n< (r) are both already small for N = 60, and
negligible for N = 600.

of the orthonormal eigenvectors eb of K, b = 1, . . . , N/2
(with eigenvalues wb). Then transforming to the basis
{(

e1
0

)

,

(

0

e1

)

,

(

e2
0

)

,

(

0

e2

)

, . . . ,

(

eN/2

0

)

,

(

0

eN/2

)}

(where 0 represents the N/2-dimensional vector of 0’s)
transforms the matrix to being block-diagonal with the

2 × 2 matrices 1
2

(

wb −wb

wb −wb

)

, b = 1, . . . , N/2, along

the diagonal. The bth block becomes

(

0 wb

0 0

)

in its

Schur basis

{

1√
2

(

eb
eb

)

, 1√
2

(

eb
−eb

)}

, so the full matrix

takes the form Eq. (2.40). Thus, the b-th difference

mode 1√
2

(

eb
−eb

)

feeds forward to the b-th sum mode

1√
2

(

eb
eb

)

with weight wb. This feedforward structure

leads to a specific form of nonnormal transient amplifi-
cation, which the authors of Ref. [7] dubbed “balanced
amplification”; small differences in the activity of
excitatory and inhibitory modes feedforward to and
cause possibly large transients in modes in which the
excitatory and inhibitory activities are balanced.
Another interesting example of Dale’s law is that in

which M simply captures the differences between the

−5 0 5
−5

−4

−3

−2

−1

0

1
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3

4

5

Imλ

Reλ

FIG. 5: (Color online) The eigenvalue spectra of A = M+σJ
for the M given by Eq. (2.42) in the balanced case, vTu = 0.
Here, N = 800, σ = 1 and µ = 12 (see equation Eq. (2.43)).
The black dots are the superimposed eigenvalues of A for 20
different realizations of complex Gaussian J . The small red
circle enclosing the vast majority of the eigenvalues has radius
σ = 1, corresponding to the standard circular law Eq. (2.46).

A Θ(N) number of eigenvalues lie within this circle. A Θ(
√
N)

number lie just outside of this circle in a thin boundary layer
which shrinks to zero as N → ∞. Finally, a Θ(1) number of
eigenvalues lie at macroscopic distances outside the unit circle.
The dashed blue circle shows radius r0 given by Eq. (2.44);
outliers can even lie outside this boundary.

mean inhibitory and mean excitatory synaptic strengths
and between the numbers of excitatory and inhibitory
neurons, with no other structure assumed (uniform mean
connectivity), as studied in Ref. [39]. Thus, all excita-

tory projections have the same mean µE/
√
N , and all

inhibitory ones have the mean −µI/
√
N . If we assume

a fraction f of all neurons are excitatory, then we can
write M as

M = uvT (2.42)

where u = N−1/2(1, . . . , 1)T is a unit vector, and the vec-
tor v has components vi = µE or vi = −µI for i ≤ fN
and i > fN , respectively (for f = 1/2 and µE = µI ,
Eq. (2.42) is a special case of Eq. (2.41)). The single-
rank matrix M has only one non-zero eigenvalue given
by v · u = 1√

N

∑

i vi, with eigenvector u. The case in

which the excitatory and inhibitory weights are balanced
on average, in the sense that

∑

i vi = 0, is of particular
interest; mathematically it is in a sense the least symmet-
ric and most nonnormal case as v ·u = 0. In this case all
eigenvalues of M are equal to zero. Furthermore, since
in this case u and v are orthogonal, we can readily read
off the Schur decomposition of M from Eq. (2.42). The
normalized Schur modes are given by u, v/‖v‖ and N−2
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FIG. 6: (Color online) The number of eigenvalues of M +σJ ,
for theM given by Eq. (2.42), lying outside the circle of radius
σ vs. N (red line). Here, σ = 1, µ = 12 and vTu = 0. The
numbers (red points connected by solid red lines) are obtained
by numerically calculating the eigenvalues and counting the
outliers for 200 realizations of J , and taking the average of the
counts over all realizations, for N = 100, 200, 400, 800, 1600
(error bars show standard error of mean). The black dashed

line plots
√
N for comparison with our theoretical result

Eq. (2.47); the (dashed) blue line which includes sublead-

ing corrections to
√
N , is obtained by numerically solving

Eq. (5.42) and substituting the result in Eq. (5.43) (these for-
mulae are in turn obtained from Eqs. (2.8)–(2.9) in Sec. VB).

other unit vectors spanning the subspace orthogonal to
both u and v. All feedforward Schur weights are zero, ex-
cept for one very large weight, equal to ‖v‖ ∝

√
N , which

feeds from v/‖v‖ to u. Thus the Schur representation of

M has the form Eq. (2.40) with w1 = ‖v‖ ≡ µ
√
N and

wb6=1 = 0, where we defined

µ2 ≡ tr (M †M) = ‖v‖2/N = fµ2
E + (1− f)µ2

I . (2.43)

Note that this is again a case of balanced amplification:
differences between excitatory and inhibitory activity,
represented by v, feed forward to balanced excitatory
and inhibitory activity, represented by u, with a very
large weight. In the following we present results only for
this balanced case of Eq. (2.42), which as just noted is a
special case of Eqs. (2.40).
We start by presenting the results for the eigenvalue

density. For general diagonal W in Eq. (2.40) (or equiva-
lently, for general normalK in Eq. (2.41)), the eigenvalue
density, ρ(z), ofA = M+σJ is isotropic around the origin
z = 0, and depends only on r = |z|. The spectral support
is a disk centered at the origin. In cases in which all the
weights wb are O(1), the radius of this disk can be found
directly from Eq. (2.5), which yields

r0 = σ

[

1

2
+

√

1

4
+

〈|wb|2〉b
2σ2

]1/2

. (2.44)

Here, 〈|wb|2〉b is the average of the squared feedfor-

ward weights over all blocks of Eq. (2.40); equivalently,
〈|wb|2〉b = 2 tr(M †M) ≡ 2µ2. As long as some wb are
nonzero, r0 is larger than the radius of the circular law,
σ, with the difference an increasing function of 〈|wb|2〉b;
thus the spreading of the spectrum of M (originally con-
centrated at the origin) after the random perturbation
by σJ , is larger the more nonnormal M is. In cases in
which the feedforward weights of some of the 2×2 blocks
of Eq. (2.40) grow without bound as N → ∞, there is
a corresponding singular value of Mz ∝ z −M for every
such block which is nonzero for z 6= 0 but vanishes in

the limit, scaling like ∼ |z|2
|wb| where wb is the unbounded

weight of that block (see Eq. (5.37) and its preceding
paragraph). (Note that as stated after Eq. (2.3) we as-

sume ‖M‖
F
= µ =

√

〈|wb|2〉b/2 is O(1), so that at most
o(N) number of weights can be unbounded, and each can
at most scale like O(N1/2).) In line with the general dis-
cussion after Eq. (2.12), in such cases the naive use of
Eq. (2.5) may yield an area larger than the true support
of limN→∞ ρ(z); the correct support must be found by
using Eqs. (2.19)–(2.20), which in this case can yield a
support radius strictly smaller than Eq. (2.44). We have
calculated the explicit results for limN→∞ ρ(z) for two
specific examples of M with the Schur form Eq. (2.40).
The first example belongs to the first case (bounded wb’s)
where limN→∞ ρ(z) is Θ(1) within the entire disk r ≤ r0,
while the second belongs to the second case (unbounded
wb’s) where the limit density is only nonzero in a proper
subset of that disk.
In the first example, we take all the Schur weights in

Eq. (2.40) to have the same value, which we denote by
w. In this case, the eigenvalue density is given by ρ(r) =
1

2πr

∂n
<
(r)

∂r , where n
<
(r) is the proportion of eigenvalues

within a distance r from the origin and is given by

n
<
(r) =

r2

σ2

[

1− |w|2
σ2 +

√

σ4 + |w|4 + 4|w|2r2

]

. (2.45)

n
<
(r) reaches unity exactly at r = r0 given by Eq. (2.44),

and ρ(r) is Θ(1) for any smaller r. Figure 4 shows the
close agreement of Eq. (2.45) with empirical results based
on single binary realizations of J , for N as low as 60.
The second example is that of the balanced Eq. (2.42)

with u · v = 0. As we saw, all wb are zero in this case
except for one very large, unbounded weight w1 = µ

√
N .

As discussed above, in this case Mz ∝ z−M has an o(1)

smallest singular value, approximately given by |z|2
µ
√
N
.

Using Eqs. (2.19)–(2.20), we find that the support of
limN→∞ ρ(z) is the disc with radius σ (within the an-
nulus σ < |z| ≤ r0 the eigenvalue density is o(1)), and
solving Eqs. (2.8)–(2.9) for |z| ≤ σ, we find that the spec-
tral density is in fact identical with the circular law (the
eigenvalue density for the M = 0 case), i.e.

ρ(r) =







1
πσ2 + o(1), (r < σ)

o(1) (r > σ).
(2.46)
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It was shown in Refs. [36, 44] that more generally, for
any M of rank o(N) and bounded ‖M‖F, the eigenvalue
density of A = M + σJ is given by the circular law in
the limit N → ∞. For single rank M (as in the present
case) and a diagonal R, it was shown in Ref. [45] that
the eigenvalue density of M +JR agrees with that of JR
as N → ∞. In the present example, it was observed in
Ref. [39] that even though the majority of the eigenvalues
are distributed according to the circular law, there also
exist a number of “outlier” eigenvalues spread outside the
circle |z| = σ, which unlike in the M = 0 case, may lie at
a significant distance away from it (see Fig. 5). As we
mentioned in Sec. II A, the non-crossing approximation
cannot be trusted to correctly yield the o(1) contribu-
tions to ρ(z) by these outliers for |z| > σ. However, we
found that if we ignore this warning and use Eqs. (2.8)–
(2.9), keeping track of finite-size, o(1) contributions, we
obtain results that agree surprisingly well (though not
completely) with simulations. First, for the total num-
ber of outlier eigenvalues lying outside the circle |z| = σ
we obtain

N
>
(σ) ≡ Nn

>
(σ) =

√
N +O(1) (2.47)

(here we defined n
>
(r) = 1− n

<
(r) to be the proportion

of eigenvalues lying outside the radius r); see Fig. 6 for
a comparison of Eq. (2.47) with simulations. The vast
majority of the outlier eigenvalues counted in Eq. (2.47)
lie in a narrow boundary layer immediately outside the
circle |z| = σ, the width of which shrinks with growing
N . In addition to these, however, there are a Θ(1) num-
ber of eigenvalues lying at macroscopic, Θ(1) distances
outside the circle |z| = σ. Using Eqs. (2.8)–(2.9) we have
calculated N

>
(r), the number of outlier eigenvalues ly-

ing outside radius r for r > σ. Figure 7 shows a plot
of N

>
(r) and compares it with the results of simulations

for different N . For roughly the inner half of the annu-
lus σ < |z| < r0, N

>
(r) agrees well with simulations,

but as r increases it deviates significantly from the em-
pirical averages. In particular, N

>
(r) calculated from

Eqs. (2.8)–(2.9) vanishes at r0 given by Eq. (2.44), while
the empirical average of the number of outliers is nonzero
well beyond r0. Finally, we note that the distribution of
these eigenvalues is not self-averaging, and depends on
the real vs. complex nature of the random matrix J [36].
In the real case, their distribution has been recently char-
acterized as that of the inverse roots of a certain random
power series with iid standard real Gaussian coefficients
[36].

As for the dynamics, we have analytically calculated
the magnitude of impulse response, Eq. (2.25), as well as
the power-spectrum of steady-state response Eq. (2.33),
for A = M + σJ with M given by Eqs. (2.40)–(2.41)
with general wb, when the (impulse or sinusoidal) in-
put feeds into the second Schur mode in one of the N/2
chains/blocks of Eq. (2.40); we denote the index for this
block by a. For the average magnitude of impulse re-
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FIG. 7: (Color online) The number, N> (r), of outlier eigen-
values of A = M + σJ , for the M given by Eq. (2.42), ly-
ing farther from the origin than r, as a function of r. Here,
σ = 1, µ = 12 and vTu = 0. The vertical line marks
|z| = r0 ≃ 3.54 where r0 is given by Eq. (2.44). The colored
(shades of gray) connected points are N> (r) for realizations
of A, based on 200 samples of J , each color for a different
N , for N = 100, 200, 400, 800, 1600 and 3200 (error bars show
standard error of sample mean). Note the lack of scaling of
N>(r) with N .

sponse we find

〈

‖x(t)‖2
〉

J
=

[

1 + Ca

2
I0(2r0t) +

1− Ca

2
J0(2r1t)

]

e−2γt

(2.48)
where J0(x) (I0(x)) is the (modified) Bessel function, r0
is given by Eq. (2.44), we defined r21 = r20 − σ2, and

Ca ≡ 1 + 2|wa|2/σ2

√

1 + 2〈|wb|2〉b/σ2
, (2.49)

with 〈|wb|2〉b = 2 tr(M †M) denoting the average squared
feedforward weight among all the blocks of Eq. (2.40).
In Fig. 8 we plot Eq. (2.48) and compare it with the
result obtained by ignoring the disorder (i.e. by setting
σ = 0); in the latter case, the block a is decoupled from
the rest of the network, and solving the 2 × 2 linear

system governed by the matrix

(

−γ wa

0 −γ

)

, we obtain

‖x(t)‖2 = (1 + w2
at

2)e−2γt. From the figure, we see that
the σ 6= 0 result (green) has a slower asymptotic decay
compared with the zero-disorder case (purple); this is
due to the disorder having spread some eigenvalues closer
to the imaginary axis, creating modes with smaller de-
cay, along with the fact that the coupling between the
2 × 2 blocks induced by the disorder insures that these
more slowly decaying modes will be activated. Indeed,
for large t, ‖x(t)‖ decays like e−γt when σ = 0, while
in the σ > 0 case, based on Eq. (2.44) it must decay
like e−(γ−r0)t, i.e. by a rate set by the largest real part
of the spectrum shifted by −γ (this is indeed what we
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FIG. 8: (Color online) The squared norm of response to im-
pulse, ‖x(t)‖2, of the system Eq. (2.2), for A = M +σJ , with
log-normal J , and M given by Eq. (2.40) describing N/2 dou-

blet feedforward chains weights wb. Here, wa =
√

〈|wb|2〉b =
3, σ = 0.4, γ = 1, and N = 1400. The green (thick dashed)
curve shows our result, Eqs. (2.48)–(2.49), for the average
norm squared which, except for a small window around its
peak, lies on top of the red (thick solid) curve showing the
empirical average of ‖x(t)‖2 over 100 realizations of binary J .
The five thin dashed black curves show the result for five par-
ticular realizations of J , and the pink (light gray) area shows
the standard deviation among the 100 realizations. The stan-
dard deviation shrinks to zero as N → ∞ and ‖x(t)‖2 for any
realization lies close to its average for large N . For compar-
ison the purple (thin, lowest) curve shows ‖x(t)‖2 obtained
by ignoring the effect of quenched disorder, i.e. by setting
A = M .

obtain from Eq. (2.48) using the asymptotics of Bessel
functions). In addition, both curves exhibit transient
amplification where the magnitude of activity initially
grows to a maximum, before it decays asymptotically to
zero. The σ 6= 0 curve shows larger and longer transient
amplification, which is most likely attributable both to
the eigenvalues being closer to the Re(z) = γ line and to
augmented nonnormal effects (e.g. larger effective feed-
forward weights, or longer chains). We also mention that,
as in our previous examples, if the input direction is op-
timized for the particular realization of J , significantly
larger transient amplification may be achieved.
Finally, the total power spectrum of response to a sinu-

soidal input, Eq. (2.32), is given by the explicit formula

〈

‖xω‖2
〉

J
=

ω2 + γ2 + |wa|2
(ω2 + γ2)2 − σ2(ω2 + γ2 + µ2)

‖I0‖2.
(2.50)

where µ2 ≡ tr(M †M) = 〈|wb|2〉b/2 and, as noted above,
the direction of I0 is that of the second Schur mode in
block a.
The example Eq. (2.42) motivated by Dale’s law with

neurons of either excitatory or inhibitory types, can be
generalized to a network of neurons belonging to one of C
different types (these could be subtypes of excitatory or
inhibitory neurons), in which not only the mean but also

the variance of connection strengths depends on the pre-
and post-synaptic types. When this dependence is fac-
torizable, in a way we will now describe, the connectivity
matrix of such a network will be of the form Eq. (2.1)
with non-trivial L and R. Let c(i) ∈ {1, . . . , C} denote
the type of neuron i, and let fc denote the fraction of neu-

rons of type c (so
∑C

c=1 fc = 1); we assume C and fc are
all Θ(1). Assume further that each synaptic weight is a
product of a pre- and a post-synaptic factor, and that in
each synapse these factors are chosen independently from
the same distribution, except for a deterministic sign and
overall scale that depend only on the type of the pre and
post-synaptic neurons, respectively. Thus if Aij denotes
the weight of the synaptic projection from neuron j to
neuron i, we have

Aij =
1√
N

(lc(i)xij)(rc(j)yij) (2.51)

where xij ’s and yij are positive random variables chosen
iid from the distributions Px(x) and Py(y), respectively.
Here, lc and rc determine the sign and the scale (apart
from the overall 1√

N
) of the pre and post-synaptic factors

of the neurons in cluster c, respectively. Note that when
all lc are positive, Aij satisfies Dale’s law. By absorbing
appropriate constants into lc’s and rc’s we can assume
that Var[xy] = 〈x2〉〈y2〉 − 〈x〉2〈y〉2 = 1. Then it is easy
to see that A can be cast in the form Eq. (2.1) with

Lij = lc(i)δij (2.52)

Rij = rc(i)δij (2.53)

Jij =
1√
N

(xijyij − ξ) (2.54)

M = sLuuT R (2.55)

where u is the unit vector 1√
N
(1, . . . , 1)T,

s ≡ ξ
√
N, (2.56)

and ξ ≡ 〈x〉〈y〉 is dimensionless and Θ(1) (note that J ,
given by Eq. (2.54), indeed has iid elements with zero
mean and varianceN−1). Being single-rank,M has N−1
zero eigenvalues; its only (potentially) non-null eigenvec-
tor is Lu, with a generically large eigenvalue

λM = suTRLu = s
1

N

N
∑

i=1

rc(i)lc(i) = ξ
√
N〈σc〉c (2.57)

where we defined

σc ≡ lcrc, (2.58)

〈Xc〉c ≡
C
∑

c=1

fcXc. (2.59)

As for the example Eq. (2.42), we will focus on the
balanced case in which λM ∝ 〈σc〉c = 0. From Eq. (2.55),
M = ũṽT with ũ = Lu and ṽ = sRu. The balanced
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condition is equivalent to ũ·ṽ = 0 (see Eq. (2.57)). Thus,
similar to Eq. (2.42), the Schur representation of M has
the form (2.40) with w1 = ‖ũ‖‖ṽ‖ and wb = 0 for b > 1.
In Sec. VC we prove that, as for Eq. (2.42), for the

ensemble Eqs. (2.52)–(2.55) the limit of the eigenvalue
distribution, limN→∞ ρ(z), is also not affected by the
nonzero mean matrix Eq. (2.55); hence we can obtain
limN→∞ ρ(z) for that example by safely setting M to
zero, and using formulae Eqs. (2.13)–(2.16) with L and
R given by Eqs. (2.52)–(2.53). Thus limN→∞ ρ(z) is
isotropic and its support is the disk with radius

r0 = ‖RL‖F =
√

〈σ2
c 〉c. (2.60)

As in the previous example, when the balance condition
〈σc〉c = 0 holds, use of the naive formula Eq. (2.5) with
M = ũṽT would have yielded

r̃0 = r0

[

1

2
+

√

1

4
+ ξ2

]1/2

, (2.61)

which is larger than the correct result Eq. (2.60). As
discussed above, this result is not correct, but it indi-
cates the existence of Θ(1) number of outlier eigenval-
ues lying outside the boundary of limN→∞ ρ(z) given by
Eq. (2.60). For r < r0, the N → ∞ limit of the propor-
tion, n>(r), of eigenvalues lying farther than distance r
of the origin is given by g2(r) which is found by solving
Eq. (2.15), or equivalently

〈

1

g2 + σ−2
c r2

〉

c

= 1. (2.62)

The results Eqs. (2.17)–(2.18) also hold, wherein the nor-
malized sums over i can be replaced with appropriate
averages 〈·〉c. In the case of two neuronal types a closed
solution can be obtained for n>(r) and ρ(r). Identify-
ing the two types with excitatory and inhibitory neu-
rons, and assuming that lc = 1, σE ≡ σ1 > 0 and
σI ≡ σ2 < 0 (we will use E and I as indices instead
of c = 1 and 2, respectively) the ensemble Eqs. (2.52)–
(2.55) describes a synaptic connectivity matrix in which
all excitatory (inhibitory) connections are iid with mean

ξσEN
− 1

2 (−ξ|σI |N− 1
2 ) and variance σ2

EN
−1 (σ2

IN
−1).

In this case, Eq. (2.62) yields a quadratic equation. Dif-
ferentiating the solution of that equation with respect to
r2 we obtain the explicit result

ρ(r) =
σ−2
E + σ−2

I

2π









1−
(σ−2

E
+σ−2

I
)r2−1

2 +
r20−2r2

σ2
E
+σ2

I
√

((σ−2
E

+σ−2
I

)r2−1)2

4 +
r2(r20−r2)

(σEσI )2









(2.63)
This result was first obtained (in a less simplified form)
in Ref. [39]. Figure 9 shows two examples of spectra for
single realizations of matrices of the form Eq. (2.51), with
three neural types (C = 3), where xij and yij , and hence
Jij , have log-normal distributions. The insets compare
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FIG. 9: (Color online) The eigenvalue spectra of A = M +
LJR with M , L and R given by Eqs. (2.52)–(2.55) with neu-
rons belonging to one of three different types (C = 3). The
main panels show the eigenvalues for two particular realiza-
tions of J . In both panels, N = 2000, f1 = 0.6, f2 = f3 = 0.2,
lc = 1, σ1 = r1 = 0.76, σ2 = r2 = −0.57, σ3 = r3 = −1.71 (so
〈σc〉c = 0 and r20 =

〈

σ2
c

〉

c
= 1), and Jij had real entries with

log-normal distribution; in the left (right) panel, the normally
distributed log10 Jij had standard deviation 0.5 (0.75). The
solid red circles mark the boundaries of the spectral support
as given by Eq. (2.60), and the dashed blue circles show the
radii given by Eq. (2.61). The insets compare n>(r) based on
the numerically calculated eigenvalues shown in the main pan-
els (connected red dots), with that found by solving Eq. (2.62)
(black curve). In the right panel’s inset we have also plotted
(green connected dots lying slightly above the red connected
circles) the empirically calculated n>(r) for a single realiza-
tion with the same ensemble parameters, but with N = 8000;
the convergence to the universal limit at N → ∞ is signifi-
cantly slower in the right panel in which the distribution of
Jij had a considerably heavier tail.

n>(r) based on the numerically calculated eigenvalues,
with those found by solving Eq. (2.62). In the right panel,
the normally distributed log Jij have a higher standard
deviation, and hence the distribution of Jij has a heavier
tail. The right panel’s inset demonstrates that the con-
vergence to the universal, N → ∞ limit can be consider-
ably slow when the distribution of Jij is heavy-tailed.

3. Linearizations of nonlinear neural and ecological

networks

In neuroscience applications, Eq. (2.2) can arise as a
linearization of nonlinear firing rate equations for a re-
current neural network of N neurons, around some sta-
tionary background. The nonlinear dynamical equations
for the evolution of the network activity typically take
the form [63]

T
dv(t)

dt
= −v(t) +Wf(v(t)) + Iv(t). (2.64)

Here v(t) is the vector of state variables of all neurons at
time t; its i-th component, vi(t), is commonly thought of
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as the voltage of the i-th neuron, or the total synaptic
input it receives. f(·) is the neuronal nonlinear input-
output function, which is imposed element-by-element
on its vector argument, with f(v)i ≡ f(vi) giving the
output, i.e. the firing rate, of neuron i; Iv(t) is the ex-
ternal input vector; T = diag(τ1, τ2, · · · , τN ) is a N ×N
diagonal matrix whose diagonal elements are the positive
time-constants of the neurons (hence T is invertible); and
W is the N ×N synaptic connectivity matrix.
Suppose that for a constant external input, Iv∗,

Eq. (2.64) has a fixed point v∗. Then, given a small per-
turbation in the input, Iv(t) = Iv∗ + δIv(t), we can write
v(t) = v∗ + x(t), and linearize the dynamics around the
fixed point by expanding Eq. (2.64) to first order in x(t)
and δIv(t). This yields the set of linear differential equa-
tions

T
dx(t)

dt
= −x(t) +WΦx(t) + δIv(t), (2.65)

for the (small) deviations, where we defined the diagonal
Jacobian

Φ = diag(f ′(v∗)). (2.66)

Now suppose that the original connectivity matrix can
be written as W = 〈W 〉+ δW , with a quenched disorder
part that is an iid random matrix: δW = σJ . Then
multiplying Eq. (2.65) by T−1, we can convert Eq. (2.65)
into the form Eq. (2.2) with γ = 0 and A = M + LJR
with

M = T−1(−1+ 〈W 〉Φ) (2.67)

L = T−1 (2.68)

R = σΦ (2.69)

and input

I(t) = T−1 δIv(t). (2.70)

This observation is not limited to neuroscience appli-
cations, and can also apply to many other frameworks,
e.g. those used in mathematical biology. Generalized
Lotka-Volterra (GLV) equations [47] used in modeling
the dynamics of food webs provide an example. Let
n(t) = (n1(t), . . . , nN(t))T denote the vector of popu-
lation sizes of N species. The GLV equations take the
form dni

dt = ni(ri +
∑

j Wijnj) or

dn

dt
= diag(r +Wn)n (2.71)

where ri > 0 are the species’ intrinsic growth rates andW
is the interaction matrix. Linearizing Eq. (2.71) around a
fixed point, n∗, yields again a linear system of the form
Eq. (2.2) with γ = I(t) = 0. Starting with the same
simple model W = 〈W 〉 + σJ , we find that A can be
written in the form Eq. (2.1) with

R = σ1, L = diag(n∗), (2.72)

M = diag(r +Wn∗) + L〈W 〉. (2.73)
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FIG. 10: (Color online) The eigenvalues (black dots) of
A = M + JR, with M and R given by Eqs. (2.75)–(2.76)
with g = 0.01, a = 1.02 and N = 2000. This matrix governs
the dynamics of small perturbations away from a non-trivial
random fixed point in a clustered network of neurons (see
Eq. (2.74)), studied in Ref. [48]. The cyan dots on the real
line are the eigenvalues of M , and the red curve is the bound-
ary of support of the eigenvalue distribution, as calculated
numerically from Eq. (2.5).

Note that if no species is extinct in the fixed point, i.e.
if all ni∗ > 0, then M = L〈W 〉.
Assuming the linear systems thus obtained, i.e. the

fixed points v∗ or n∗, are stable, we can therefore think
of our results for ‖x(t)‖2 and ‖xω‖2 as characterizing
the temporal evolution and the spectral properties of
the linear response of the nonlinear system Eq. (2.64)
(Eq. (2.71)) in its fixed point v∗ (n∗) to perturbations.
The necessary and sufficient condition for the stability

of a fixed point (without any change in the external in-
put) is that all eigenvalues of the corresponding A have
negative real parts. Our formula for the boundary of the
eigenvalue distribution, Eq. (2.5), can be applied in these
cases to map out the region in parameter space (param-
eters here mean the time constants or intrinsic growth
rates in T or r, or the connectivity parameters determin-
ing the random ensemble for W , i.e. σ and the parame-
ters of 〈W 〉) in which a particular fixed point is stable.
Recently our general formula Eq. (2.5) was used in this
way by colleagues [48] to determine the phase diagram
of a clustered network of neurons, in which intra-cluster
connectivity is large, but inter-cluster connectivity is ran-
dom and weak. Because of the strong intra-cluster con-
nectivity, each cluster behaves as a unit with a single
self-coupling a. Letting the random inter-cluster cou-
plings between N clusters have zero mean and variance
g2/N , their analysis starts from the equation

dv(t)

dt
= −v(t) + a tanh(v(t)) + gJ tanh(v(t)) (2.74)

where J is an iid random matrix as above. Here, v is
a vector whose i-th component is the mean voltage of
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cluster i, while the nonlinear function tanh(v(t)) (with
the hyperbolic tangent acting component-wise) repre-
sents the vector of mean firing rates of the clusters. The
analysis of Ref. [48] shows that there is a region of the
phase plane (a, g) where the self-connectivity, a, is exci-
tatory and sufficiently strong, in which the system even-
tually relaxes to non-zero random attractor fixed points
v∗; for smaller values of a, the dynamics is chaotic (chaos
in the a = 0 case was established in Ref. [49]). The form
of these fixed points (the distribution of the elements of
v∗ as N → ∞ for a given (a, g)) can be obtained using
mean-field theory, and the linearization about v∗ leads to
an equation in the form of Eq. (2.2), with A = M + JR,
where M and R are the diagonal matrices

M = diag(−1 + a tanh′(v∗)) (2.75)

R = diag(g tanh′(v∗)). (2.76)

Given this form, it can be shown that the fixed point v∗
is stable if z = 0 is outside and to the right of the spec-
trum of the Jacobian matrix of the linearization, A. The
mean field solution for v∗ determines the statistics of the
elements of R2M−2 for a given (a, g). From these it can
be determined if z = 0 is outside the spectrum using our
formula for the boundary of spectrum Eq. (2.5), which

yields the requirement tr
(

R2

M2

)

< 1. In this way, the

region of stability of the fixed points in the (a, g) plane
can be mapped (see Ref. [48] for the results, and a com-
plete discussion of the analysis outlined here). Figure 10
shows a numerical example of the eigenvalue distribution
for A for a given (a, g) and the superimposed boundary
calculated using Eq. (2.5).
In closing we note a potential caveat in the applicabil-

ity of our formulae to the linearization analysis of systems
like Eq. (2.65) and Eq. (2.71). We have derived the gen-
eral formulae of Secs. II A–II B assuming that M , L and
R are independent of J . However, M and R as given by
Eqs. (2.67) and (2.69) (or M and L in Eqs. (2.72)–(2.73))
depend on J via their dependence on v∗ (n∗). However,
in our experience this dependence is often too weak and
indirect to render our formulae inapplicable; an example
is provided by the excellent agreement of the empirical
spectrum and the red boundary given by our formula in
Fig. 10, which also held for other parameter choices of
the model of Ref. [48].

III. DERIVATION OF THE FORMULA FOR
THE SPECTRAL DENSITY

In this section we will derive the formulae Eqs. (2.5)–
(2.8) for the average spectral density, ρ(z), of random
matrices of the formA = M+LJR whereM , L and R are
deterministic matrices, and J is random with iid elements
of zero mean and variance 1/N . We will use the Hermi-
tianized diagrammatic method developed in Refs. [24, 25]
(and reviewed in Ref. [50]), which we will recapitulate

here for completeness. As mentioned in Sec. II, the spec-
tral density is self-averaging for large N . Furthermore,
as established in Ref. [34], it is also universal in the large
N limit, in the sense that it is independent of the details
of the distribution of the elements of J as long its mean
and variance are as stated. The same universality the-
orem also ensures that the real or complex nature of J
does not by itself affect ρ(z) to leading order. Therefore,
for simplicity we consider the case where J is a zero-mean
complex Gaussian random matrix with 〈JabJcd〉 = 0, and

〈JabJ∗
cd〉 =

1

N
δacδbd. (3.1)

Thus 〈|Jab|2〉 = 1
N , and all other first and second mo-

ments of J (including 〈J2
ab〉) vanish. The measure on J

can be written as

dµ(J) ∝ e−NTr(JJ†)
∏

ab

dImJabdReJab. (3.2)

In this form, and by the invariance of the trace, it is clear
that the measure is symmetric with respect to the group
U(N)⊗ U(N), acting on J by J 7→ UJV † where U and
V are arbitrary N ×N unitary matrices.
For a particular realization of J , we define the “Green’s

function” G(z; J) by

G(z; J) ≡ 1

Mz − J
, (3.3)

where Mz = L−1(z − M)R−1 (Eq. (2.6)). In the case
L,R ∝ 1, G(z; J) will be proportional to the resolvent of
A, 1

z−A . More generally we have

1

z −A
= R−1G(z; J)L−1. (3.4)

Following Ref. [24], we will use the identity

δ2(z) =
1

π
∂z̄∂z ln |z|2 =

1

π
∂z̄

(

1

z

)

(3.5)

where the first identity follows by noting that 4∂z̄∂z =
∇2, where ∇2 is the 2-D Laplacian, and recalling from
electrostatics that the solution of Poisson’s equation for
a point charge at origin, i.e. ∇2φ(z) = 4πδ2(z), in 2-D
is given by the potential field φ(z) = ln |z|2; the second
identity follows from ∂z ln |z|2 = ∂z(ln z + ln z̄) = 1

z +
0. Using Eq. (3.5) we can write the empirical spectral
density, defined in Eq. (2.4), as

ρJ (z) =
1

π
∂z̄

1

N

∑

α

1

z − λα
=

1

π
∂z̄ tr

1

z −A
. (3.6)

Performing the ensemble average we obtain

ρ(z) ≡ 〈ρJ(z)〉J =
1

π
∂z̄ tr[(RL)−1 〈G(z; J)〉J ], (3.7)

where we used Eq. (3.4), and the linearity and cyclicity
of the trace. Thus, to calculate ρ(z), our task boils down
to calculating 〈G(z; J)〉J .
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The diagrammatic technique provides a method for
calculating averages of products of G(z; J)’s. However,
this method in its standard form relies on A being a Her-
mitian matrix. It starts by an expansion of G(z; J) in
powers of J , which is only valid when z is far enough
from the spectrum of A, i.e. away from the points we are
most interested in. For Hermitian matrices, this is no
problem as the spectrum is confined to the real line, and
therefore G(z; J) and 〈G(z; J)〉J will be analytic outside
the real line. Thus one can use the expansion for z far
away outside the real line, perform the averaging over J ,
and sum up the most dominant contributions to obtain
a result analytic in z. This result can then be analyti-
cally continued to z arbitrarily close to the spectrum on
the real line, yielding information about the spectrum.
All this would seemingly fail in the case of a nonnormal
(and in particular non-Hermitian) A, with eigenvalues
that in general cover a two dimensional region in the
complex plane. However, using a trick introduced by
Ref. [24], we can turn this problem to an auxiliary prob-
lem of averaging the Green’s functions for a Hermitian
matrix. By doubling the degrees of freedom, one defines
a z-dependent, 2N × 2N Hermitian “Hamiltonian”

H(z) ≡
(

0 Mz − J
M †

z − J† 0

)

, (3.8)

and the corresponding 2N × 2N resolvent matrix or
Green’s function depending on a new complex variable
η:

G(η, z; J) ≡ (η −H(z))
−1

(3.9)

= −
(

η
(Mz−J)(Mz−J)†−η2

Mz−J
(Mz−J)†(Mz−J)−η2

(Mz−J)†

(Mz−J)(Mz−J)†−η2
η

(Mz−J)†(Mz−J)−η2

)

.

For η → i0, we see that

G(0, z; J) = −
(

0 (Mz − J)−†

(Mz − J)−1 0

)

. (3.10)

and thus from Eq. (3.3), for any realization of J

G(z; J) = − lim
η→i0

G
21(η, z; J) (3.11)

Here, we have used the notation

G(η, z; J) =

(

G
11(η, z; J) G12(η, z; J)

G
21(η, z; J) G22(η, z; J)

)

, (3.12)

whereGαβ (with α, β ∈ {1, 2}) areN×N matrices, form-
ing the four blocks of G. We have written the limit in
Eq. (3.11) as η → i0 to emphasize that until the end of
our calculations η is to retain a nonzero imaginary part,
which serves to regularize the denominators in Eq. (3.9);
c.f. the discussion after Eq. (3.35). We will be carry-
ing out a perturbation expansion in powers of J , so we
decompose the Hamiltonian according to

H(z) = H0(z)− J , (3.13)

J ≡
(

0 J
J† 0

)

, H0(z) ≡
(

0 Mz

M †
z 0

)

. (3.14)

We will sometimes use a tensor product notation to
denote matrices in this doubled up space, e.g. writing
J = σ+ ⊗ J + σ− ⊗ J†, where we defined the 2 × 2
matrices

σ+ =

(

0 1
0 0

)

σ− =

(

0 0
1 0

)

. (3.15)

By a slight abuse of notation we also denote 2N×2N ma-
trices σ± ⊗ 1

N×N
by σ±, and we will denote the identity

matrix in any space by 1. From Eqs. (3.11) we obtain
tr [(RL)−1G(z; J)] = −tr

[(

σ+ ⊗ (RL)−1
)

G(i0+, z; J)
]

,
and from Eq. (3.7)

ρ(z) = − lim
η→i0

1

π
∂z̄ tr

((

σ+ ⊗ (RL)−1
)

G(η, z)
)

(3.16)

= − lim
η→i0

1

π
∂z̄ tr

(

(RL)−1G21(η, z)
)

, (3.17)

where we defined

G(η, z) ≡ 〈G(η, z; J)〉J . (3.18)

Having expressed ρ(z) in terms of the ensemble average
of the Green’s function for a Hermitian matrix, we now
develop the diagrammatic method for calculating ensem-
ble averages of products of G(η, z; J) (including G(η, z)).
Note that, being the Green’s function of a Hermitian
matrix, G(η, z; J) and hence G(η, z) = 〈G(η, z; J)〉J are
analytic functions of η for η outside the real line, and
therefore analytic continuation can be used to take the
limit η → i0 after obtaining the average over J for η
sufficiently away from the real line.
We will denote the elements of a generic 2N × 2N

matrix A by Aαβ
ab , where the Greek indices range in {1, 2}

and the Latin indices range in {1, . . . , N}. Using this
notation, the definition Eq. (3.14), and Eq. (3.1), we can
write the covariance for the components of J as
〈

J αβ
ab J γδ

cd

〉

J
=

1

N
δadδbc

(

σ+
αβσ

−
γδ + σ−

αβσ
+
γδ

)

(3.19)

(the terms proportional to σ+σ+ and σ−σ− involve
〈JabJcd〉, or its complex conjugate, which vanish for the
complex Gaussian ensemble). It will be more handy to
rewrite the parenthesis on the right side of Eq. (3.19) as
π1
αδπ

2
γβ + π2

αδπ
1
γβ, where

π1 ≡
(

1 0
0 0

)

π2 ≡
(

0 0
0 1

)

, (3.20)

yielding

〈

J αβ
ab J γδ

cd

〉

J
=

1

N

2
∑

r=1

(πr
αδδad) (π

3−r
γβ δcb). (3.21)

Also, since Jab have zero mean, we have 〈J 〉J = 0.
The starting point of the diagrammatic method is the

perturbation expansion ofG(η, z; J) = (η−H0(z)−J )−1

in powers of J

G(η, z; J) = G(η, z; 0)

∞
∑

n=0

[JG(η, z; 0)]
n

(3.22)
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a,α b,β

G
αβ
ab

(η, z; 0) 〈J αβ
ab

J
γδ
cd

〉
aα bβ cγ dδ

G(η, z) Σ(η, z)

G(η, z; J)

FIG. 11: The first two lines define different elements of Feyn-
man diagrams: the Green’s function for J = 0 (zero disorder),

G
αβ
ab (η, z; 0), the covariance of two J elements, the ensemble

averaged Green’s function, G(η, z) ≡ 〈G(η, z; J)〉J , and the
self-energy Σ(η, z) , Eq. (3.24) (the matrix indices for G(η, z)
and Σ(η, z) are arranged as for Gαβ

ab (η, z; 0)). The third line is
the diagrammatic representation of the expansion Eq. (3.22)
of G(η, z; J) before averaging over J , where the J ’s are
represented by dashed lines. Averaging over Eq. (3.2) is per-
formed by pairing all J ’s and connecting them with the wavy
lines representing 〈J J 〉. In the large N limit, the contri-
bution of crossing pairings is suppressed by negative powers
of N ; the sum of all non-crossing diagrams, shown on the
fourth line, yields the leading contribution to G(η, z) for large
N . The last line shows the diagrammatic representation of
Eq. (3.23), which if iterated generates all the non-crossing di-
agrams. Alternatively, G(η, z) can be found by solving this
self-consistent equation directly.

where G(η, z; 0) is given by Eq. (3.9) with the J ’s set
to zero. This equation is represented diagrammatically
in the third line of Fig. 11; the thin arrows defined in
the first line of the figure represents G(η, z; 0), and the
dashed lines represent a power of J before ensemble av-
eraging. To obtain the average resolvent, G(η, z), we
then average Eq. (3.22), term by term, with respect to
the ensemble Eq. (3.2). Since the measure is Gaussian
with zero mean, according to Wick’s formula, the aver-
age of each term of Eq. (3.22) involving n factors of J
is given by a sum over the contributions of all possible
complete pairings of the J ’s in that term (in particular,
since 〈J 〉J = 0, terms in Eq. (3.22) with odd powers of
J vanish after averaging). Each pairing can be repre-
sented as a Feynman diagram, as shown in Fig. 11, the
first two lines of which define the diagram elements. For
example, the last diagram in the fourth line of Fig. 11
shows one possible pairing of the term in Eq. (3.22) cor-
responding to n = 6. The contribution of each pairing
diagram is given by a product of factors, one per each
pair, given by Eq. (3.21) (represented by wavy lines) with
the right indices for that pair, as well as the factors of
G(η, z; 0) (represented by thin arrows), with all the in-
tervening Greek and Latin matrix indices summed over
their proper ranges. We show in Appendix A that for

Im η 6= 0, and so long as ‖(RL)−1‖ remains bounded as
N → ∞, only non-crossing pairings need to be retained
in the large N limit, as crossing pairings are suppressed
by inverse powers of N and do not contribute in the limit
(a pairing diagram is non-crossing if it can be drawn on a
plane, with the wavy lines drawn only on the half-plane
above the straight arrow line, without any wavy lines
crossing). As the last two lines of Fig. 11 demonstrate,
all non-crossing diagrams can be generated by iterating
the equation

G(η, z) = G(η, z; 0) +G(η, z; 0)Σ(η, z)G(η, z), (3.23)

starting from G(0)(η, z) = G(η, z; 0). This equation is
represented diagrammatically in the last line of Fig. 11,
with the “self-energy” matrix, Σ(η, z), defined by the di-
agram in the second line of that figure, i.e.

Σ(η, z) ≡ 〈J G(η, z)J 〉J . (3.24)

Using Eq. (3.21) we obtain

Σαδ
ad(η, z) = δad

2
∑

r=1

πr
αδ

1

N
Tr (π3−rG(η, z)), (3.25)

which using Eq. (3.20) we can write as

Σ(η, z) =

(

−ig2(η, z)1 0
0 −ig1(η, z)1

)

, (3.26)

where we defined the scalar functions

gα(η, z) ≡ i trGαα(η, z). (3.27)

Using Eq. (3.26) we can solve Eqs. (3.23)–(3.26) for
G(η, z) at once, in terms of gα(η, z), and then use
Eq. (3.27) to obtain a self-consistency equation, which
can be solved for gα(η, z). To this end, we multiply
Eq. (3.23) by G

−1(η, z; 0) on the left, and by G−1(η, z)
on the right, to obtain

G(η, z) =
[

G
−1(η, z; 0)− Σ(η, z)

]−1

= [η −H0(z)− Σ(η, z)]
−1

. (3.28)

Using this expression with Eqs. (3.14) and (3.26), it can
be easily checked that

G(η, z) = −
(

(η + ig1)K
−1
1 (z −M)K−1

2

(z̄ −M †)K−1
1 (η + ig2)K

−1
2

)

, (3.29)

where K1 ≡ MzM
†
z + (g1 − iη)(g2 − iη) and K2 ≡

M †
zMz + (g1 − iη)(g2 − iη), and we dropped the argu-

ments of gα(η, z) for succinctness. Imposing Eq. (3.27)
we obtain the self-consistency equations

g1 = (g1 − iη) tr
(

K−1
1

)

, (3.30)

g2 = (g2 − iη) tr
(

K−1
2

)

. (3.31)

Before solving these equations for g1 and g2, we first show
that tr

(

K−1
1

)

= tr
(

K−1
2

)

. One way to see this is to use
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the singular value decomposition (SVD) of Mz in the
form

Mz = UzSzV
†
z , (3.32)

where Sz is a nonnegative diagonal matrix with the
singular values of M , si(z) (i = 1, · · · , N), on the
diagonal, and Uz and Vz are unitary matrices (as in
Sec. II A we include possibly vanishing singular values
among si(z), so that Sz, Uz and Vz are always N × N
matrices). Using the invariance of trace under simi-
larity transforms, we obtain tr

(

K−1
1

)

= tr
(

K−1
2

)

=

tr
(

S2
z + (g1 − iη)(g2 − iη)

)−1
. Given this equality, it is

not hard to see that Eqs. (3.30) cannot be simultane-
ously satisfied unless g1(η, z) = g2(η, z) ≡ g(η, z), with
g(η, z) satisfying

g = (g − iη) tr

[

1

S2
z + (g − iη)2

]

, (3.33)

or as written in the original basis

g = (g − iη)tr

[

1

MzM
†
z + (g − iη)2

]

. (3.34)

Noting from Eqs. (3.26), that the self-energy is thus
proportional to the 2N × 2N identity matrix, from
Eqs. (3.28) and (3.9) (for J = 0) we obtain

G(η, z) = G(η + ig(η, z), z; 0) (3.35)

= −





iγ

MzM
†
z+γ2

Mz

M†
zMz+γ2

M†
z

MzM
†
z+γ2

iγ

M†
zMz+γ2





where γ ≡ g(η, z)− iη.
According to Eq. (3.11), for our case of interest we

must solve Eq. (3.34) in the limit η → i0. Note, how-
ever, that as shown in Appendix A, the non-crossing ap-
proximation is in general guaranteed to work only for
Im η 6= 0; hence the limit η → i0 must be taken after
the limit N → ∞ (as already pointed out in Sec. II, tak-
ing the limits in this order is important in cases where
some of the singular values in Sz vanish in the limit
N → ∞). For our purposes, it suffices to let η = iǫ
for some real positive ǫ, and take the limit ǫ → 0+ at
the end. In this case one must seek a positive solu-
tion for g(iǫ, z) in Eq. (3.34); this is because by defini-
tion, g(η, z) = itrG11(η, z) = 〈tr iG11(η, z; J)〉J and from

Eq. (3.9) we obtain g(iǫ, z) =
〈

tr ǫ
(Mz−J)(Mz−J)†+ǫ2

〉

J
,

which for ǫ > 0, is the ensemble average of the trace of
a positive definite matrix and hence positive. Taking the
limit N → ∞ while keeping ǫ (and hence ǫ + g) positive
and nonzero, we define

K(γ, z) ≡ lim
N→∞

tr

[

1

MzM
†
z + γ2

]

= lim
N→∞

tr

[

1

S2
z + γ2

]

(3.36)

for γ = g + ǫ > 0. We can then rewrite Eq. (3.34) as

γ(1−K(γ, z)) = ǫ, (3.37)

with γ = g + ǫ. Since ǫ and γ = g + ǫ are positive, it
follows that 1−K(γ, z) must also be positive. In the limit
ǫ → 0+ there are two possible situations: 1) g, γ → 0+,
in which case we must have

lim
γ→0+

K(γ, z) < 1, (3.38)

or limγ→0+ K(γ, z) = 1, or 2) the solution for g stays
finite and positive in the limit, while K(γ, z) → 1− as
γ → g+. Thus in the second case g(z) ≡ limǫ→0+ g(ǫ, z)
must satisfy K(g(z), z) = 1, i.e.

1 = lim
N→∞

tr

[

1

S2
z + g(z)2

]

. (3.39)

Note further that since K(γ, z) is a decreasing function of
γ, in the second case we have K(0+, z) ≥ K(g(z), z) = 1,
i.e.

lim
γ→0+

K(γ, z) ≥ 1. (3.40)

Thus the two possible solutions are realized in compli-
mentary regions (with a shared boundary) of the com-
plex plane for z, respectively given by Eqs. (3.38) and
(3.40).
Let us substitute the g(z) = 0 solution for the case

(3.38) in Eq. (3.35), and naively set η = iǫ (and thus γ)
to zero, to obtain

G(η = i0+, z) = G(η = i0+, z; 0). (3.41)

From Eqs. (3.10)–(3.11), this solution yields 〈G(z; J)〉J =
−G21(η = i0+, z) = M−1

z = R(z −M)−1L which is ana-
lytic outside the spectrum of M . Hence from Eq. (3.7),
it yields ρ(z) = 0, at least outside the spectrum of M ; a
more careful analysis presented in Appendix B, in which
we correctly take the limit N → ∞ in Eq. (3.17) before
taking ǫ → 0+, confirms that in the region Eq. (3.38),
limN→∞ ρ(z) always vanishes. We conclude that the sup-
port of limN→∞ ρ(z) is where Eq. (3.40) holds (which is
Eq. (2.20) of Sec. II); here g(z) is to be found by solv-
ing Eq. (3.39), or equivalently Eq. (2.9) or Eq. (2.10).
In this region, we obtain ρ(z) by substituting Eq. (3.35),
with the solution of Eq. (3.39), into Eqs. (3.17). This
yields Eq. (2.8), which we rewrite here as

ρ(z) =
1

π
∂z̄ E(z) (3.42)

E(z) ≡ tr

[

(RL)−1M †
z

MzM
†
z + g(z)2

]

, (3.43)

with g(z) given by Eq. (3.39), or equivalently Eq. (2.9).
We will now obtain an alternative expression for ρ(z),

equivalent to Eqs. (3.42)–(3.43), which explicitly shows
that it depends only on the singular values ofMz. Noting
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that, from Eq. (2.6), ∂z
(

MzM
†
z

)

= (RL)−1M †
z , we can

write Eq. (3.43) as

E(z) = tr

[

∂z
(

MzM
†
z

)

MzM
†
z + g(z)2

]

. (3.44)

On the other hand, we have

∂ztr ln
[

MzM
†
z + g(z)2

]

= tr

[

∂z
(

MzM
†
z + g2(z)

)

MzM
†
z + g(z)2

]

,

= E(z) + ∂z
(

g2(z)
)

, (3.45)

where to write the last term we used Eq. (2.9). Thus we
obtain

E(z) = ∂zϕ(z), (3.46)

ϕ(z) ≡ −g2(z) + tr ln
[

MzM
†
z + g(z)2

]

. (3.47)

or using the SVD, Eq. (3.32),

ϕ(z) = −g2(z) + tr ln
[

S2
z + g(z)2

]

, (3.48)

= −g(z)2 +
1

N

N
∑

i=1

ln
[

si(z)
2 + g(z)2

]

. (3.49)

Finally, substituting Eq. (3.49) in Eq. (3.46), and using
Eq. (2.10), we obtain Eq. (2.12).
For the special case of M = 0, we have Mz = z(RL)−1.

If we let σi to be the singular values of RL, then the
singular values of Mz will be given by si(z) = |z|σ−1

i .
Substituting this in Eq. (2.10) and multiplying both sides
by r2 = |z|2, we obtain Eq. (2.15). We see immediately
that g(z), ϕ(z) and ρ(z) depend only on the radius r =
|z|. Similarly we can rewrite Eq. (3.49) as

ϕ(r) = −g(r)2 +
1

N

N
∑

i=1

ln
[

r2σ−2
i + g(r)2

]

. (3.50)

To find the spectral radius (boundary of the spectrum) r0
we have to solve Eq. (2.15) for r, setting g(r) = 0. This

yields r20 = 1
N

∑N
i=1 σ

2
i = ‖RL‖2

F
, yielding Eq. (2.13).

Let us define the proportion of eigenvalues lying outside
a radius r from the origin by n>(r). To obtain Eqs. (2.14)
and (2.16), first note that

ρ(r) =
1

π
∂z̄∂z ϕ(z) =

1

4π
∇2ϕ(z) =

1

4πr

∂

∂r
(r∂rϕ(r)) ,

(3.51)
where we used the expression of Laplacian, ∇2 = ∂2

x+∂2
y ,

in 2-D polar coordinates in the last equality. Using
this with the definition n>(r) = 2π

∫∞
r

ρ(r)rdr, we ob-

tain n>(r) =
[

r
2∂rϕ(r)

]∞
r
. For the limit at r → ∞,

note that for r > r0, g(r) = 0 and we have ϕ(r) =
1
N

∑N
i=1 ln(r

2σ−2
i ) = 2 ln r − 2

N ln det(RL), and hence
r
2∂rϕ(r) → 1 as r → ∞. Thus we obtain

n>(r) = 1− r

2
∂rϕ(r). (3.52)

Differentiating Eq. (3.50) and using Eq. (2.15) we obtain

∂rϕ(r) = 2r
1

N

N
∑

i=1

1

r2 + σ2
i g(r)

2
, (3.53)

and

n>(r) = 1− r2
1

N

N
∑

i=1

1

r2 + σ2
i g(r)

2
, (3.54)

= g(r)2
1

N

N
∑

i=1

σ2
i

r2 + σ2
i g(r)

2
. (3.55)

Using Eq. (2.15) once again we obtain Eq. (2.16). Finally,
using the latter together with Eqs. (3.51)–(3.52) yields
Eq. (2.14).
We will prove further general properties for the eigen-

value density for M = 0. Let us first define

In,k(g, r) ≡
〈

σ−k

(g2 + σ−2r2)n

〉

σ

(3.56)

and

〈f(σ)〉σ ≡ lim
N→∞

1

N

N
∑

i=1

f(σi). (3.57)

(We assume σi have a limit density, ρσ(σ), such that
〈f(σ)〉σ =

∫∞
0

f(σ)ρσ(σ)dσ is well-defined for f(σ) with
sufficiently fast decay at infinity. Note that since we as-
sumed that ‖(RL)−1‖ = (mini σi)

−1 = O(1), this den-
sity has no measure at σ = 0 and hence the averages in
Eq. (3.56) are non-singular for n, k ≥ 0. Also 〈f(σ)〉σ is
finite as long as f(σ) = O(σ2) as σ → ∞, as we are as-
suming that the ‖RL‖F = O(1) and limN→∞ ‖RL‖2F =
〈

σ2
〉

σ
.) First, we obtain general expressions for ρ(r = 0)

and ρ(r = r0), with r0 given by Eq. (2.13). From

Eq. (2.14), πρ(r) = −∂n>(r)
∂(r2) , which using Eq. (2.15),

re-expressed as I1,0(g, r) = 1, we can write as

πρ(r) =

∂I1,0
∂(r2)

∂I1,0
∂(g2)

=
I2,2(g, r)

I2,0(g, r)
. (3.58)

Using the facts that at r = 0, g = 1, and at r = r0, g = 0,
we obtain

ρ(r = 0) =
1

π

I2,2(1, 0)

I2,0(1, 0)
=

1

π

〈

σ−2
〉

σ
(3.59)

ρ(r = r0) =
1

π

I2,2(0, r0)

I2,0(0, r0)
=

1

π

〈

σ2
〉

σ

〈σ4〉σ
. (3.60)

Using the fact that σ4 and σ−2 are anti-correlated and
that σ2 = σ4σ−2, we see that

〈

σ2
〉

σ
≤
〈

σ4
〉

σ

〈

σ−2
〉

σ
or

ρ(r = r0) ≤ ρ(r = 0), (3.61)

with equality if and only if ρ(σ) is deterministic, i.e., a
delta-function. This can happen if all but an o(1) fraction
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of the σi’s have the same limit as N → ∞; in that case
the eigenvalue distribution is given by the circular law.
More generally, we can prove that ρ(r) is a decreasing
function of r for any choice of L and R (with M = 0).

Using dρ(r)
dr = 2r dρ(r)

d(r2) , and Eq. (3.58) we obtain

dρ(r)

dr
= 2r

dI2,2
d(r2)I2,0 − I2,2

dI2,0
d(r2)

I22,0
, (3.62)

and using d
d(r2) =

∂
∂(r2) +

∂(g2)
∂(r2)

∂
∂(g2) =

∂
∂(r2) − πρ(r) ∂

∂(g2)

and
∂In,k

∂(g2) = −nIn+1,k and
∂In,k

∂(r2) = −nIn+1,k+2 (we will

drop the explicit (g, r) dependence of In,k’s when conve-
nient) we find

dρ(r)

dr
= −4r

I22,0I3,4 − 2I2,2I2,0I3,2 + I22,2I3,0

I32,0
(3.63)

Defining

〈f(σ)〉′σ ≡

〈

f(σ)
(g2+σ−2r2)2

〉

σ
〈

1
(g2+σ−2r2)2

〉

σ

, (3.64)

(〈f(σ)〉′σ is a bonafide expectation operator) we can write

dρ(r)

dr
= −4r

[

〈

σ−4

g2 + σ−2r2

〉′

σ

(3.65)

−2

〈

σ−2

g2 + σ−2r2

〉′

σ

〈

σ−2
〉′
σ
+

〈

1

g2 + σ−2r2

〉′

σ

〈

σ−2
〉′2
σ

]

or

dρ(r)

dr
= −4r

[

Cov′[
σ−2

g2 + σ−2r2
, σ−2]

−
〈

σ−2
〉′
σ
Cov′[

1

g2 + σ−2r2
, σ−2]

]

(3.66)

where Cov′[f, g] ≡ 〈fg〉′σ − 〈f〉′σ 〈g〉
′
σ is the covariance un-

der 〈·〉′σ. Now since σ−2

g2+σ−2r2 and σ−2 are both strictly

decreasing functions of σ (since g > 0 for r < r0), while
1

g2+σ−2r2 is a strictly increasing function of σ (for r > 0),

the first covariance on the right hand side of Eq. (3.66) is
positive, while the second one is negative, and therefore

dρ(r)

dr
≤ 0. (3.67)

This slope is zero at r = 0 and strictly negative for r > 0
as long as Var[σ] > 0 (again when Var[σ] = 0 we obtain
the circular law). At r = r0 we obtain

ρ′(r0) = − 4

r0

〈

σ−2
〉′
σ

(

〈

σ−2
〉′
σ

〈

σ2
〉′
σ
− 1
)

= − 4

r0

〈

σ2
〉

σ

〈σ4〉3σ

(

〈

σ2
〉

σ

〈

σ6
〉

σ
−
〈

σ4
〉2

σ

)

(3.68)

The curvature of ρ(r) at zero can also be evaluated by
taking the limit r → 0 of the bracket in Eq. (3.66), noting
that g → 1 as r → 0. We obtain

ρ′′(r = 0) = −4Var′[σ−2] = −4
Var[σ2]

〈σ4〉2σ
≤ 0. (3.69)

IV. DERIVATION OF THE FORMULA FOR
THE AVERAGE NORM SQUARED

In this section, we focus on the dynamics governed by
the matrix A = M + LJR, according to Eq. (2.2), and
derive the general formulae presented in Sec. II B. We will
first consider the system’s response to an impulse input,
I(t) = x0δ(t), at t = 0, before which we assume the
system was at rest in its fixed point x = 0. We assume
x = 0 is a stable fixed point, i.e. all eigenvalues of−γ1+A
have negative real parts, or equivalently, all eigenvalues of
A have real parts less than γ (more precisely, we assume
that as N → ∞, this will be the case almost surely, i.e.
for any typical realization of J ; in particular, the vertical
line of z’s with real part γ must be to the right of the
support of ρ(z), the average eigenvalue density for A,
as found by solving Eq. (2.5)). This means that x(t)
decays exponentially as t → ∞, and therefore its Fourier
transform, x̃(ω) ≡

∫∞
−∞ e−iωtx(t)dt =

∫∞
0

e−iωtx(t)dt,

is well-defined. Fourier transformation of Eq. (2.2) with
I(t) = x0δ(t) yields iωx̃(ω) = (−γ+A)x̃(ω)+x0. Solving
algebraically for x̃(ω), we obtain x̃(ω) = (γ+iω−A)−1x0,
or using Eqs. (3.3)–(3.4), x̃(ω) = R−1G(γ+ iω; J)L−1x0.
The inverse Fourier transform, x(t) =

∫∞
−∞ eitωx̃(ω)dω2π ,

then yields

x(t) =

∫ ∞

−∞

dω

2π
eitωR−1G(γ + iω; J)L−1x0. (4.1)

Our goal is to study the statistics of x(t) (e.g., its mo-
ments) under the distribution Eq. (3.2). Equation (4.1)
allows us to reduce this task to the calculation of vari-
ous moments of G(z; J) and its adjoint, and these can
be found using the diagrammatic technique. Note that,
in general, these moments involve not only the statistics
of the eigenvalues, but also that of the eigenvectors of
A = M +LJR; this can be seen from the spectral repre-
sentation R−1G(z; J)L−1 = (z−A)−1 = V (z−Λ)−1V −1

where Λ is a diagonal matrix of the eigenvalues of A, and
V is the matrix whose columns are the eigenvectors of
A. Here we will look at the simplest interesting statistic
involving the eigenvectors: the average square norm of
the state vector, namely,

〈

‖x(t)‖2
〉

J
. As we discussed in

Sec. II B, its study is also motivated by the fact that tran-
sient amplification due to nonnormality of Amanifests it-
self in the transient growth of ‖x(t)‖2 = x(t)Tx(t). With
a slight generalization, we derive a formula for the aver-
age of a general quadratic function x(t)TBx(t) where B
is any symmetric matrix; the norm squared corresponds
to B = 1. Using, x(t)T = x(t)† (x(t) is real), the identity
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x†Bx = Tr (Bxx†), and Eq. (4.1), we obtain

x(t)TBx(t) =

∫∫

dω1

2π

dω2

2π
eit(ω1−ω2)

Tr
(

BR G(γ + iω1; J)CL G†(γ + iω2; J)
)

,

(4.2)

where we defined CL ≡ L−1x0x
T
0L

−† and BR ≡
R−†BR−1. Using Eq. (3.11) and G†(z; J) =
− limη→i0+ G

12(η, z; J), and the 2 × 2 matrices πr de-
fined in Eq. (3.20), we can rewrite the trace in Eq. (4.2)
as Tr

(

π2⊗BR G(0, z1; J)π
1⊗CL G(0, z2; J)

)

, with zi =
γ + iωi, where now the trace is performed over 2N × 2N
matrices. Averaging over J we then obtain

〈x(t)TBx(t)〉J = (4.3)
∫∫

dω1

2π

dω2

2π
eit(ω1−ω2)F(γ + iω1, γ + iω2;B,x0x

T

0 ),

where, for general matrix arguments B and C, we define

F(z1, z2;B,C) ≡ (4.4)

〈Tr(BG(0, z1; J)CG(0, z2; J))〉J .

with

B ≡ π2 ⊗BR, BR ≡ R−†BR−1, (4.5)

C ≡ π1 ⊗ CL, CL ≡ L−1CL−†. (4.6)

Before proceeding to the calculation of F(z1, z2;B,C)
using the diagrammatic technique, we will also express
the other quantities presented in Sec. II B in terms of
F(γ + iω, γ + iω;B,C), with appropriate B’s and C’s.
First, we obtain the desired expression for the matrix
power spectrum, Eq. (2.27), of the steady-state response
to a temporally white noisy input, I(t), with covariance
Eq. (2.26). Using the Fourier transform of Eq. (2.2), and
following similar steps to those leading to Eq. (4.1), we
can write the steady-state solution for x(t) as in Eq. (4.1)
with x0 replaced by the Fourier transform of the input,
Ĩ(ω). Using this and exploiting xj(t2) = x∗

j (t2) we can
write (after averaging over the input noise)

xi(t1)xj(t2) =

∫∫

dω1

2π

dω2

2π
eit1ω1−it2ω2Kij(ω1, ω2)

(4.7)
where the Fourier-domain covariance matrix,

K(ω1, ω2) ≡ x̃(ω1)x̃(ω2)†, is given by

K(ω1, ω2) ≡ (4.8)

R−1G(γ + iω1; J)L
−1CI(ω1, ω2)L

−†G†(γ + iω2; J)R
−†.

Here, the bars indicate averaging over the input noise

distribution, and we defined CI(ω1, ω2) ≡ Ĩ(ω1)Ĩ(ω2)†.
On the other hand, the Fourier transform of Eq. (2.26)
yields

CI(ω1, ω2) ≡ Ĩ(ω1)Ĩ(ω2)† = 2πδ(ω1 − ω2)C
I, (4.9)

where we also exploited Ĩ∗j (ω) = Ĩj(−ω) for a real I(t).
Substituting Eq. (4.9) into Eqs. (4.7)–(4.8) we obtain

xi(t1)xj(t2) =

∫

dω

2π
eiω(t1−t2)Cx

ij(ω), (4.10)

where

Cx(ω) = (4.11)

R−1G(γ + iω; J)L−1CIL−†G†(γ + iω; J)R−†.

Noting that Eq. (4.10) expresses the covariance of the re-
sponse as an inverse Fourier transform, we see that Cx(ω)
is indeed the power spectrum of the response, as defined
in Eq. (2.27). Finally note that the element, Cij , of any
matrix can be expressed as Tr (eje

T

i C), where ei are the
unit basis vectors (i.e. vectors whose a-th component is
δia). Using this trick with Eq. (4.11), and following the
steps leading from Eq. (4.2) to Eq. (4.3), we see that af-
ter ensemble averaging,

〈

Cx
ij(ω)

〉

J
can be written in the

form
〈

Cx
ij(ω)

〉

J
= F(γ + iω, γ + iω; eje

T

i , C
I) (4.12)

where F was defined by Eqs. (4.4)–(4.6).
Next, consider the system Eq. (2.2) being driven by

a sinusoidal input I(t) = I0
√
2 cosωt (the factor of

√
2

serves to normalize the time average of (
√
2 cosωt)2 to

one), and consider the steady state response, which will
also oscillate at frequency ω. Decomposing the input,
I(t), and the steady-state response, xω(t), into their pos-
itive and negative frequency components (proportional
to eiωt and e−iωt, respectively), from Eq. (2.2) we obtain

xω(t) =
√
2R−1Re[eiωtG(γ + iω; J)]L−1I0. (4.13)

Thus the norm squared of the steady state response,
‖x(t)‖2 = x(t)†x(t), will have a zero frequency com-
ponent, plus components oscillating at ±2ω. Averaging
over time kills the latter, leaving the zero frequency com-
ponent intact, yielding

xω(t)Txω(t) = IT0L
−1G†(z; J)R−†R−1G(z; J)L−1I0

= Tr
(

R−†R−1G(z; J)ρIG
†(z; J)

)

(4.14)

where z = γ + iω, the bar indicates temporal averag-
ing, and we defined ρI ≡ L−1I0I

T
0L

−†. Generalizing to

xω(t)TBxω(t), averaging over the ensemble, and follow-
ing the steps leading from Eq. (4.2) to Eq. (4.3), we ob-
tain
〈

xω(t)TBxω(t)
〉

J
= F(γ + iω, γ + iω;B, I0I

T

0 ), (4.15)

where F is given by Eqs. (4.4)–(4.6). Comparing
Eq. (4.15) with Eq. (4.12), we also obtain

〈

xω(t)TBxω(t)
〉

J
= Tr(B 〈Cx(ω)〉J ) (4.16)

which is Eq. (2.31) of Sec. II, it being understood that
CI in Eq. (4.12) is replaced by I0I

T
0 as in Eq. (4.15).
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∑

m,n

〈µ1

ν2

ν1

µ2

〉

J

=

N→∞

∑

m,n

∑

NCP

µ1

ν2

ν1

µ2

=

∑

ladders

µ1

ν2

ν1

µ2

FIG. 12: Contribtutions to Eq. (4.17) in the non-crossing ap-
proximation. The first line shows Eq. (4.17) written using the
expansion Eq. (3.22). The diagram shows the contribution of
the m-th and n-th terms in the expansion for two Green’s
functions, respectively. Thus the top (bottom) solid line con-
tains m (n) factors of J , shown by dashed lines. In the large
N limit, averaging each summand over J boils down to sum-
ming all non-crossing pairings (NCP) of the dashed lines. The
second row shows a specific non-crossing pairing for the dia-
gram shown in the first line. Finally, summing over all m, and
n and all NCP’s, is equivalent to replacing all solid lines (rep-
resenting G(ηi, zi; J = 0)) with thick solid lines representing
the non-crossing average Green’s function, G(ηi, zi) (calcu-
lated according to Eqs. (3.28)–(3.26)), and summing over all
NCP’s with every pairing connecting the straight lines on top
and bottom (and not each to itself). This procedure yields
the ladder diagrams, the sum over which is shown in the third
line.

Now that we have expressed all our quantities of in-
terest in terms of the kernel F as defined in Eq. (4.4),
our task boils down to performing the average over J in
Eq. (4.4) to obtain a closed formula for F with general
arguments B and C. To this end, we now proceed to
calculate the more general object

Fµ1ν2;µ2ν1(1; 2) ≡ 〈Gµ1ν1(1; J)Gµ2ν2(2; J)〉J , (4.17)

using the diagrammatic technique. Here, we adopted the
abbreviated notation (1) ≡ (η1, z1) and (2) ≡ (η2, z2) for
the function arguments, and µi = (αi, ai) (similarly for
νi) for indices in the 2N dimensional space (as in Sec. III,
α, β, . . ., and a, b, . . . denote indices in the 2 and N di-
mensional spaces, respectively). Once we have calculated
Fµ1ν2;µ2ν1(1; 2), we can obtain F(z1, z2;B,C), with the
appropriate B and C, via

F(z1, z2;B,C) = Bν2µ1Fµ1ν2;µ2ν1(0, z1; 0, z2)Cν1µ2 ,
(4.18)

where all indices are summed over, and B and C were
defined in Eqs. (4.5)–(4.6).
As before, we start by using the expansion Eq. (3.22)

for the two Green’s functions in Eq. (4.17). This is shown
diagrammatically in the first line of Fig. 12, for the con-
tribution of m-th and n-th terms in the expansion of the
first and the second Green’s function, respectively. As

+=

= +

+:= + +

∑

ladders

µ1

ν2

ν1

µ2

µ1

ν2

λ1

ρ2

ρ1

λ2

ν1

µ2

D

ρ1

λ2

λ1

ρ2

· · ·D

D D

FIG. 13: The first row is the diagrammatic representation of
Eqs. (4.19)–(4.21). In the last term, ρ’s and λ’s are summed
over. It shows the sum of all ladder diagram contributing to
Eq. (4.17) (i.e. the last line of Fig. 12) in terms of D, which
is defined in the second row. The first term on the right side
of the first row equation (the ladder with zero rungs) is the
disconnected average Eq. (4.20); it corresponds to taking the
average of each Green’s function in Eq. (4.17) separately and
then multiplying. The last row shows an iterative form of the
equation in the second row, which can be solved to give the
expression Eqs. (4.23) and (4.26) for D.

before, for large N , averaging over J entails summing
the contribution of all non-crossing pairings. This is in-
dicated in the second line of Fig. 12. Finally, the third
line of Fig. 12 shows that summing over all m’s, and n’s
and all non-crossing pairings, is equivalent to replacing
all solid lines with thick solid lines representing the aver-
age Green’s function in the non-crossing approximation,
G(ηi, zi) (defined diagrammatically in the third line of
Fig. Eq. (11), and given by Eq. (3.35) as we found in
the previous section), and summing over all non-crossing
pairings with every pairing connecting the thick arrow
lines on top and bottom (and not each to itself). This
procedure yields a sum over all ladder diagrams with dif-
ferent number of rungs, as shown in the third line of
Fig. 12.
As shown in the first row of Fig. 13, the sum of all

ladder diagrams can be written as a sum

F = F 0 + FD, (4.19)

where

F 0
µ1ν2;µ2ν1(1; 2) ≡ Gµ1ν1(1)Gµ2ν2(2), (4.20)

is the disconnected average of the two Green’s functions,
and FD

µ1ν2;µ2ν1(1; 2) is the sum of ladder diagrams in
which the two Green’s function are connected by at least
one wavy line. The latter can be written in the form

FD

µ1ν2;µ2ν1(1; 2) ≡ (4.21)

Gλ2ν2(2)Gµ1ρ1(1)Dρ1λ2;ρ2λ1(1; 2)Gλ1ν1(1)Gµ2ρ2(2),

where all repeated indices are summed over, and the “dif-
fuson”, D, is given by the sum of all diagrams in the
second row of Fig. 13.
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To calculate D, it helps to first rewrite Eq. (3.21) as

〈

J αβ
ab J γδ

cd

〉

J
=

1

N

2
∑

r,s=1

(πr
αδδad)σ

1
rs (π

s
γβδcb), (4.22)

where σ1 =

(

0 1
1 0

)

is the first Pauli matrix. This helps

us because in the expansion of Fig. 13, the two factors
in Eq. (3.21) involving πr and πs decouple and get ab-
sorbed in adjacent loops, or contribute to form factors
in the left or right ends of the ladder diagrams. This is
demonstrated in Fig. 14 for the second term in the series
expansion of D shown in the second line of Fig. 13. Ex-
tending this similarly to all the terms in that expansion,
we obtain

Dµρ;λν(1; 2) = Dαδ;γβ
ad;cb (1; 2)

=
1

N

2
∑

r,s=1

(πr
αδδad) Drs(1; 2) (π

s
γβδcb),

(4.23)

where µ = (α, a), ν = (β, b), λ = (γ, c), ρ = (δ, d) and we
defined the 2× 2 matrices

D(1; 2) ≡ σ1 + σ1ΠDσ1 + · · · = σ1
∞
∑

n=0

(

ΠDσ1
)n

, (4.24)

and the “polarization matrix” for the diffuson

ΠD

rs(1; 2) ≡ tr(πrG(1)πsG(2)) = tr(Grs(1)Gsr(2)).
(4.25)

Here, as before, with the trace performed over the 2N -
dimensional space, and we used Eq. (3.20) to write
the last form of ΠD. Summing the geometric series in
Eq. (4.24) we obtain

D(1; 2) = σ1
(

12×2 −ΠD(1; 2)σ1
)−1

. (4.26)

The 2× 2 matrix inversion yields

D(1; 2) = (4.27)

1

(1−ΠD

12)(1 −ΠD

21)−ΠD

11Π
D

22

(

ΠD

22 1−ΠD

12

1−ΠD

21 ΠD

11

)

,

where all ΠD’s have arguments (1; 2) = (η1, z1; η2, z2)
which were suppressed for clarity.
Going back to Eq. (4.18), we can also break up

F(z1, z2;B,C) into a disconnected part and a connected
part mirroring the decomposition Eqs. (4.19)–(4.21):

F(z1, z2;B,C) = F0(z1, z2;B,C) + ∆F(z1, z2;B,C),
(4.28)

where F0(z1, z2;B,C) and ∆F(z1, z2;B,C) are defined
as in Eq. (4.18), but with Fµ1ν2;µ2ν1 on the right side
replaced by F 0

µ1ν2;µ2ν1 and FD

µ1ν2;µ2ν1 , respectively. Using
Eqs. (4.20)–(4.21) and (4.23), we then obtain

F0(z1, z2;B,C) = Tr (BG(0, z1)CG(0, z2)) (4.29)

= Tr
(

BRG21(0, z1)CLG12(0, z2)
)

,

π
rα
δ
δ
a
d

σ
1

rt π
t

G(1)

G(2)

π
u σ

1

us

π
s γ
β
δ
c
b

FIG. 14: The contribution to Dαδ;γβ
ad;cb (1; 2) from the second

term in the series shown in the second row of Fig. 13, in more
detail. The covariance of J in the form Eq. (4.22) is used
to write this expression in a more manageable form. The
repeated indices, r, t, u, s, are summed over 1 and 2. The
matrices inside the loop multiply each other in cyclic order,
giving rise to the trace Tr (G(2)πtG(1)πu). The whole dia-

gram gives 1
N

∑

rs(π
r ⊗ 1)αδ

ad

[

σ1ΠDσ1
]

rs
(πs ⊗ 1)γβcb where

the “polarization matrix” ΠD
tu was defined in Eq. (4.25).

and

∆F(z1, z2;B,C) =
1

N

∑

r,s

Tr
(

BRG2r(0, z1)Gr2(0, z2)
)

×

Drs(0, z1; 0, z2) Tr
(

Gs1(0, z1)CLG1s(0, z2)
)

, (4.30)

where r and s are summed over {1, 2}.
According to Eq. (4.3) we are interested in zi = γ+ iωi

(i = 1,2) for arbitrary real ωi. As we mentioned before
Eq. (4.1), these trace a vertical line in the complex plane
that is entirely to the right of the support of the average
eigenvalue density, ρ(z), of A, i.e. they are in the region
where the the valid solution of Eq. (3.34) is the trivial
g(0, z) = 0. In this case, we have Eq. (3.41), and for η →
i0+, from Eq. (3.10) (replacing A with M , corresponding
to J = 0) we have

G(0, zi) = −
(

0 M−†
zi

M−1
zi 0

)

. (4.31)

Using this in Eqs. (4.29)–(4.30) we obtain

F0(z1, z2;B,C) = Tr
(

BRM
−1
z1 CLM

−†
z2

)

, (4.32)

and

∆F(z1, z2;B,C) = tr
(

BRG21(0, z1)G12(0, z2)
)

×
D12(0, z1; 0, z2) Tr

(

G21(0, z1)CLG12(0, z2)
)

. (4.33)

Using the definitions Eq. (2.6) and Eqs. (4.5)–(4.6) we
can simplify Eq. (4.32) to

F0(z1, z2;B,C) = Tr

(

B
1

z1 −M
C

1

z̄2 −M †

)

. (4.34)

From Eqs. (4.25) and (4.31) we see that (for zi of interest
and for ηi going to zero) Πrr = 0 and Π12 = Π21, and
from Eq. (4.27) we obtain

D12(0, z1; 0, z2) =
1

1−ΠD

21(0, z1; 0, z2)
(4.35)

=
1

1− tr(G21(0, z1)G12(0, z2))
.
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Substituting this in Eq. (4.33) and using Eq. (4.31) once
again, we finally obtain

∆F(z1, z2;B,C) =
tr
(

BRM
−1
z1 M−†

z2

)

Tr
(

M−1
z1 CLM

−†
z2

)

1− tr
(

M−1
z1 M−†

z2

) ,

and after simplification using Eqs. (2.6) and (4.5)–(4.6),

∆F(z1, z2;B,C) = (4.36)

=
tr
(

B 1
z1−MLL† 1

z̄2−M†

)

Tr
(

R†R 1
z1−MC 1

z̄2−M†

)

1− tr
(

R†R 1
z1−MLL† 1

z̄2−M†

) .

The general formulae of Sec. II B readily follow.
Equations (2.21)–(2.24), with CI replaced by x0x

T
0 ,

for the case of response to an impulse input follow
from Eqs. (4.3), (4.28), (4.34) and (4.36), respectively.
Equations (2.28)–(2.30) (with Cx

0 and ∆Cx defined in
Eqs. (2.23)–(2.24)) for the power spectrum of the re-
sponse to a temporally white noisy input, are similarly
obtained from Eq. (4.12) by using Eqs. (4.28), (4.34) and
Eq. (4.36), after setting B = eje

T
i , C = CI and z1 = z2 =

γ + iω (with the traces involving B = eje
T

i turned into
matrices in Eqs. (2.28)–(2.30), using Tr (eje

T
i X) = Xij).

The result Eq. (2.31) for the steady state response to a
sinusoidal input was already derived in Eq. (4.16).
We see that according to Eqs. (4.3) and (4.28)

〈x(t)TBx(t)〉J =
[

x(t)TBx(t)
]

J=0
+∆fB(t), (4.37)

where the two terms on the right hand side are obtained
by replacing F(·, ·;B) in Eq. (4.3) with Eq. (4.34) and
Eq. (4.36), respectively. The integrals over ω1 and ω2

decouple for the first term yielding the expected result
for J = 0,

[

x(t)TBx(t)
]

J=0
= e−2γtTr

(

BetMx0x
T

0 e
tM†
)

,

= xT

0 e
t(−γ+M)†Bet(−γ+M)x0. (4.38)

Unlike the J = 0 contribution, it is not possible to per-
form the double Fourier transform, Eq. (4.3), needed for
obtaining ∆fB(t) for arbitrary M , L and R. In the next
section, we will analytically calculate this for some spe-
cial examples of M , with L and R proportional to the
identity matrix (i.e. for iid quenched randomness).

V. CALCULATIONS FOR SPECIFIC
EXAMPLES OF M

In this section we give the detailed calculations of the
explicit expressions for the spectral density Eq. (2.8),
the power spectrum Eq. (2.31), and the average squared
norm Eqs. (2.21) and (2.25), for the specific examples of
M , L and R presented in Sec. II C.
In the examples worked out in the subsections VA

and VB, both R and L are proportional to the identity

matrix; we take L = 1 and R = σ1. Furthermore, for
such examples we will do the calculations by choosing the
unit of time such that σ = 1 (notice that given Eq. (2.2),
the elements of A and M have dimensions of frequency);
then at the end of our calculations using the replacements
t → tσ, z → z/σ, γ → γ/σ, M → M/σ, and ρ → σ2ρ
(with the latter applying to both the eigenvalue density
and the power spectral density), we obtain the result for
general σ. The eigenvalue density and the norm squared
‖x‖2 are invariant with respect to unitary transforms,
and, for L and R proportional to the identity, so is the
distribution of the random part of A, Eq. (3.2). Thus
by effecting a unitary transform M → U †MU , we can
assume M is already in its Schur form Eq. (2.40) without
loss of generality.

A. Single feedforward chain of length N :
Mij = w δi+1,j − γδij

We start with the example in Sec. II C 1, where M is

M = T =







0 w 0 · · ·
0 0 w · · ·
...
...

...
. . .






(5.1)

or Mij = w δi+1,j . First we calculate the eigenvalue den-
sity. According to Eqs. (2.8)–(2.9), in order to calcu-
late the spectral density, we need to calculate first the
inverse of MzM

†
z + g2 = (z − M)(z − M)† + g2 (re-

member that we have set σ = 1, as we explained in
the beginning of the section). To this end, notice that
Kij ≡

[

(z −M)(z −M)†
]

ij
= Qij − |w|2δiNδjN where

Qij ≡ (|z|2 + |w|2)δij − wz̄δi+1,j − w̄zδi,j+1. (5.2)

As the difference (z −M)(z −M)† −Q = −|w|2e
N
eT

N
is

single rank, we can use the Woodbury formula for matrix
inversion to write

1

K + g2
=

1

Q+ g2
+ (5.3)

1

Q+ g2
e

N
eT

N

1

Q+ g2

(

1

|w|−2 − eT

N
(Q + g2)−1e

N

)

,

where eT

N
= (0, . . . , 0, 1). (The only conditions for the

validity of Eq. (5.3) is that the factor in parenthesis is not
singular, i.e. eT

N
(Q+ g2)−1e

N
6= |w|−2; we will consider

the validity of this condition below.) Since Q is Toeplitz
and Hermitian, it can be diagonalized easily. Using stan-
dard methods, we find that the eigenvalues and eigenvec-
tors of Q, satisfying Qvn = λnvn, are given by

λn =
∣

∣

∣|z| − |w|eiφn

∣

∣

∣

2

, φn ≡ πn

N + 1
(5.4)

vjn =

√

2

N + 1

( w̄z

wz̄

)j/2

sinφnj (5.5)
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for n = 1, . . . , N . The eigenvectors are orthonormal
v
†
nvm = δnm, and we have the spectral representation

1

Q+ g2
=

N
∑

n=1

vn
1

λn + g2
v
†
n. (5.6)

Using Eqs. (5.4)–(5.6) in Eq. (5.3) we obtain

tr
1

K + g2
= I1(g, z) +

1

N

−∂I2(g,z)
∂g2

|w|−2 − I2(g, z)
, (5.7)

where we defined

I1(g, z) ≡ tr
1

Q+ g2
=

1

N

N
∑

n=1

1

λn + g2
(5.8)

I2(g, z) ≡ eT

N

1

Q+ g2
e

N
=

1

N + 1

N
∑

n=1

2 sin2 φn

λn + g2
. (5.9)

In writing the numerator of the last term in Eq. (5.7), we

used Eqs. (5.5)–(5.6) to write Tr
(

1
Q+g2 eN

eT

N

1
Q+g2

)

=

‖ 1
Q+g2 eN

‖2 = 1
N+1

∑N
n=1

2 sin2 φn

(λn+g2)2 = −∂I2(g,z)
∂g2 . In the

N → ∞ limit, the sums in Eqs. (5.8)–(5.9) can be ap-
proximated by the integrals

I1(g, z) =

∫ 2π

0

1
∣

∣|z| − |w|eiφ
∣

∣

2
+ g2

dφ

2π
, (5.10)

I2(g, z) =

∫ 2π

0

2 sin2 φ
∣

∣|z| − |w|eiφ
∣

∣

2
+ g2

dφ

2π
. (5.11)

Some elementary contour integration then yields

I1(g, z) =
[

(|z|2 + |w|2 + g2)2 − 4|w|2|z|2
]−1/2

, (5.12)

I2(g, z) =
|z|2 + |w|2 + g2 − I1(g, z)

−1

2|w|2|z|2 . (5.13)

In particular, we see that I2(0, z) = min(|w|−2, |z|−2), so
that the condition for the validity of Eq. (5.3) would be
violated for |z| < |w|, if g turns out to be zero. However,
note that I2(g, z) is a decreasing function of g2, so for
finite g2 > 0, the denominator in Eq. (5.7) is always
positive (as is its numerator, for the same reason). Thus
if we follow the correct procedure of Eq. (2.19)–(2.20),
taking the N → ∞ limit before sending g2 to zero, we
are justified in using Eqs. (5.3) and (5.7). Furthermore,
for g2 > 0 the second term in Eq. (5.7) is O(N−1), and
should be neglected. Solving Eq. (2.9) (with left hand
side correctly interpreted as Eq. (2.19)), which now takes
the form I1(g, z) = 1, yields

g(z)2 = −|z|2 − |w|2 +
√

4|w|2|z|2 − 1. (5.14)

This is positive if and only if

√

|w|2 − 1 ≤ |z| ≤
√

|w|2 + 1, (5.15)

which after the proper rescaling yields Eq. (2.36) for
general σ. Note that Eq. (5.15) is precisely the region
given by Eq. (2.20), which in the present case reads
I1(0, z) ≥ 1. It is instructive to compare this result
with what we would obtain by naively using Eq. (2.5),
i.e. tr (K−1) ≥ 1, wherein g is set to zero before tak-
ing the N → ∞ limit; as we now show, that only yields
the right inequality in Eq. (5.15). To see this, first note
that for |w| > |z|, we can use Eq. (5.7) even for g2 = 0
(since the denominator of the last term does not vanish),
which yields tr

[

(MzM
†
z )

−1
]

= tr (K−1) = I1(0, z)+ o(1),
and by Eq. (2.5), the right inequality in Eq. (5.15). For
|z| < |w|, however, we cannot set g = 0 in Eq. (5.7).
In fact, when |z| < |w|, the matrix z − M has an ex-
ponentially small singular value; to see this, note that
the vector u with components ui = ( z

w )i−1 satisfies

(z −M)u = w( z
w )

NeN , so that ‖(z −M)u‖ = |w|| zw |N ,

and since smin(z −M) ≤ ‖(z−M)u‖
‖u‖ and ‖u‖ ≥ 1, it fol-

lows that smin(z −M) ≤ |w|| zw |N , which is O(e−cN ) for
|z| < |w|. For large enough N , this singular value alone

suffices to make Eq. (2.11) (equivalent to Eq. (2.5)) hold
for any |z| < |w|, as 1

N smin(z)
−2 diverges despite its 1

N
prefactor.
Let us now calculate the eigenvalue density in the an-

nulus Eq. (5.15). In order to use Eq. (2.8), we will first
calculate

tr
z̄ −M †

K + g(z)2
= z̄ − tr

M †

K + g(z)2
(5.16)

where we used Eq. (2.9) to write the last expression.

To obtain tr M†

K+g(z)2 , we will again use Eq. (5.3). In

the region Eq. (5.15), the contribution of the second
term in Eq. (5.3) is again suppressed by 1/N , and

from Eq. (5.1) and (5.6) we have trM † [Q+ g2
]−1

=

w̄ 1
N

∑N
n=1

(

∑N−1
j=1 vjnv̄

j+1
n

)

1
λn+g2 . A straightforward

calculation using Eq. (5.5) (and the orthonormality of

vn) yields
∑N−1

j=1 vjnv̄
j+1
n =

(

wz̄
w̄z

)1/2
cosφn. Using this

and approximating the sum over n with an integral, we
obtain

tr

[

M †

Q+ g(z)2

]

≈ |w||z|
z

∫ 2π

0

cosφ
∣

∣|z| − |w|eiφ
∣

∣

2
+ g(z)2

dφ

2π
,

=
1

2z

[

(|z|2 + |w|2 + g(z)2)I1(g(z), z)− 1
]

. (5.17)

Using Eq. (5.17) with I1(g(z), z) = 1 (true in the region
Eq. (5.15)), differentiating Eq. (5.16) with respect to z̄,
and substituting in Eq. (2.8), we finally obtain

ρ(z) =
1

π

[

1− |w|2
√

4|w|2|z|2 + 1

]

, (5.18)

for z in the region Eq. (5.15). After the proper rescaling
this yields Eq. (2.37).
We now turn to the calculation of

〈

‖x(t)‖2
〉

J
, using

(2.25). To calculate the trace in the denominator of
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Eq. (2.25), first note that for Eq. (5.1) the expansion

(z −M)−1 =
∑N−1

n=0
Mn

zn+1 terminates and is exact, yield-
ing

[

1

z −M

]

i,j

=
1

z

(w

z

)j−i

, (5.19)

for j ≥ i, and zero otherwise. Turning the sums in the
trace into a sum over the nonzero diagonals of Eq. (5.19)
we obtain

tr

(

1

z̄2 −M †
1

z1 −M

)

=
1

z̄2z1

N−1
∑

n=0

(1 − n

N
)qn (5.20)

where q ≡ |w|2/(z̄2z1) and zi = γ + iωi. The condition
of stability of Eq. (2.2) requires the entire spectrum of
−γ1+A = −γ1+M+J to be to the left of the imaginary
axis. By Eq. (5.15), this requires γ >

√

|w|2 + 1 > |w|.
It follows that |q| < 1, and therefore the geometric series
Eq. (5.20) converges as N → ∞. Summing the series and
retaining terms of leading order as N → ∞, we obtain

tr

(

1

z̄2 −M †
1

z1 −M

)

=
1

z̄2z1 − |w|2 . (5.21)

If we set the initial condition x0 in Eqs. (2.25) (or the in-
put amplitude I0 in Eq. (2.31)) to e

N
= (0, · · · , 0, 1)T,

and use Eq. (5.19), we find that the numerator in
Eq. (2.25) is also given by the right hand side of
Eq. (5.21). Using this and Eqs. (5.21), we obtain

F (z1, z2) =
1

z̄2z1 − |w|2 − 1
, (5.22)

for the integrand of Eq. (2.25) which we denoted by
F (z1, z2), with zi = γ + iωi, (i = 1, 2). By compar-
ing the integrand of Eq. (2.25) with Eq. (2.33), we see
that to obtain the total power spectrum for the input
amplitude I0 = I0(0, · · · , 0, 1)T, we need to multiply
Eq. (5.22) by I20 = ‖I0‖2, and substitute z1 = z2 = γ+iω.
With the proper rescaling, this yields Eq. (2.39) for gen-
eral σ. To obtain the formula for

〈

‖x(t)‖2
〉

J
, we sub-

stitute Eq. (5.22) with zi = γ + iωi for the integrand
of Eq. (2.25). Changing the integration variables by
ω1 = Ω+ ω/2 and ω2 = Ω− ω/2, we obtain

〈

‖x(t)‖2
〉

J
=

∫

dω

2π
eitω
∫

dΩ

2π

1

Ω2 + (γ + iω/2)2 − |w|2 − 1
,

=
1

2

∫

dω

2π

eitω
√

(γ + iω/2)2 − |w|2 − 1
. (5.23)

Finally consulting a table of Laplace transforms [51], we
obtain

〈

‖x(t)‖2
〉

J
= e−2γtI0(2t

√

|w|2 + 1), (t ≥ 0) (5.24)

where I0(x) is the 0-th modified Bessel function. Imple-
menting the rescalings t → tσ, γ → γ/σ and w → w/σ,
we obtain Eq. (2.38).

B. N/2 feedforward chains of length 2

Here we carry out the explicit calculations for the ex-
ample of Sec. II C 2 where M is given by Eq. (2.40) (with-
out loss of generality, we assume M has its Schur form),
using formulae (2.8)–(2.9) for the spectral density and
Eq. (2.25) for

〈

‖x(t)‖2
〉

J
. First we will calculate the

eigenvalue density. From Eq. (2.40), K ≡ MzM
†
z =

(z−M)(z−M)† (we are setting L = R = 1 in Eq. (2.6);
see the comments at the beginning of this section) is a
block-diagonal matrix with 2 × 2 diagonal blocks, with
the b-th block (b = 1, . . . , N/2) given by
(

z −wb

0 z

)(

z̄ 0
−w̄b z̄

)

=

(

|z|2 + |wb|2 −wbz̄
−w̄bz |z|2

)

, (5.25)

where wb is the corresponding Schur weight in Eq. (2.40).
Likewise, (K+g2)−1 whose trace appears in Eqs. (2.9) is
given by a block-diagonal matrix with diagonal blocks

1
(|z|2+g2)2+|wb|2g2

(

|z|2 + g2 wbz̄
w̄bz |z|2 + g2 + |wb|2

)

. Taking

the normalized trace we thus obtain

tr (K + g2)−1 =

〈 |z|2 + g2 + 1
2 |wb|2

(|z|2 + g2)2 + |wb|2g2
〉

b

, (5.26)

where 〈·〉b means averaging over the N/2 blocks, i.e.

〈f(wb)〉b ≡ 1
N/2

∑N/2
b=1 f(wb).

Let us first calculate the support boundary of ρ(z).
As discussed in Sec. II A, when (for |z| 6= 0) all singular
values of Mz = z −M are bounded from below as N →
∞, the support is correctly given by Eq. (2.5) (we will
discuss cases in which some si(z) are o(1) further below).
Setting g = 0 in Eq. (5.26), and substituting in Eq. (2.5),
this yields

1 ≤ trK−1 = |z|−2 + µ2|z|−4, (5.27)

where we defined µ2 = 1
2 〈|wb|2〉b = tr (M †M). It follows

that the support is the disk |z| ≤ r0, where

r20 =
1

2
+

√

1

4
+ µ2. (5.28)

The replacements µ → µ/σ and r0 → r0/σ then yield
Eq. (2.44).
From Eqs. (2.9) and (5.26), within the support, g2(z)

is found by solving the equation

tr
1

K + g2
=

〈 |z|2 + g2 + 1
2 |wb|2

(|z|2 + g2)2 + |wb|2g2
〉

b

= 1, (5.29)

while for |z| > r0 we have g(z) = 0. It is clear from
Eq. (5.29) that g2(z) depends on z and z̄ only through
|z| ≡ r. From Eq. (2.8), within its support the eigenvalue
density is given by

πρ(z) =
∂

∂z̄
tr
[

M †
z (K + g2)−1

]

= 1− ∂

∂z̄
tr
[

M †(K + g2)−1
]

, (5.30)
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where we are now using the short-hand g2 = g2(|z|) (the
solution of Eq. (5.29)), and in writing the second line we
used M †

z = z̄−M † and Eq. (5.29). From Eqs. (2.40) and
(5.26) we see that M †(K + g2)−1 has the same block-
diagonal structure as Eq. (2.40), and a short calculation
shows that tr

[

M †(K + g2)−1
]

= z̄I3(|z|), where we de-
fined

I3(r) ≡
〈 1

2 |wb|2
(r2 + g(r)2)2 + |wb|2g(r)2

〉

b

. (5.31)

I3(r) is manifestly positive (assuming some wb are
nonzero), while when g2 > 0, from Eq. (5.29) we have
I3(r) ≤ 1, and thus

0 < I3(r) ≤ 1. (5.32)

Replacing this in Eq. (5.30), and using z̄ ∂f(|z|)
∂z̄ =

2r ∂f(r)
∂r

∣

∣

r=|z|
, we obtain

πρ(z) =
1

2r

∂

∂r

[

r2 − r2I3(r)
]

, (5.33)

for r = |z| ≤ r0, and zero otherwise; the spectral
density is rotationally symmetric and depends only on
r = |z|. The advantage of writing the density as a
complete derivative is that it can be immediately in-
tegrated to yield n

<
(r), the proportion of eigenvalues

with modulus smaller than some radius r. We have
n

<
(r) = 2π

∫ r

0
ρ(r′)r′dr′, which upon substitution of

Eq. (5.33), yields

n
<
(r) = r2 (1− I3(r)) (r ≤ r0). (5.34)

Likewise, we define n
>
(r) ≡ 1 − n

<
(r) to be the pro-

portion of eigenvalues with modulus larger than r. From
these definitions we have

ρ(r) =
1

2πr

∂n
<
(r)

∂r
= − 1

2πr

∂n
>
(r)

∂r
, (5.35)

and from Eqs. (5.34) and n
>
(r) = 1 − n

<
(r), after some

manipulation exploiting Eq. (5.29), we obtain

n
>
(r) = g(r)2(1 + I3(r)). (5.36)

We see that beyond the radius r at which g2 vanishes
(which when all wb’s are bounded is r = r0), n>

(r) and

ρ(r) = − 1
2πr

∂n
>

∂r vanish identically, while for smaller r
they are positive.
In cases in which some wb grow without bound as N →

∞, some singular values, si(z), of Mz = z −M are o(1),
and more care is needed. First, to see this, note that by
definition si(z)

2 are the eigenvalues of the block-diagonal
K = MzM

†
z ; thus they come in pairs composed of the

eigenvalues of K’s 2× 2 blocks, given by Eq. (5.25). We
denote the pair of eigenvalues corresponding to block b
by sb,±(z)2, with the plus and minus subscripts denoting
the larger and smaller singular value, respectively. The
sum sb+(z)

2 + sb−(z)2 and the product sb+(z)
2sb−(z)2

are given by the trace and determinant of Eq. (5.25), i.e.
by |wb|2 + 2|z|2 and |z|4, respectively. It follows that
for blocks where the feedforward weight wb is O(1), both
sb,±(z) will be Θ(1) for |z| 6= 0, while for blocks in which
wb → ∞ as N → ∞, we have

s2b+(z) = |wb|2 + O(1) → ∞ (5.37)

s2b−(z) ≈
|z|4
|wb|2

= o(1). (5.38)

(Note that as stated after Eq. (2.3) we assume ‖M‖2
F
=

µ2 = 〈|wb|2〉b/2 is O(1), so that at most o(N) number of
weights can be unbounded, and each such wb can at most
be O(

√
N).) If all the wb are O(1), and hence all singular

values are Θ(1) (for |z| 6= 0), Eq. (5.28) yields the correct
support radius as noted above, and for r ≤ r0, Eq. (5.29)
yields a Θ(1) solution for g(r)2, which leads to a Θ(1) so-
lution for n

>
(r) and ρ(r) via Eqs. (5.36)–(5.35). In cases

in which some wb are unbounded, however, Eq. (5.28)
(derived from Eq. (2.5)) may not yield the correct sup-
port boundary. Such cases are examples of the highly
nonnormal cases mentioned in the general discussion af-
ter Eq. (2.12), for which the support of limN→∞ ρ(z)
must be found by using Eqs. (2.19)–(2.20). This is equiv-
alent to solving Eq. (5.29) after the limit N → ∞ is
taken (assuming g2 > 0), and then finding where the so-
lution for g2(|z|) vanishes, which yields the correct sup-
port radius. From Eq. (5.36) this is indeed the radius at
which limN→∞ n>(r) and hence limN→∞ ρ(r) vanish as
well. This radius is in general smaller than r0 as given
by Eq. (5.28).
We now calculate ρ(z) for two specific examples of M

from each group. The first example is that of equal and
O(1) feedforward weights in all blocks, which we denote
by w (in terms of Eq. (2.41), this case corresponds toK =
w1). Here we can drop the block averages in Eqs. (5.29)
and (5.31), replacing wb with w. Solving Eqs. (5.29) for
g2(|z| = r) we find

g2(r) =
1

2
− w2

2
− r2 +

1

2

√

1 + w4 + 4w2r2. (5.39)

Substituting this into Eq. (5.31) and Eq. (5.34) yields

n
<
(r) = r2 − w2r2

1 +
√
1 + w4 + 4w2r2

. (5.40)

The replacements w → w/σ and r → r/σ then yield
Eq. (2.45) for general σ, and ρ(r) can be caclulated using
Eq. (5.35).
The second case is that of Eq. (2.42). In this case only

one of the blocks has a nonzero Schur weight given by
|w1|2 = Tr (M †M) = Nµ2 = O(N), where µ = O(1) is
given by Eq. (2.43). Equation (5.29) now yields

1 =
1

r2 + g2
+

µ2

(r2 + g2)2 +Nµ2g2
· r

2 − g2

r2 + g2
, (5.41)

or

r2 + g2 − 1

r2 − g2
=

µ2

(r2 + g2)2 +Nµ2g2
. (5.42)
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The right hand side of this last equation is I3(r), as fol-
lows from Eq. (5.31); thus using Eq. (5.42) we can rewrite
Eq. (5.36) as

n
>
(r) = g2(r)

2r2 − 1

r2 − g2(r)
. (5.43)

Let us now solve Eq. (5.42) to find g(r)2. As noted above,
and in accordance with the general prescription given af-
ter Eq. (2.12), for the purpose of obtaining limN→∞ ρ(z)
we have to first take the N → ∞ limit in Eq. (5.41), keep-
ing g2 > 0 fixed, and only then solve for g2. Doing so
makes the last term in Eq. (5.41) vanish, and we obtain
g2(r) = 1− r2. This is positive for r ≤ 1 and vanishes at
r = 1, the correct support radius of limN→∞ ρ(z), which
is strictly smaller than r0 given by Eq. (5.28). From
Eq. (5.43) we obtain n

>
(r) = g2(r) = 1 − r2. It then

follows from Eq. (5.35) that the N → ∞ limit of the
eigenvalue density is identical with the circular law (the
result for the M = 0), i.e. limN→∞ ρ(r) = 1

π for r ≤ 1
and zero otherwise. With the correct scaling, this yields
Eq. (2.46).
Contrary to the general prescription given after

Eq. (2.12), we will now solve equations Eqs. (5.29), (5.31)
and Eq. (5.36) for r > 1, without taking the limitN → ∞
first. As we will see, the obtained solution for g(r)2,
and by Eqs. (5.32) and (5.36) therefore the solutions for
n>(r) and ρ(r), will be nonzero but o(1) for 1 < r ≤ r0.
As discussed in Sec. II C 2, these finite-size corrections,
which in general are not trustworthy, in the present case
are in surprisingly good agreement with simulations for
some range of r’s beyond rΘ(1), but deviate from the true
n>(r) for larger r (see Fig. 7). At finite N , it can indeed
be checked that Eq. (5.29) has a positive solution for g2 if
and only if r < r0, with r0 given by Eq. (5.28). Simplify-
ing Eq. (5.42) yields a cubic equation in g2. However, it
turns out that ignoring the cubic term in g2 is harmless
for largeN ; the quadratic approximation has the positive
solution

g2(r) =

√

[

1− r2

2

]2

+
r2(r2 + µ2)− r6

µ2N
+

1− r2

2
,

(5.44)
and for all r < r0, corrections to Eq. (5.44) when the cu-
bic term is reinstated decay faster than the leading con-
tribution from Eq. (5.44) (nevertheless we numerically
solved the full cubic equation (5.29) to obtain the black
curve in Fig. 7, and the blue trace in Fig. 6). First, ana-
lyzing Eq. (5.44) we see that g2(r) is indeed Θ(1) only for
r < 1, where as we already found g2(r) = 1 − r2 + o(1).
Furthermore, for a fixed r > 1 (such that r − 1 does not
vanish asN → ∞), the solution for g(r) is O(N−1). Thus
from Eq. (5.43) we thus see that Nn

>
(r), i.e. the total

number of eigenvalues with modulus larger than r, for
1 < r < r0 (and r − 1 = Θ(1)) is only O(1); the solution
for Nn

>
(r) is shown in Fig. 7. Correspondingly, from

Eqs. (5.43) and (5.35) we see that ρ(r) is o(1) in this re-
gion and vanishes in the limit N → ∞, as already found.

Now let us calculate the total number of eigenvalues ly-
ing outside the circle |z| = 1. This is given by Nn

>
(1).

From Eq. (5.44) we find g2(1) = 1√
N
, and substituting in

Eq. (5.43) we obtain

N
>
(1) ≡ Nn

>
(1) =

√
N +O(1). (5.45)

With the proper rescaling this yields Eq. (2.47) for gen-
eral σ. Note that, according to Eq. (5.44), g(r) (and
hence n

>
(r)) remains Θ(N−1/2) (as opposed to O(N−1))

in a thin boundary layer outside of width Θ(N−1/2) just
outside of the circle |z| = 1.
We will now work out the formula for

〈

‖x(t)‖2
〉

J
,

Eqs. (2.25)–(2.21), when the initial condition x0 is the
second Schur-vector in block b = a, which we denote
by ea2; in the Schur representation, Eq. (2.40), we have
ea2 = (0, 1)T (we only write the components of ea2 in
block a). To calculate the numerator in Eq. (2.25) we

first calculate (z − Ta)
−1ea2 where Ta =

(

0 wa

0 0

)

de-

notes the a-th diagonal 2 × 2 block of Eq. (2.40). Since
T 2
a = 0, we have (z − Ta)

−1 = z−1 + z−2Ta, which yields
va(z) ≡ (z − Ta)

−1ea2 = (waz
−2, z−1)T. We thus obtain

xT

0

1

z̄2 −M †
1

z1 −M
x0 = va(z2)

†
va(z1) =

1

z1z̄2
+

|wa|2
z21 z̄

2
2

.

(5.46)
On the other hand, we have

tr
1

z̄2 −M †
1

z1 −M
= (5.47)

〈1
2
Tr 2×2(z̄2 − T †

b )
−1(z1 − Tb)

−1〉b =
1

z1z̄2
+

〈|wb|2〉b/2
z21 z̄

2
2

.

Substituting Eqs. (5.46)–(5.47) in Eq. (2.25) we obtain

F (z1, z2) =
z1z̄2 + |wa|2

(z1z̄2)2 − (z1z̄2 + µ2)
. (5.48)

where we used µ2 = 〈|wb|2〉b/2, and we denoted the in-
tegrand of Eq. (2.25) by F (z1, z2) with zi = γ + iωi,
(i = 1, 2). By comparing the integrand of Eq. (2.25) with
Eq. (2.33), we see that substituting z1 = z2 = γ+ iω into

Eq. (5.48) yields the total power spectrum,
〈

‖xω‖2
〉

J
.

After the proper rescalings, this yields Eq. (2.50) for
general σ. To obtain

〈

‖x(t)‖2
〉

J
, on the other hand,

we should substitute Eq. (5.48) into Eq. (2.21) with
zi = γ+iωi. Let us use the change of variables ω1 = Ω+ω
and ω2 = Ω − ω. Then we have z1z̄2 = Ω2 + (γ + iω)2,
and from Eq. (2.21) we obtain

〈

‖x(t)‖2
〉

J
=

∫

dω

2π
e2itωfa(γ + iω) (5.49)

where we defined

fa(u) ≡ 2

∫

dΩ

2π

Ω2 + u2 + |wa|2
(Ω2 + u2)2 − (Ω2 + u2 + µ2)

. (5.50)
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Let us rewrite the integrand in Eq. (5.50) as

Ω2 + u2 + |wa|2
(Ω2 + u2 − r20)(Ω

2 + u2 + r21)
=

Ω2 + u2 + |wa|2
r20 + r21

×
[

1

Ω2 + u2 − r20
− 1

Ω2 + u2 + r21

]

, (5.51)

where r20 was defined in Eq. (5.28) and

r21 ≡ r20 − 1 ≥ 0. (5.52)

One can calculate the integral over Ω in Eq. (5.50) by
contour integration, closing the contour, say, in the up-
per half of complex plane. The poles of the first and the
second terms on the second line of Eq. (5.51) are located

at Ω0,± = ±i
√

u2 − r20 and Ω1,± = ±i
√

u2 + r21 , respec-
tively. For u = γ + iω (γ > 0) the roots falling in the
upper half plane are Ω0,+ and Ω1,+, independently of ω.
From their residues we obtain

fa(u) =
1

r20 + r21

[

r20 + |wa|2
√

u2 − r20
+

r21 − |wa|2
√

u2 + r21

]

. (5.53)

The integral of Eq. (5.53) in Eq. (5.49) is essentially the
inverse Laplace transform of Eq. (5.53). Consulting a
table of Laplace transforms [51] yields

〈

‖x(t)‖2
〉

J
= (5.54)

e−2γt

[

r20 + |wa|2
r20 + r21

I0(2r0t) +
r21 − |wa|2
r20 + r21

J0(2r1t)

]

.

where J0(x) (I0(x)) is the 0-th Bessel function (modified
Bessel function). From Eqs. (5.28) and (5.52) it follows

that r20 + r21 =
√

1 + 4µ2, and using µ2 = 〈|wb|2〉b/2 once
again, we obtain

〈

‖x(t)‖2
〉

J
=

[

1 + Ca

2
I0(2r0t) +

1− Ca

2
J0(2r1t)

]

e−2γt

(5.55)
where we defined

Ca ≡ 1 + 2|wa|2
√

1 + 2〈|wb|2〉b
. (5.56)

Effecting the proper rescalings we obtain the result for
general σ, Eqs. (2.48)–(2.49).

C. Network with different neural types and
independent, factorizable weights

Here we carry out the explicit calculations for the net-
work with C neural types presented Sec. II C 2, with M ,
L and R are given by Eqs. (2.52)–(2.55). From Eqs. (2.6)
and (2.52)–(2.55) we obtain Mz = z(RL)−1 − suuT, and

MzM
†
z = |z|2(RL)−2 − zsvuT − z̄suvT + s2uuT, (5.57)

where we defined v ≡ (RL)−1u. Using the Woodbury
matrix identity we can write

1

g2 +MzM
†
z

= Q −QU
1

D−1 + U †QU
U †Q (5.58)

where we defined the N × 2 matrix U =
(

u ,v
)

, and

Q ≡ 1

g2 + |z|2(RL)−2
(5.59)

D ≡
(

s2 −z̄s
−zs 0

)

. (5.60)

We will argue that for g > 0, tr (g2 +MzM
†
z )

−1 = trQ,
up to o(1) corrections. From Eq. (5.58), for the remainder
∆(g, z) ≡ tr (g2 +MzM

†
z )

−1 − trQ, we obtain

∆(g, z) = − 1

N
Tr

[

U †Q2U

D−1 + U †QU

]

(5.61)

where the trace is now over 2× 2 matrices. We have

D−1 = −
(

0 (zs)−1

(z̄s)−1 |z|−2

)

(5.62)

and for n = 1, 2 we obtain

U †QnU =

(

u†Qnu u†Qnv

u†Qnv v†Qnv

)

=

(

In,0 In,1
In,1 In,2

)

, (5.63)

where

In,k(g, z) ≡
1

N

N
∑

i=1

(lc(i)rc(i))
−k

[

g2 + |z|2(lc(i)rc(i))−2
]n (5.64)

=

〈

σ−k
c

(

g2 + σ−2
c |z|2

)n

〉

c

(5.65)

and we are using the notation Eq. (2.59) (we will drop
the explicit g and z dependence of In,k when convenient).
Note that all In,k(g, z) are O(1) and for even k are posi-
tive. Inverting D−1 + U †QU we obtain

∆(g, z) =
1

N

T (g, z)

− det(D−1 + U †QU)
(5.66)

where

T (g, z) ≡ Tr

[(

I2,0 I2,1
I2,1 I2,2

)(

I1,2 − |z|−2 (zs)−1 − I1,1
(z̄s)−1 − I1,1 I1,0

)]

= I2,2I1,0 + I2,0

(

I1,2 −
1

|z|2
)

− 2I2,1

(

I1,1 −
1

sRe z

)

and

−det(D−1 + U †QU) = I1,0

(

1

|z|2 − I1,2

)

+

∣

∣

∣

∣

I1,1 −
1

sz

∣

∣

∣

∣

2

=
g2

|z|2 I
2
1,0 +

∣

∣

∣

∣

I1,1 −
1

sz

∣

∣

∣

∣

2

. (5.67)
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We see that both T (g, z) and −det(D−1 + U †QU)
are O(1) (to obtain their limits as N → ∞ we
can set s−1 = O(N−1/2) equal to zero) and since

−det(D−1 + U †QU) ≥ g2

|z|2 I
2
1,0 and I21,0 > 0, we see that

for g > 0, the denominator in Eq. (5.66) is bounded away
from zero, and hence ∆(g, z) = O(N−1) and can be safely
ignored for g > 0.
We will thus use tr (g2 +MzM

†
z )

−1 = trQ+o(1). From
Eq. (5.59) we obtain trQ = I1,0(g, z) and hence from
Eqs. (2.19),

K(g, z) = lim
N→∞

trQ =

〈

1

g2 + σ−2
c r2

〉

c

(5.68)

where r ≡ |z|. Note that the approximation
tr (g2 +MzM

†
z )

−1 = trQ is equivalent to using MzM
†
z =

|z|2(RL)−2 instead of the full expression Eq. (5.57) and
hence to setting M = 0. Accordingly, the support of the
eigenvalue distribution is given by Eq. (2.13), or equiv-
alently by Eq. (2.60), and within this support, g2 is de-
pends only on |z| = r and is found by solving Eq. (2.15),
or equivalently Eq. (2.62). Similar considerations show
that in using Eq. (2.8) to obtain limN→∞ ρ(z) we can set
M = 0, yielding an isotropic eigenvalue density. From
Eqs. (2.14)–(2.16), the proportion, n>, of eigenvalues ly-
ing a distance larger than r is equal to g2(r), which is
found by solving Eq. (2.62). The results Eqs. (2.17)–
(2.18) also hold, wherein the normalized sums over i can
be replaced with appropriate averages 〈·〉c.
Let us now go back to the expression for ∆(g, z), and

consider the case g = 0. In this case

In,k(0, z) = |z|−2n〈σ2n−k
c 〉c, (5.69)

and we obtain

T (g, z) = |z|−6
(

〈σ2
c 〉2c − 2〈σ3

c 〉c〈σc〉c
)

+ 2〈σ3
c 〉c

s−1

|z|4Re z
(5.70)

and

− det(D−1 + U †QU) =

∣

∣

∣

∣

|z|−2〈σc〉c −
s−1

z

∣

∣

∣

∣

2

. (5.71)

In the special case in which 〈σc〉c = 0 (this corresponds
to the special case of the example Eq. (2.42) with fµE −
(1 − f)µI ∝ u · v = 0, which we considered above), the
determinant will have a vanishing limit as N → ∞ (or
s−1 → 0). This leads to a finite limit for ∆(0, z) and we
obtain

∆(0, z) =
s2〈σ2

c 〉2
N |z|4 =

ξ2〈σ2
c 〉2

|z|4 , (〈σc〉c = 0). (5.72)

Adding this to trQ in the right side of Eq. (5.68), and
using the naive formula Eq. (2.5) or K(0, z) = 1 for the
spectral boundary, we would have obtained the equation

1 =

〈

σ2
c

〉

c

r2
+

ξ2〈σ2
c 〉2

r4
. (5.73)

This in turn yields the radius Eq. (2.61) which is larger
than the true boundary of the support of limN→∞ ρ(z)
given by Eq. (2.60).

VI. CONCLUSIONS

We have provided a general formula for the eigenvalue
density of partly random matrices, i.e. matrices with
general mean and non-trivial covariance structure. Gen-
eral formulae have also been derived for the magnitude
of impulse response and frequency power spectrum in an
N -dimensional linear dynamical system with a coupling
given by such partly random matrices. Our theory makes
no requirement on the normality of matrices; its applica-
tions include therefore the stability and linear response
analysis of neural circuits, whose linearized dynamics is
always nonnormal. We have demonstrated our theory
by tackling analytically two specific neural circuits: a
feedforward chain of length N , and a set of randomly
coupled feedforward subchains of length 2. A connection
has also been revealed between the eigenvalue spectra of
dense random matrix perturbations, and the theory of
pseudospectra.
The non-crossing diagrammatic method can be used to

calculate other quantities of interest for matrix ensembles
of the form A = M +LJR, considered here as well; pos-
sible examples are direct statistics of eigenvectors [52], or
the correlations of the random fluctuations of the eigen-
value density 〈δρ

J
(z)δρ

J
(z + w)〉J for macroscopic w (i.e.

for |w| = Θ(1)). On the other hand, quantities such as
the microscopic structure of 〈δρ

J
(z)δρ

J
(z + w)〉J , e.g. for

|w| = Θ(N−1/2) with z inside the support, which could
be of interest in the study of eigenvalue repulsion are
not accessible to the non-crossing approximation. This
is also the case, in general, for the statistics of the “out-
lier” eigenvalues that we discussed after Eq. (2.12) and in
the examples of Sec. II C 1 and Sec. II C 2, which may be
of importance in practical applications. The calculation
of such quantities is possible, for example, by using the
replica technique (see e.g. Ref. [53]).
Finally, there are important forms of disorder which

are not covered by the general ensemble A = M + LJR
with iid, and hence dense, J . Examples of relevance
to neuroscientific applications include sparse A [54–56]
(note that, e.g., binary matrices with probability of a
nonzero weight, p, which is small but Θ(1) as N → ∞ are
covered by our formulae; by “sparse” disorder we refer,
e.g. to the case p = o(1)), or more general structure of
correlations between the elements of A (in the ensemble
considered in this article, and for real J , the covariance
〈δAijδAi′j′ 〉J = (LLT)ii′ (R

TR)jj′ is single rank); the lat-
ter is of importance in considering networks with local
topologies where, e.g., the matrix A has a banded struc-
ture. Generalization to other forms of random disorder
is thus an important direction for future research.
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Appendix A: Validity of the non-crossing
approximation

In this appendix we will give the justification for the
non-crossing approximation used in Sec. (III) and (IV).
That is, we will show that the only diagrams not sup-
pressed by inverse powers of N are the non-crossing di-
agrams. We will limit our discussion to the case of
the eigenvalue density considered in Sec. (III), but
the generalization to the quantities calculated in (IV)
is straightforward. As explained after Eq. (3.22), av-
eraging of G(η, z; J) over the disorder J involves sum-
ming over all complete pairings of the factors of J in
every term of the expansion Eq. (3.22), with each pair-
ing of each term represented by a diagram as shown in
Fig. 11. Each such diagram is composed of a solid di-
rected line (each segment of which represents a factor of

G
αβ
ab (η, z; 0)), with a number of wavy lines (each repre-

senting the expression Eq. (3.21), with different indices)
connecting different points on the solid arrow line, and
all the internal matrix indices summed over. For the
purpose of calculating the eigenvalue density, according
to Eqs. (3.16)–(3.18), what we need to calculate is actu-
ally tr

(

σ+(RL)−1 〈G(η, z; J)〉J
)

; thus we can imagine the
solid arrow making a loop by closing-in on itself sand-
wiching σ+ ⊗ (RL)−1 (see Fig. 15).
Given the structure of the Kronecker deltas in

Eq. (3.21), it is more convenient for our purpose here,
however, to think of each diagram as a number of “or-
bits,” each formed by starting somewhere on the solid line
and moving on it always along its arrow until the next
wavy line is encountered, whereby we leave the solid line,
continuing on the wavy line without crossing it (because
Eq. (3.21) is composed of two Kronecker deltas, one for
each side of the wavy line, enforcing index identification
at the corresponding ends on each side [64]) and return
somewhere else on the solid line, continuing as before
until we reach the initial point (see Fig. 15). As we go
around this orbit, for each solid line traversed we write
down, from right to left, a G(η, z; 0) and for each wavy
line a πri (see Eqs. (3.20)) where i is the index of the
wavy line. Because all matrix indices are summed over,
such adjacent factors multiply like matrices, and since
the orbit forms a loop, in the end we obtain the trace

of the matrix product thus obtained. (This recipe for
assigning the contribution of each orbit accounts for the
Kronecker deltas and πr’s in Eq. (3.21), but not for the
factor 1

N and the sum over r’s; we will account for these,
at the end, after Eq. (A2).) A generic orbit, which we
refer to as internal, closes on itself after traversing, say,

!

"

#

!

(a)

(b)

σ
+(RL)−1

σ
+(RL)−1

FIG. 15: (Color online) The orbits (shown by thin red
paths) for two diagrams for the spectral density in a
complex J ensemble. The non-crossing diagram on top
has three orbits: orbit (1) is the external orbit connect-
ing the two ends of the Green’s function, while orbits
(2) and (3) are the internal orbits. As in Eqs. (A1)
and (A2), they contribute tr

(

σ+
G(η, z; 0)πr1G(η, z; 0)

)

,

Tr
(

π3−r1G(η, z; 0)πr2G(η, z; 0)
)

and Tr
(

π3−r2G(η, z; 0)
)

,
respectively, with r1 and r2 summed over 1 and 2 (cf.
Eq. (3.21)). The trace contributed by each of the three orbits
is O(N), which when combined with the three factors of
1/N accounting for the two wavy lines and the normalization
of the external orbit’s trace, yield an O(1) expression for
this diagram. By contrast, the crossing diagram on the
right has no internal orbits. Its only external orbit con-
tributes Tr

(

σ+
G(η, z; 0)πr2G(η, z; 0)π3−r1G(η, z; 0)π3−r2

G(η, z; 0)πr1G(η, z; 0)) which after normalization is O(1).
Accounting for two factors of 1/N coming from the wavy
lines, we then see that this crossing diagram is O(N−2) and
hence is suppressed as N → ∞.

m wavy lines sanwiching m Green’s functions (e.g. the
orbits labeled 2 and 3 in panel (a) of Fig. 15), and thus
contributes a trace of the form

Im,r ≡ Tr(G(η, z; 0)πri1 · · ·G(η, z; 0)πrim ) , (A1)

where r is short-hand for {ri1 , . . . , rim}, and ik are the
indices of the wavy lines traversed in the orbit. In every
diagram, there is also exactly one orbit (e.g. the orbits
labeled 1 in both panels of Fig. 15) which in addition
includes the factor σ+(RL)−1 sandwhiched between the
two external Green’s functions. This orbit, which we call
the external orbit, contributes a trace of the form

En,r̃ ≡ Tr
(

σ+(RL)−1
G(η, z; 0)πrj1 · · ·πrjnG(η, z; 0)

)

(A2)
where n is the number wavy lines the orbit traverses and
r̃ is short for {rj1 , . . . , rjn}, and jk are the indices of the
wavy lines traversed in this orbit (in writing Eq. (A2) we
dropped the 1

N that normalizes the trace in Eqs. (3.16),
but we will account for it below). For succinctness, in
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Eqs. (A1)–(A2) we suppressed the arguments (η, z) for
Im,r and En,r̃ on which they depend. The full expression
for the diagram is obtained by multiplying all such trace
factors contributed by every orbit in the diagram, as well
as a factor of N−w−1 where w is the number of wavy lines
in the diagrams, to account for the N−1 in Eq. (3.21) for
each wavy line, as well as the extraN−1 which normalizes
the trace in the external orbit Eq. (A2) as dictated by
Eq. (3.16). The obtained expression is finally summed
over all the r-indices corresponding to each wavy line, as
required by Eq. (3.21).
The justification for the non-crossing approximation is

based on the claim that each trace contributed by a or-
bit (external or internal) as in Eqs. (A1)–(A2) is O(N),
irrespective of η, z, m or r. We will provide justification
for this claim below. However, accepting it as true, we
see that any diagram’s scaling with N solely depends on
the number of orbits and wavy lines it contains. A well-
known topological argument then shows that the contri-
butions of crossing diagrams are suppressed by inverse
powers of N [57, 58]; for completeness we will summarize
this argument here. First note that, assuming the claim,
any diagram will yield an expression that is O(Nα) with

α = f − w − 1, (A3)

where f is the number of orbits in the diagram (the sum
over at most 2w possible configurations of ri does not
contribute to the scaling with N). Let V denote the total
number of vertices in the diagram (i.e. the number of
intersections of wavy lines and the solid line, plus an extra
one representing the insertion of σ+(RL)−1 in the solid
line loop) and let E denote its total number of edges, i.e.
E ≡ w + s, where s is the number of solid line segments
(s = 5 in both panels of Fig. 15). It is easy to see that
V = s. Thus we have E − V = w. Formally defining the
number of “faces” in the diagram by F ≡ f + 1, and its
“Euler characteristic” by

χ ≡ F − E + V, (A4)

we then find that χ = F − (E − V ) = f + 1 − w. From
Eq. (A3) we then obtain

α = χ− 2. (A5)

Thus the contribution of a diagram is O(Nα), with α
determined solely by the diagram’s formal “Euler char-
acteristic” via Eq. (A5). It can be shown that a diagram
with F formal “faces” and a formal “Euler characteris-
tic” χ as defined above, can be drawn on (embedded in)
a two-dimensional oriented surface with Euler character-
istic χ, such that no edges (solid or wavy) cross to create
new vertices, and each face created on the surface by its
partitioning by the drawn diagram, a) is topologically a
disk, and b) has a one-to-one correspondence with and is
encircled by an orbit in the diagram, where we now count
among the orbits, also the loop formed by the solid arrow
line. Thus the number of faces on the surface is indeed
F = f + 1, and the χ, as defined above for the diagram,

indeed agrees with the Euler characteristic of the surface,
as conventionally defined. Topologically, such a surface
is a generalized torus with g holes, satisfying χ = 2− 2g;
the surface with zero holes is the sphere, or after decom-
pactification, the plane (e.g. the diagram in panel (b) of
Fig. 15 can be drawn in this manner on a torus). We
thus see that

α = −2g, (A6)

and therefore the only diagrams that are not suppressed
by inverse powers of N are those that can be drawn, as
described above, on the plane. Since we took the area
enclosed by the solid arrow line loop as a face by itself,
this means that the diagram should be drawable with
the wavy lines remaining outside this area (in order not
to partition it into several faces) without crossing each
other; this is the precise definition of the diagram being
non-crossing [65].
Let us now go back to justifying the claim that the

traces contributed by the orbits as in Eqs. (A1)–(A2) are
O(N). For this purpose we will make use of the singu-
lar value decomposition of Mz introduced in Eq. (3.32).
Defining the unitary matrix

Uz ≡
(

Uz 0
0 Vz

)

, (A7)

and using Eq. (3.32), we can write H0(z), defined in
Eq. (3.14), as

H0(z) = UzH̃0(z)U†
z , (A8)

where

H̃0(z) ≡
(

0 Sz

Sz 0

)

. (A9)

Let us also define G̃(η, z; 0) ≡ U†
zG(η, z; 0)Uz, such that

G(η, z; 0) = UzG̃(η, z; 0)U†
z . (A10)

Then using the definition G(η, z; 0) = (η−H0(z))
−1, we

see that

G̃(η, z; 0) =
1

η − H̃0(z)
=

(

η
η2−S2

z

Sz

η2−S2
z

Sz

η2−S2
z

η
η2−S2

z

)

, (A11)

where we used Eq. (A9) to write the last equality. Given
the block-diagonal nature of Eq. (A7) and the definitons
Eq. (3.20), we also have

πr = Uzπ
rU†

z . (A12)

We now substitute G(η, z; 0) and πri in Eqs. (A1)–(A2)
with the right hand sides of Eqs. (A10) and (A12), re-
spectively. After canceling the Uz’s we obtain

Im,r = Tr
(

G̃(η, z; 0)πri1 · · · G̃(η, z; 0)πrim

)

, (A13)

En,r̃ = Tr
(

σ+A(z)G̃(η, z; 0)πrj1 · · ·πrjn G̃(η, z; 0)
)

(A14)



36

where we defined

A(z) ≡ U †
z (RL)−1Vz , (A15)

such that U†
z

[

σ+ ⊗ (RL)−1
]

Uz = σ+ ⊗ A(z) ≡ σ+A(z).
For the internal orbits, we see from Eq. (A11) that each

G̃(η, z; 0), depending on whether it is sandwiched be-
tween the same projectors πr, or between two opposite
projectors, πr and π3−r, contributes a diagonal factor
equal to η/(η2−S2

z ) or Sz/(η
2−S2

z ), respectively. Thus,
for any configuration of ri’s, if the number of Green’s
functions sandwiched the second way is k (1 ≤ k ≤ m),
we obtain

Im,r(η, z) =

N
∑

i=1

ηm−ksi(z)
k

(η2 − si(z)2)m
(1 ≤ k ≤ m)

(A16)
for the internal orbits (in particular, we see that the sole
dependence of Im,r(η, z) on r is via the number k). We
therefore have

|Im,r(η, z)| ≤ N max
i

∣

∣

∣

∣

ηm−ksi(z)
k

(η2 − si(z)2)m

∣

∣

∣

∣

. (A17)

When the imaginary part of η is nonzero, the denomi-
nator in the right hand side of Eq. (A17) cannot vanish
for any value of si(z) (while as η → i0, which is the
limit we have to take after summing up the relevant di-
agrammatic series, si(z) that approach zero as N grows
can make this expression unbounded as N → ∞). As-
suming Im η > 0, it will be sufficient for our purposes to
substitute Eq. (A17) with the weaker bound

|Im,r(η, z)| ≤ N max
s

∣

∣

∣

∣

ηm−ksk

(η2 − s2)m

∣

∣

∣

∣

, (Im η > 0)

(A18)
where now the maximum is taken for s ranging over the
whole [0,∞). Since Im η > 0 the expression has no sin-
gularities at finite real s, and since 2m > k, it cannot
diverge as s → ∞ either; thus it has a finite maximum
independent of N . More precisely, it is easy to show that

maxs

∣

∣

∣

ηm−ksk

(η2−s2)m

∣

∣

∣ ≤
[ √

2
|Im η|

]m

, irrespective of k as long as

1 ≤ k ≤ m, yielding

|Im,r(η, z)| ≤ N

[ √
2

|Im η|

]m

, (Im η > 0). (A19)

Similarly, the trace for the external orbit can be writ-
ten in the new basis Eq. (A11) as

En,r̃(η, z) =
N
∑

i=1

Aii(z)
ηn−k̃si(z)

k̃

(η2 − si(z)2)n
, (1 ≤ k̃ ≤ n),

(A20)

where k̃ is the number of Green’s functions in Eq. (A2)
sandwiched between two πr’s with different superscripts;
this convention works correctly for the external orbit as
well, if we account for the presence of σ+ by imagining

a π2 (π1) to the left (right) of the leftmost (rightmost)
Green’s function. From Eq. (A15), we can write Aii(z) =
ui(z)

†(RL)−1vi(z), where we defined the vectors ui(z)
and vi(z) to be the i-th column of Uz and Vz , respectively.
By the Cauchy-Schwartz inequality we then have

|Aii(z)| ≤ ‖ui(z)‖‖(RL)−1vi(z)‖
≤ ‖ui(z)‖‖vi(z)‖‖(RL)−1‖, (A21)

where ‖(RL)−1‖ is the operator norm, or the maximum
singular value, of (RL)−1. But since Uz and Vz are uni-
tary matrices, ui(z) and vi(z) are unit vectors, and we
obtain

|Aii(z)| ≤ ‖(RL)−1‖. (A22)

Going back to Eq. (A20), this yields the bound

|En,r̃(η, z)| ≤ N‖(RL)−1‖max
i

∣

∣

∣

∣

∣

ηn−k̃si(z)
k̃

(η2 − si(z)2)n

∣

∣

∣

∣

∣

. (A23)

The only difference with the inequality for Im,r is the
factor ‖(RL)−1‖. Repeating the same argument as for
the internal traces, we therefore see that

|En,r̃(η, z)| ≤ N

[ √
2

|Im η|

]n

‖(RL)−1‖, (Im η > 0),

(A24)
and thus a sufficient condition for En,r̃ to be O(N) for
Im η > 0, is that ‖(RL)−1‖ remains bounded as N → ∞,
i.e.

‖(RL)−1‖ = O(1). (A25)

Combining Eqs. (A19) and (A24), and given the pre-
scription after Eq. (A2), we can bound the absolute
value of the contribution of a diagram with genus g
(or g crossings), w wavy lines, and s solid lines, by

2w
[ √

2
|Im η|

]s

‖(RL)−1‖N−2g (the power of s is obtained

by noting that the powers of m and n in the bounds
Eqs. (A19) and (A24), when summed over all orbits must
equal s, since every Green’s function or solid line ap-
pears in exactly one orbit). Hence for a fixed, nonzero
Im η, the contribution of crossing diagrams (i.e. those
with g ≥ 1) goes to zero as N → ∞. Thus if we
take the limit N → ∞ before the limit η → i0+, ig-
noring the crossing diagrams is safe, and the expression
for ρ(z) obtained from Eq. (3.16) after analytic contin-
uation of tr

(

σ+(RL)−1G(η, z)
)

to η = i0, with G(η, z)
given by the contribtiuon of non-crossing diagrams to
〈G(η, z; J)〉J , gives the correct result for limN→∞ ρ(z).
We mention that when the smallest singular value si(z)
remains bounded away from zero as N → ∞, even at
η = 0 the traces Eqs. (A16) and (A20) are O(N), as is
not hard to check, justifying the non-crossing approxi-
mation at η = 0. Thus it is only when some si(z) are
o(1) that it becomes important to send η to i0+ only af-
ter the limit N → ∞ has been taken. In particular, in
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such cases, applying the limit η → i0+ to the results ob-
tained using the non-crossing approximation before tak-
ing the limit N → ∞, may yield finite-size contributions
to limN→∞ ρ(z), which in general may yield incorrect
subleading corrections.

Appendix B: ρ(z) vanishes in the region Eq. (3.38)

In this appendix we prove more rigorously that
in the region Eq. (3.38), the eigenvalue density van-
ishes. More precisely, we prove that ρ(z) ≡
limǫ→0+ limN→∞ ρ

N
(z, ǫ) = 0, where

ρ
N
(z, ǫ) ≡ 1

π

∂

∂z̄
tr

[

(RL)−1M †
z

MzM
†
z + γ2

]

, (B1)

is obtained by substituting Eq. (3.35) into Eqs. (3.17).
Here, γ = g(z, ǫ) + ǫ, is the solution of Eq. (3.37), which
as we argued in Sec. III, vanishes as ǫ → 0+ when z is in
the region Eq. (3.38) (note that since Eq. (3.37) is defined
in the limit N → ∞, γ has no dependence on N). Recall
that for ǫ > 0, g(z, ǫ) is positive and therefore γ > ǫ > 0.
Expanding the derivative in Eq. (B1) we obtain

πρ
N
(z, ǫ) = tr

[

(RL)−1(RL)−†

MzM
†
z + γ2

]

−tr

[

(RL)−1M †
z

1

MzM
†
z + γ2

Mz(RL)−† 1

MzM
†
z + γ2

]

−tr

[

(RL)−1M †
z

MzM
†
z + γ2

1

MzM
†
z + γ2

]

∂z̄(γ
2)

= tr

[

(RL)−1Q(RL)−†

MzM
†
z + γ2

]

−tr

[

(RL)−1M †
z

MzM
†
z + γ2

1

MzM
†
z + γ2

]

∂z̄(γ
2), (B2)

where we defined Q = 1−M †
z

1

MzM
†
z+γ2

Mz (we suppress

the explicit dependence of γ on z for simplicity). By the

Woodbury matrix identity Q = γ2

M†
zMz+γ2

, which upon

substitution in Eq. (B2) yields

πρ
N
(z, ǫ) = tr

[

(RL)−1

M †
zMz + γ2

(RL)−†

MzM
†
z + γ2

]

γ2 (B3)

−tr

[

(RL)−1M †
z

MzM
†
z + γ2

1

MzM
†
z + γ2

]

∂z̄(γ
2).

Differentiating Eq. (3.37) with respect to z̄ yields

− ∂z̄(γ
2) =

−2γ2∂z̄K
1−K − 2γ2∂γ2K , (B4)

with the partial derivatives of K(γ, z) given by

−∂γ2K = T >

∞(γ) ≡ lim
N→∞

T >

N (γ)

−∂z̄K = V∞(γ) ≡ lim
N→∞

VN (γ), (B5)

where we defined

T >

N (γ) ≡ tr

[

1

(MzM
†
z + γ2)2

]

(B6)

VN (γ) ≡ tr

[

1

MzM
†
z + γ2

Mz(RL)−†

MzM
†
z + γ2

]

. (B7)

We thus obtain

πρ
N
(z, ǫ) = γ2 TN (γ) +

2 γ2 V∞(γ)VN (γ)∗

1−K(γ) + 2γ2 T >

∞(γ)
(B8)

where we defined

TN (γ) ≡ tr

[

(RL)−1

M †
zMz + γ2

(RL)−†

MzM
†
z + γ2

]

. (B9)

Having eliminated derivatives of γ, we now simply need
to show that limγ→0+ limN→∞ of the right side of
Eq. (B8) vanishes for z is in the region Eq. (3.38) (where
γ = 0+ is the solution of Eq. (3.37) as ǫ → 0+).
We will start by bounding the traces TN (γ) and VN (γ)

in Eq. (B8). For VN (γ) we use the singular value decom-
position Eq. (3.32):

|VN (γ)| =
∣

∣

∣

∣

tr

[

(RL)−1M †
z

MzM
†
z + γ2

1

MzM
†
z + γ2

]∣

∣

∣

∣

(B10)

= tr

[

U †
z (RL)−1Vz

Sz

(S2
z + γ2)2

]

≤ ‖(RL)−1‖tr
[

Sz

(S2
z + γ2)2

]

(where in the last line we used Eq. (A22)), i.e.

|VN (γ)| ≤ ‖(RL)−1‖V>

N (γ) (B11)

where we defined

V>

N (γ) ≡ 1

N

N
∑

i=0

si(z)

(si(z)2 + γ2)2
. (B12)

Taking the limit N → ∞, we obtain from Eq. (B11)

|V∞(γ)| ≤ CV>

∞(γ) (B13)

where V>

∞(γ) ≡ limN→∞ V>

N (γ), and C is an upper bound
on ‖(LR)−1‖ (which we have assumed is O(1) as N →
∞). To bound TN (γ), we use the inequality

|tr(ABCD)| ≤ ‖A‖‖C‖tr (BB†)
1
2 tr (DD†)

1
2 . (B14)

This can be derived by first using the Cauchy-Schwartz
inequality, |tr (AB)|2 ≤ tr (AA†)tr (BB†), and then using
the inequality |tr (AB)| ≤ ‖B‖tr (A), valid for positive
semi-definite A (which in turn follows from the definition
of ‖B‖ after unitary diagonalization of A). Using (B14)
we obtain

∣

∣

∣

∣

tr

[

(RL)−1

M †
zMz + γ2

(RL)−†

MzM
†
z + γ2

]∣

∣

∣

∣

≤

≤ ‖(RL)−1‖2 tr
[

(

1

MzM
†
z + γ2

)2
]

(B15)
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or

|TN (γ)| ≤ ‖(RL)−1‖2T >

N (γ). (B16)

Using the inequalities, (B11), (B13) and (B16) in
Eq. (B8) we obtain

π|ρ
N
(z, ǫ)| ≤ C2

[

γ2 T >

N (γ) +
2 γ2 V>

∞(γ)V>

N (γ)

1−K(γ) + 2γ2 T >

∞(γ)

]

(B17)
Taking the N → ∞ limit (while keeping γ finite), and
defining ρ(z, ǫ) ≡ limN→∞ ρ

N
(z, ǫ), we obtain

πρ(z, ǫ) ≤ C2

[

γ2 T >

∞(γ) +
2 (γ V>

∞(γ))2

1−K(γ) + 2γ2 T >

∞(γ)

]

(B18)
where we defined

T >

∞(γ) ≡ lim
N→∞

1

N

N
∑

i=0

1

(si(z)2 + γ2)2
(B19)

V>

∞(γ) ≡ lim
N→∞

1

N

N
∑

i=0

si(z)

(si(z)2 + γ2)2
. (B20)

Thus, to show that limǫ→0+ ρ(z, ǫ) = 0, it suffices to show

that γ2T >

∞(γ) and γ V>

∞(γ) vanish as γ → 0+ (since z is in
the region Eq. (3.38), 1−K(γ) and hence the denominator
in the last term in Eq. (B18) remains positive as γ → 0+).
Let us rewrite Eq. (B19) as

T >

∞(γ) =

∫ ∞

0

ρS(s; z)ds

(s2 + γ2)2
(B21)

V>

∞(γ) =

∫ ∞

0

sρ
S
(s; z)ds

(s2 + γ2)2
(B22)

where we defined

ρ
S
(s; z) = lim

N→∞

1

N

N
∑

i=0

δ(s− si(z)) (B23)

as the limit of the density of the singular values of Mz

[66]. Note that contributions to T >

∞(γ) and V>

∞(γ) from
integration on [s0,∞) for any fixed, nonzero s0 remain fi-
nite as γ → 0+; only singular contributions arising from

the region s = O(γ) ≪ 1 can contribute to γ2T >

∞(γ)

and γ V>

∞(γ) as γ → 0+. Thus we only need concern
ourselves with the portion of integrals from 0 to some ar-

bitrary small, but fixed s0, and show that γ2
∫ s0
0

ρ
S
(s;z)ds

(s2+γ2)2

and γ
∫ s0
0

sρ
S
(s;z)ds

(s2+γ2)2 vanish as γ → 0+. Let us first con-

sider the situation similar to that in the two examples
Eqs. (5.1) and (2.42). For those examples, there is a
region of z outside Eq. (3.38), where a single (more gen-
erally O(1)) singular value si(z) vanishes as N → ∞,
while all the other si(z) remain bounded from below.
But an O(1) set of (vanishing) singular values does not
contribute to the density Eq. (B23) and since the other
si(z) are bounded from below, there is an s0 below which
ρS(s; z) identically vanishes. So the claim is clearly true
for such cases. More generally, we exploit the fact that z
is in the region Eq. (3.38), so that

lim
γ→0+

∫ ∞

0

ρ
S
(s; z)ds

s2 + γ2
< 1. (B24)

We conclude that as s → 0+ the density, ρ
S
(s; z), must

vanish at least as fast as sα, i.e. it must be O(sα), for
some α > 1; otherwise the integral in Eq. (B24) diverges
in the limit. Let us therefore choose s0 to be small enough
such that for s ≤ s0, ρ(s; z) < csα for some constant c
and α > 1. It is then an elementary exercise to show that

γ2
∫ s0
0

sαds
(s2+γ2)2 and γ

∫ s0
0

sα+1ds
(s2+γ2)2 are O(γmin(2,α−1)) and

O(γmin(1,α−1)), respectively, as γ → 0+, and since α > 1,
they both vanish in the limit, proving the claim.
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[62] The unitary invariance of these formulae is in turn a
consequence of the invariance of both the corresponding
quantities (ρ(z) and ‖x(t)‖2), as well as the statistical
ensemble for J , Eq. (3.2), and hence that of LJR when
L ∝ R ∝ 1, under unitary transforms like Eq. (2.34).

[63] It is also common to write the firing rate equations in the

different form, T dr(t)
dt

= −r(t)+f(Wr(t)+Ir(t)). At least
in the case where all neurons have equal time constants,
i.e. T ∝ 1, the two formulations are equivalent and are
related by the change of variable v = Wr + Ir [46].

[64] This structure is a consequence of using a complex en-
semble for J , for which the covariances 〈JabJcd〉 vanishes.
For the real Gaussian ensemble, by contrast, the latter do
not vanish; in this case Eq. (3.21) becomes 〈J αβ

ab J γδ
cd 〉 =

1
N

[

δadδbc
(

σ+
αβσ

−

γδ + σ−

αβσ
+
γδ

)

+ δacδbd
(

σ+
αβσ

+
γδ + σ−

αβσ
−

γδ

)]

=

1
N

∑2
r=1

[

(πr
αδδad)(π

3−r
βγ δbc) + (πr

αγδac)(π
3−r
βδ δbd)

]

.

[65] Notice that this is a more restrictive property than pla-
narity of the diagram; for example the graph in panel (b)
of Fig. 15 is planar, as one of the wavy lines can be drawn
inside the solid loop without crossing any other line, but
it is not non-crossing as defined here.
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[66] More precisely, we only need to define the limit Eq. (B23)
in the sense of distributions, i.e. such that for any
regular test function, f(s2), bounded at infinity and
regular everywhere, including at s2 → 0+, we have
limN→∞

1
N

∑N

i=1 f(si(z)
2) =

∫

∞

0
f(s2)ρS(s; z)ds. We do

not assume any smooth form for ρS(s; z); in particu-
lar, ρS(s; z) may have delta function singularities when

an O(N) singular values converge to the same value as
N → ∞. Also note that this assumption does not forbid
the possibility that some si(z) diverge as N → ∞; our
requirement that ‖M‖F remain bounded automatically
guarantees that these will not be numerous enough to
contribute to ρS(s; z) at infinity.


