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Fluid flow enhances the effectiveness of toxin export by aquatic microorganisms: a
first-passage perspective on microvilli and the concentration boundary layer

Nicholas A. Licata∗ and Aaron Clark
Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan 48128

A central challenge for organisms during development is determining a means to efficiently export
toxic molecules from inside the developing embryo. For aquatic microorganisms, the strategies
employed should be robust with respect to the variable ocean environment and limit the chances
that exported toxins are reabsorbed. As a result, the problem of toxin export is closely related to
the physics of mass transport in a fluid. In this paper we consider a model first-passage problem
for the uptake of exported toxins by a spherical embryo. By considering how macroscale fluid
turbulence manifests itself on the microscale of the embryo, we determine that fluid flow enhances
the effectiveness of toxin export as compared to the case of diffusion-limited transport. In the
regime of large Péclet number, a perturbative solution of the advection-diffusion equation reveals
that a concentration boundary layer forms at the surface of the embryo. The model results suggest a
functional role for cell surface roughness in the export process, with the thickness of the concentration
boundary layer setting the length scale for cell membrane protrusions known as microvilli. We
highlight connections between the model results and experiments on the development of sea urchin
embryos.

PACS numbers: 87.16.dp, 47.63.mh, 47.27.T-

I. INTRODUCTION

Aquatic organisms face a variety of challenges in the
course of development. Central challenges related to their
growth and development are the acquisition of nutrients
from the surrounding fluid and the disposal of waste
products or other toxic materials to the extracellular en-
vironment. As a result, acquatic organisms have evolved
a diverse set of strategies to search for, acquire and dis-
pose of small molecules. Successful strategies reflect fun-
damental constraints imposed by the physical laws which
govern the transport and motion of small particles in a
fluid. This line of physical reasoning has shaped our un-
derstanding of a variety of problems in biology, from bac-
terial chemotaxis [1, 2] to the origin of multicellularity in
algae [3, 4].

The present paper highlights a connection between the
physics of mass transport in a fluid flow and the problem
of removing toxic molecules or other waste products from
a developing embryo. The major question addressed can
be stated quite simply. A spherical embryo has identi-
fied a toxic molecule for export to the extracellular fluid.
Once exported the molecule will be subject to diffusion
and advection in the surrounding fluid. How far away
from the body of the embryo should the molecule be re-
leased, so as to reduce the chances that the toxin encoun-
ters the embryo surface and is reabsorbed? The view
advocated in the present paper is that the physics un-
derlying this transport problem provides an answer that
may shed light on understanding the functional role of
cell surface roughness in embryonic development. Later
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we will argue that the length of cell surface protrusions
known as microvilli (the surface roughness elements im-
plicated in the toxin export process) may be set in part
by the thickness of the concentration boundary layer for
the advection-diffusion problem.

The interplay between the thickness of the concentra-
tion boundary layer and the size and functional signifi-
cance of biological structures has been documented in a
variety of cases [5]. In particular, our results are prob-
ably closest conceptually to the findings of Short et al.
on the role of fluid flow in enhancing nutrient uptake by
Volvox carteri [4]. In that work it was demonstrated that
beyond a critical bottleneck radius, diffusion alone is in-
sufficient to meet the metabolic needs of a growing algae
colony. By actively stirring the fluid, the colony is able
to overcome this nutrient deficiency. The concentration
boundary layer thickness is comparable to the length of
flagella, the stirring rods responsible for fluid mixing.

In the present case of sea urchin embryogenesis, several
recent experiments have highlighted the important role
that cell surface roughness plays in toxin export. Early
in sea urchin development, microvilli lengthen, and there
is a coincident localization of transport receptors to the
tips of microvilli [6, 7]. These transport receptors act to
export toxic molecules from the interior of the cell to the
extracellular fluid [8, 9]. This suggests that the localiza-
tion of transport receptors to the tips of microvilli may
serve a functional role in the export process. Releasing
the toxic molecules at a distance h (the microvilli length)
from the cell membrane surface may reduce the chances
that exported toxins are subsequently reabsorbed by the
cell.

In this paper we investigate the efficacy of the tip lo-
calization strategy by considering a model first-passage
problem [10] for the uptake of exported toxins by a spher-
ical embryo. In Section II we consider the regime of
diffusion-limited transport. We demonstrate that tip lo-
calization does not confer a significant advantage to the
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embryo in this case. In general, the transport of toxic
molecules in the extracellular fluid will depend not only
on diffusion, but also on fluid advection. We quantify
the fluid flow surrounding the embryo in Section III. In
Section IV we discuss the concentration boundary layer
that forms when the toxin is advected along with the
flow. We revisit the first-passage problem in the case of
strong advection in Section V. A perturbative solution
of the advection-diffusion equation in the regime of large
Péclet number reveals that fluid flow enhances the effec-
tiveness of the tip localization strategy. In Section VI we
discuss the effect of surface roughness on the first-passage
probability. We conclude in Section VII by highlighting
connections between the model results and recent exper-
iments on the development of sea urchin embryos.

II. THE CASE OF PURE DIFFUSION

Consider a spherical embryo of radius R ∼ 40µm. In
the absence of fluid flow, a toxin released from the tip
of a microvilli will diffuse in the extracellular fluid. The
diffusion coefficient of the toxin in the extracellular fluid
is D ∼ 10−5 cm2s−1, characteristic of small molecules in
water. The goal is to determine the probability that a
released toxin will be reabsorbed by the cell. In this pa-
per we consider the case of a perfect spherical absorber.
This approximation is not as severe as one might imag-
ine, as the perfectly absorbing sphere is a relatively good
approximation to the case of a patchy reactive surface
[1]. In what follows we do not treat the chemical kinetics
associated with the absorption process. In the model for-
mulation, all molecules which reach the cell surface are
absorbed. This constitutes a worst case scenario for the
cell. As a result, the first-passage probability calculated
will set an upper bound on the true absorption probabil-
ity. In addition, at the outset we will ignore reabsorption
by the microvilli themselves, and only consider absorp-
tion by the spherical surface. In this approximation, the
only role of the microvilli is to release the toxin molecules
at a distance h above the surface of the cell. In Section VI
we will revisit this approximation and discuss the role of
surface roughness on the absorption probability in more
detail.

The toxin concentration C satisfies the diffusion equa-
tion

∂C

∂t
= D∇2C. (1)

Defining the dimensionless length ξ = r/R, concentration
c = R3C, and time τ = (Dt)/R2 yields

∂c

∂τ
= ∇2

ξc. (2)

∇2
ξc = 1

ξ2
∂
∂ξ

(
ξ2 ∂c
∂ξ

)
+ 1
ξ2 sin θ

∂
∂θ

(
sin θ ∂c∂θ

)
+ 1
ξ2 sin2 θ

∂2c
∂φ2 de-

notes the Laplacian with respect to the dimensionless ra-
dial variable ξ. Considering the Laplace transform of the

concentration c̃ =
∫∞

0
e−sτ cdτ gives the partial differen-

tial equation

∇2
ξ c̃− sc̃ = −c(τ = 0) = −δ3(~ξ − ~ξ′). (3)

The initial condition corresponds to a point source at the
microvilli tip, and reveals that the Laplace transform of
the concentration is the Green’s function for the modified
Helmholtz operator. A solution in spherical polar coor-
dinates can be obtained by introducing the expansion

c̃ =

∞∑
`=0

∑̀
m=−`

a`m(ξ, ξ′)Y ∗`m(θ′, φ′)Y`m(θ, φ). (4)

The resulting radial equation for a`m(ξ, ξ′) is solved
with the absorbing boundary condition at the cell sur-
face a`m(ξ = 1, ξ′) = 0, and requiring the solution
to be finite at infinity. The solution can be expressed
in terms of the spherical modified Bessel functions [11]

i`(x) =
√

π
2xI`+1/2(x) and k`(x) =

√
2
πxK`+1/2(x) as

a`m(ξ, ξ′) = γk`(γξ>)

[
i`(γξ<)− i`(γ)

k`(γ)
k`(γξ<)

]
(5)

where γ2 = s. Here ξ< (ξ>) represents the smaller
(larger) of ξ and ξ′. The first-passage probability is de-
termined from the time integral of the diffusive current
density impinging on the sphere surface,

ΠD =

∫ ∞
0

dt

∫∫
~J · ~da. (6)

Evaluating ~J · ~da = D ∂C
∂r

∣∣
r=R

R2 sin θ dθ dφ on the sur-
face of the sphere, the first passage probability can be
written simply in terms of the Laplace transform of the
dimensionless concentration,

ΠD = lim
s→0

∫ π

0

sin θ dθ

∫ 2π

0

dφ
∂c̃

∂ξ

∣∣∣∣
ξ=1

=
1

ξ′
. (7)

This remarkably simple and well known result [10] is il-
lustrated in Fig. 1. The details of the derivation are
outlined in Appendix A. The result indicates that, in the
case of pure diffusion, tip localization is not a very ef-
fective strategy for reducing the chances that exported
toxins get reabsorbed. In the dimensionless coordinates,
the tip of the microvilli is located at ξ′ = 1 + h

R . With
microvilli of length h ∼ 2µm and an embryo of radius
R ∼ 40µm the absorption probability is ΠD = 0.95. Ex-
amining the structure of the microvilli solely through the
lens of toxin export, if transport were diffusion limited,
one might expect significantly longer microvilli than what
is observed experimentally.

III. FLUID FLOW

In reality, the transport of toxins in the extra-cellular
fluid is determined not only by diffusion, but also by
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FIG. 1: (Color online) The first-passage probability ΠD as
a function of the microvilli tip location ξ′ = 1 + h

R
for the

case of pure diffusion. The microvilli have length h and the
embryo has radius R.

advection. The dimensionless Péclet number Pe charac-
terizes the competition between advection and diffusion,

Pe =
RU0

D
. (8)

Here U0 is a characteristic flow velocity, which will be
discussed in more detail shortly. We define the dimen-

sionless fluid velocity as ~u =
~U
U0

. For an incompressible

fluid ~∇ξ ·~u = 0 and the dimensionless toxin concentration
satisfies

∂c

∂τ
+ Pe ~u · ~∇ξc = ∇2

ξc. (9)

An important property of the fluid flow is the Reynolds
number

Re =
RU0

ν
(10)

where ν ∼ 10−6m2s−1 is the kinematic viscosity of ocean
water. To proceed we investigate the nature of the fluid

flow in the vicinity of the embryo. In particular, the
wave swept rocky shore that is the habitat for the sea
urchin is an environment where turbulent mixing takes
place on the macroscale [12, 13]. The question is how
this turbulence manifests itself on the microscale of the
embryo [14–16]. Kolmogorov’s first similarity hypothesis
states that the small scale fluid motion is universal and
determined by two parameters, the kinematic viscostiy
ν (m2s−1) and the turbulent kinetic energy dissipation
rate ε (m2s−3). The unique length η = (ν3/ε)1/4 and
time τη = (ν/ε)1/2 scales characterize the smallest dissi-
pative eddies in the flow [17]. In particular, the size of
the smallest turbulent eddies is ∼ 2πη [14]. As a result,
the smallest eddies are at least an order of magnitude
larger than the embryo, and the local fluid environment
of the embryo is one characterized by velocity gradients
∼ 1/τη.

To calculate the first-passage probability we need to
specify the specific form of the fluid velocity appearing
in Eq. (9). In what follows we will work with the model
introduced earlier by Batchelor [18, 19]. The model is
applicable in the present case because Re � 1, and we
are considering the case of an isolated embryo. For the
calculation only the fluid velocity relative to the embryo
matters. This velocity is due in part to the motion of
the embryo through the fluid as a result of an applied
force and in part due to the ambient motion of the fluid
which would be present even in the absence of the em-
bryo. The former takes into account gravity and includes
the effect of bouyancy, since in general the density of the
embryo will differ from that of the fluid. One expects
that in an otherwise quiescent fluid this density mismatch
would lead a non-motile embryo to sink under the influ-
ence of gravity. This behavior is observed experimentally
in sea urchin embryos. For example, the sinking velocity
of Strongylocentrotus purpuratus is V ∼ 0.4mms−1 [20].
Interestingly this is comparable to the embryo’s swim-
ming velocity later in development. The second contri-
bution to the fluid velocity stems from the universal small
scale motion of the fluid as a result of turbulent dissipa-
tion discussed above. These two sources make indepen-
dent contributions to the fluid velocity in the vicinity of
the embryo. Relative to the velocity of the embryo cen-

ter, the fluid velocity ~U can be expressed as [19],

~U = ~V ·
[(

3
4ξ + 1

4ξ3 − 1
)

I +
(

3
4ξ − 3

4ξ3

)
~ξ ~ξ
]

+RΩ · ~ξ +R ~ξ · E ·
[(

1− 1
ξ5

)
I− 5

2
1
ξ3

(
1− 1

ξ2

)
~ξ ~ξ
]
. (11)

Here I is the unit tensor. The first term accounts for the
aforementioned sinking behavior due to gravity and the
disturbance motion this generates in the flow. As for the
contribution from the ambient fluid motion (subscript a

for ambient), the velocity gradient tensor ~∇ ~Ua = E + Ω

corresponds to the ambient fluid motion and has been
decomposed into its symmetrical (E) and antisymmetri-
cal (Ω) parts. The antisymmetric part Ωij = − 1

2εijkωk
represents the rigid body rotation of the embryo with an-

gular velocity 1
2~ω where ~ω = ~∇× ~Ua is the vorticity of the
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ambient flow [18]. Here εijk is the Levi-Civita symbol. As
discussed in [19], in the low Reynolds number regime the
embryo will rotate with the ambient fluid at all times. In
contrast, the embryo cannot follow the straining motion
of the ambient fluid represented by the symmetric rate
of strain tensor E, which generates a disturbance motion
in the flow.

FIG. 2: (Color online) The dimensionless Péclet number Pe
(blue line) and Reynolds number Re (red line) as a function
of the turbulent kinetic energy dissipation rate ε (m2s−3).

This motivates defining the characteristic velocity
U0 = (Rω)/2 and hence the associated Reynolds num-
ber,

Re =
R2ω

2ν
, (12)

and Péclet number,

Pe =
R2ω

2D
. (13)

The microscale velocity gradient is related to the angular
velocity as 1/τη = ω/2. We note that there is a great deal
of variation, both spatial and temporal, in the value of ε
and hence ω. A characteristic value for the upper mixed
layer of the ocean might be ε ∼ 10−6m2s−3 [14–16],
whereas an embryo in a surge channel might be subject to
instantaneous values a million times larger, ε ∼ 1m2s−3

[12, 13]. Using the value of the kinematic viscosity of
ocean water, ν, and an appropriate range of values for
the kinetic energy dissipation rate, ε, one can see from
Fig. 2 that the regime of interest is one where Re � 1,
but Pe� 1. Note that the condition Re� 1 justifies the
choice of a model in which the fluid velocity is obtained
as a solution of Stokes equation.

In what follows we will calculate the first-passage prob-
ability perturbatively, making use of the fact that the
quantity α = 1/Pe � 1. In spherical polar coordinates

the resulting partial differential equation for the dimen-
sionless concentration Eq. (9) is

α
∂c

∂τ
+ uξ

∂c

∂ξ
+
uθ
ξ

∂c

∂θ
+

uφ
ξ sin θ

∂c

∂φ
= α∇2

ξc. (14)

The dimensionless velocity components (~u = ~U/U0 and

~v = ~V /U0) can be calculated as

uξ = (A+B)vξ + (F −G)eξξ (15)

uθ = Avθ + F eξθ (16)

uφ = Avφ + ξ sin θ + F eξφ (17)

Here we have introduced the shorthand notation:

A =
3

4ξ
+

1

4ξ3
− 1 (18)

B =
3

4ξ

(
1− 1

ξ2

)
(19)

F = ξ − 1

ξ4
(20)

G =
5

2ξ2

(
1− 1

ξ2

)
(21)

In addition, we have introduced the dimensionless veloc-

ity gradient tensor ~∇ξ ~ua = e + ψ with ~ua = ~Ua/U0, e =
R
U0

E, and ψ = R
U0

Ω. Note that the rotation of the embryo

with the ambient fluid corresponds to Ωφr = 1
2ω sin θ and

hence ψφr = sin θ.

The small quantity α multiplying the highest order
spatial derivative in Eq. (14) is the hallmark of a bound-
ary layer problem. Physically this is an indication that
the toxin concentration changes from its far field value
to the value c = 0 at the surface of the embryo (ξ = 1)
in a thin concentration boundary layer in the vicinity of
the surface. A piece of information of central importance
to the current study is the dependence of the concentra-
tion boundary layer thickness on the Péclet number Pe,
which is a result originally obtained by Lévêque in 1928
[21]. We will discuss this result in much greater detail in
Section IV.

Within the concentration boundary layer, the domi-
nant fluid motion is an azimuthal rotation, which corre-
sponds to a solid body rotation of the embryo with the
ambient fluid. Superimposed on top of this rotation is a
small fluctuation. To proceed with the analysis we move
to a reference frame rotating with the embryo, denoting

the fluid velocity components in this frame by
∗
uγ with

γ ∈ {ξ, θ, φ}. The velocity components in the rotating
frame can be obtained by removing the term ξ sin θ from
uφ, and making the replacement φ → φ − Pe τ . In the
rotating frame, defining a Cartesian coordinate system
(x1, x2, x3) with the x3 direction along the direction of
the ambient vorticity, the velocity components are ob-
tained from the following relations:
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∗
vξ = v1 sin θ cos(φ− Pe τ) + v2 sin θ sin(φ− Pe τ) + v3 cos θ (22)
∗
vθ = v1 cos θ cos(φ− Pe τ) + v2 cos θ sin(φ− Pe τ)− v3 sin θ (23)
∗
vφ = −v1 sin(φ− Pe τ) + v2 cos(φ− Pe τ) (24)
∗
eξξ = e11 sin2 θ cos2(φ− Pe τ) + e22 sin2 θ sin2(φ− Pe τ) + e33 cos2 θ + e12 sin2 θ sin(2(φ− Pe τ)) +

e13 sin(2θ) cos(φ− Pe τ) + e23 sin(2θ) sin(φ− Pe τ) (25)
∗
eξθ = cos(2θ) [e13 cos(φ− Pe τ) + e23 sin(φ− Pe τ)] +

1

4
sin(2θ) [e11 + e22 − 2e33 + (e11 − e22) cos(2(φ− Pe τ)) + 2e12 sin(2(φ− Pe τ))] (26)

∗
eξφ = cos θ[e23 cos(φ− Pe τ)− e13 sin(φ− Pe τ)] + e12 sin θ cos(2(φ− Pe τ)) +

1

2
(e22 − e11) sin(2(φ− Pe τ)) (27)

In principle the quantities vi, eij ({i, j} ∈ {1, 2, 3}),
and Pe are functions of time, fluctuating over a timescale
τ ∼ 1/Pe corresponding to the eddy turnover. Following
Batchelor [19], we calculate the average velocity field in
the vicinity of the embryo, by averaging over a timescale
τlong � 1/Pe that is long compared to the fluctuation
timescale.

〈∗uγ〉 =
1

τlong

∫ τlong

0

∗
uγ dτ (28)

Assuming that vi, eij , and Pe are stationary random
functions of τ , the average of many terms is zero, like
vi cos(φ− Pe τ) and eij sin(φ− Pe τ). The result for the
averaged components is:

〈∗vξ〉 = 〈v3〉 cos θ (29)

〈∗vθ〉 = −〈v3〉 sin θ (30)

〈∗vφ〉 = 0 (31)

〈∗eξξ〉 = 〈e33〉 (32)

〈∗eξθ〉 = −3

4
sin(2θ)〈e33〉 (33)

〈∗eξφ〉 = 0 (34)

Here we have invoked the statistical isotropy of the small-
scale turbulence, and the imcompressibility of the am-
bient fluid, e11 + e22 + e33 = 0. As discussed in [19],
〈v3〉 = 0. As a result, the time-averaged, dimensionless
velocity field depends on a single parameter 〈e33〉, which
for locally homogeneous and isotropic turbulence takes
on the value 〈e33〉 ' 0.18.

〈∗uξ〉 = (F −G)〈e33〉 (35)

〈∗uθ〉 = −3

4
F sin(2θ)〈e33〉 (36)

〈∗uφ〉 = 0 (37)

The enhancement of mass transfer in the case of strong
advection is now clear. Within the concentration bound-
ary layer, the average fluid flow consists of motion to-
wards the north (θ < π/2) or south (θ > π/2) pole and
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FIG. 3: (Color online) The time-averaged velocity field 〈
∗
~u〉 in

the (x2, x3) plane (red arrows). Velocity streamlines starting
at the tips of microvilli (ξ′ = 1.05) are shown as blue lines.

a radial outflow (see Fig. 3). Toxin molecules released
at the tips of microvilli will be advected away from the
embryo, which will reduce their absorption probability.

IV. CONCENTRATION BOUNDARY LAYER

For the purpose of completeness and clarity, in this
section we provide a pedagogical description of the con-
centration boundary layer phenomenon. Since bound-
ary layers are a classic problem in fluid mechanics about
which a great deal has been written, we will not attempt
a general review of the subject, and instead restrict our
discussion to the problem at hand. However, we note
several references for the benefit of readers interested in
the historical context of the subsequent mathematical de-
velopment. The result for the concentration boundary
layer thickness (Eq. 40) dates to Lévêque [21], and the
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FIG. 4: (Color online) The concentration boundary layer

thickness ` = RPe−
1
3 as a function of Pe. At large Pe, the

length of embryonic microvilli h ≈ `.

matched asymptotic analysis was originally presented in
the context of Stokes flow by Acrivos and Taylor [22].
An introduction to the subject is presented in the book
by Van Dyke [23]. A modern approach to the subject

based on the perturbative renormalization group is pre-
sented by Chen, Goldenfeld, and Oono [24]. The paper
of Veysey and Goldenfeld compares the renormalization
group methodology to the matched asymptotic analysis,
and includes a wealth of information about the historical
development of the subject [25].

In the present context, with the time-averaged velocity
field as input, the advection-diffusion equation for the
toxin concentration reads

α
∂c

∂τ
+ 〈∗uξ〉

∂c

∂ξ
+
〈∗uθ〉
ξ

∂c

∂θ
= α∇2

ξc. (38)

To investigate the quantiative implications of the bound-
ary layer, we invoke the technique of dominant balance
[24]. Namely, we determine a rescaling of the radial vari-
able ξ = 1+αnρ which stretches out the boundary layer.
For the purposes of our first-passage calculation we find
it useful to rescale the dimensionless time as τ = αmT ,
but not the angular variables θ and φ. At this point the
exponents n and m are unkown, but we are looking for
a solution in which the lowest order governing equation
for the concentration is independent of α and contains
temporal, advective and diffusive terms. The result of
the rescaling is

α2n−m ∂c

∂T
+ αn−1〈∗uξ〉

∂c

∂ρ
+

α2n−1

(1 + αnρ)
〈∗uθ〉

∂c

∂θ

=
∂2c

∂ρ2
+

2αn

(1 + αnρ)

∂c

∂ρ
+

α2n

(1 + αnρ)2

1

sin θ

∂

∂θ

(
sin θ

∂c

∂θ

)
+

α2n

(1 + αnρ)2

1

sin2 θ

∂2c

∂φ2
. (39)

At this point it is important to remember (see Ap-
pendix B) that when expressed in terms of the radial

variable ρ, the velocity components 〈∗uξ〉 ∼ O(α2n) and

〈∗uθ〉 ∼ O(αn) have nontrivial scaling with α. The correct
choice of exponents for the rescaling is seen to be n = 1/3
and m = 2/3. In fact, the thickness of the concentration
boundary layer, `, is determined by the exponent n as
(see Fig. 4) [21, 22]

` = RPe−
1
3 . (40)

We can now obtain a perturbative solution for the con-

centration in the form c =
∑∞
k=0 α

k
3 ck. Inserting this

expansion into Eq. (39) and collecting terms of the same

order in α
1
3 one obtains a system of coupled equations

for the {ck}. Defining µ = cos θ and the parameter
β = 15

2 〈e33〉, the equations governing c0 and c1 are:

∂c0
∂T

+ βρ2 ∂c0
∂ρ

+ βρµ(1− µ2)
∂c0
∂µ
− ∂2c0
∂ρ2

= 0 (41)

∂c1
∂T

+ βρ2 ∂c1
∂ρ

+ βρµ(1− µ2)
∂c1
∂µ
− ∂2c1
∂ρ2

=
8

3
βρ3 ∂c0

∂ρ
+ 3βρ2µ(1− µ2)

∂c0
∂µ

+ 2
∂c0
∂ρ

(42)

The perturbation program consists in calculating c0 from Eq. (41), and using the solution to solve the inho-
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mogeneous equation for c1, Eq. (42). The solutions for
c1 and c0 can then utilized to calculate c2, and so on [25].
Following the common practice in boundary layer prob-
lems [26, 27], we define similarity variables η = ρ/g and

χ = T/g2, where the positive function g(µ) captures the
angular dependence of the boundary layer. In terms of
this similarity transformation the zeroth order equation
becomes

∂c0
∂χ

+ βη2

(
g3 − µ(1− µ2)g2 dg

dµ

)
∂c0
∂η
− ∂2c0
∂η2

= 0. (43)

Provided there is a solution where the term in brackets
is equal to a constant,

g3 − µ(1− µ2)g2 dg

dµ
= ∆, (44)

the governing equation becomes

∂c0
∂χ

+ β∆η2 ∂c0
∂η
− ∂2c0
∂η2

= 0. (45)

Without loss of generality we make the choice ∆ = 1.
The differential equation for g(µ) is easily solved, with Υ
a constant of integration,

g(µ) =

(
1 + Υ

µ3

(1− µ2)
3
2

) 1
3

. (46)

We require that g(µ) be bounded, except at the poles
µ = ±1 where the boundary layer scaling may break
down. As a result we make the choice Υ = 1 for µ ≥ 0
and Υ = −1 for µ < 0.

Before tackling the first-passage problem, we highlight
the physics of the concentration boundary layer by con-
sidering the steady-state solution (∂c0∂χ = 0) for the con-

centration profile in the presence of a perfectly absorbing
sphere (c0 = 0 at η = 0) with toxin concentration c∞
far away from the sphere (see Figs. 5,6). The solution
is readily obtained in terms of the incomplete Gamma
function Γ(a, z) as:

c0 = c∞

(
1− Γ( 1

3 ,
β
3 η

3)

Γ( 1
3 )

)
(47)

Γ(a, z) =

∫ ∞
z

ta−1e−tdt (48)

To quantify the mass transfer from the sphere in the
case of strong advection, we calculate the zeroth order
result for the dimensionless Sherwood number

Sh0 =
1

4πc∞

∫ π

0

sin θ dθ

∫ 2π

0

dφ
∂c0
∂ξ

∣∣∣∣
ξ=1

. (49)

Using the above results we find:

Sh0 =

(
3

2
3 β

1
3 I

2 Γ( 1
3 )

)
Pe

1
3 ≈ 0.59 Pe

1
3 (50)

I =

∫ 1

−1

dµ

g(µ)
≈ 1.66 (51)

100 101 102
0

0.1

0.2

0.3
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0.6

0.7

0.8

0.9
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ξ

c
c∞

Pe = 0

Pe = 100

FIG. 5: (Color online) The steady-state concentration pro-
file c/c∞, normalized by the far-field concentration c∞, as a
function of the dimensionless radial variable ξ. The case of
pure diffusion (Pe = 0), Eq. (69), is shown as a blue line.
The concentration profile (along the line θ = π/4) in the
advection-dominated regime (Pe = 100), Eq. (47), is shown
as a red line.

Based on the mathematical equivalence of the mass
and heat transfer problems, Eq. (50) can be compared
to the result of Acrivos and Taylor for the dependence
of the Nusselt number Nu on the Péclet number Pe [22].
The exponent 1/3 is the same in both cases, but the
dimensionless pre-factor differs (0.99 versus 0.59), which
is unsurprising since the fluid models are not the same
in the two cases. Acrivos and Taylor also report the
leading order corrections to this result for small Reynolds
number Re, whereas in the present section we restrict our
attention to the case Re = 0.

Defined in the same manner, ShD = 1 for the case of
pure diffusion (Pe = 0), which can be readily obtained
using the appropriate diffusive concentration profile c =

c∞

(
1− 1

ξ

)
for the given boundary conditions (see Fig.

7). This highlights the advective enhancement of mass

transfer away from the sphere ∼ Pe
1
3 at Pe� 1, with the

exponent 1/3 coming from the boundary layer analysis.
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FIG. 6: (Color online) Steady-state concentration contours
of c/c∞ in the (x2, x3) plane for the case of strong-advection
(Pe = 100). Note the thickness of the concentration-boundary
layer. The concentration rapidly approaches its far field value
(c/c∞ = 1) in a thin layer surrounding the embryo.

FIG. 7: (Color online) Steady-state concentration contours of
c/c∞ in the (x2, x3) plane for the case of pure diffusion (Pe =
0). Note the thickness of the concentration-boundary layer.
At twice the embryo radius, the concentration has approached
roughly half of its far field value (c/c∞ = 1).

V. THE CASE OF STRONG ADVECTION

We now consider the first-passage problem for the case
of strong advection. For the purposes of the present cal-
culation, we consider a spatial domain where all toxin
molecules released at the tips of microvilli are eventually
captured with probability one. To do so, consider two
perfectly absorbing surfaces, the first at the surface of
the spherical embryo (η = 0), and a second at some pre-
scribed distance (η = η+). We define the time-integrated
concentration

C0 =

∫ ∞
0

c0 dχ. (52)

The equation governing C0 becomes

c0(χ =∞)− c0(χ = 0) + βη2 ∂C0
∂η
− ∂2C0

∂η2
= 0. (53)

Since all toxin molecules are absorbed with probability
one, c0(χ = ∞) = 0. The initial condition correspond-
ing to a point source at the microvilli tip is c0(χ = 0) =

δ3(~ξ− ~ξ′). By considering the sequence of variable trans-
formations introduced earlier, (ξ, τ) → (ρ, T ) → (η, χ),
and transforming the initial condition we arrive at the
governing equation

∂2C0
∂η2

− βη2 ∂C0
∂η

= −
δ
(
η − g(µ′)

g(µ) η
′
)
δ(µ− µ′)δ(φ− φ′)

α
1
3 g(µ)

(
1 + α

1
3 g(µ)η

)2 . (54)

The two independent solutions to the homogeneous equation (right hand side of Eq. (54) = 0) are a constant C(1)
0 = κ,

and the incomplete Gamma function C(2)
0 = Γ( 1

3 ,
β
3 η

3). The solution for C0 with absorbing boundary conditions can
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evidently be written in the form

C0 = Q

(
Γ

(
1

3
,
β

3
η3
<

)
− Γ

(
1

3

))(
Γ

(
1

3
,
β

3
η3
>

)
− Γ

(
1

3
,
β

3
η3

+

))
. (55)

Here η< (η>) is the smaller (larger) of η and η′. To determine the constant Q we integrate both sides of the governing

equation
∫ 1

−1
dµ
∫ 2π

0
dφ
∫ η=η′+ε

η=η′−ε dη to determine the discontinuity in the first derivative of C0,

4π
∂C0
∂η

∣∣∣∣η=η′+ε

η=η′−ε
= − 1

α
1
3 g(µ′)

(
1 + α

1
3 g(µ′)η′

)2 . (56)

A short calculation gives

Q = − e
β
3 (η′)3

4π3
2
3 (βα)

1
3

(
Γ
(

1
3

)
− Γ

(
1
3 ,

β
3 (η+)3

))
g(µ′)

(
1 + α

1
3 g(µ′)η′

)2 . (57)

The first-passage probability is calculated from the
concentration as

Π0 =

∫ ∞
0

dτ

∫ 1

−1

dµ

∫ 2π

0

dφ
∂c0
∂ξ

∣∣∣∣
ξ=1

. (58)

Making the same sequence of variable transformations
introduced earlier, the result can be written in terms of

the time-integrated concentration C0 as

Π0 = α
1
3

∫ 1

−1

dµ

∫ 2π

0

dφ
∂C0
∂η

∣∣∣∣
η=0

g(µ). (59)

The result of the angular integration gives:

Π0 =
e
β
3 (η′)3Γ

(
1
3 ,

β
3 (η′)3

)
J

2
(

Γ
(

1
3

)
− Γ

(
1
3 ,

β
3 (η+)3

))
g(µ′)

(
1 + α

1
3 g(µ′)η′

)2 (60)

J =

∫ 1

−1

dµ g(µ) ≈ 2.97 (61)

The result of the calculation can be greatly simplified by
changing back to our original variables, and noting that
ez Γ

(
1
3 , z
)
≈ z−

2
3 + O(z−

4
3 ) for z � 1. This approxi-

mation is justified in our case since α = 1/Pe � 1 and

therefore z = β(ξ′−1)3

3αg(µ′)3 � 1. Taking the outer absorbing

surface to infinity, η+ →∞, we arrive at the final result:

Π0 ≈
(

3
2
3J

2Γ( 1
3 )β

2
3

)
g(µ′)

(ξ′)2(ξ′ − 1)2
Pe−

2
3 +O(Pe−

4
3 ) (62)

The result can be interpreted simply as follows. The first
term in paranthesis is a dimensionless number of order

unity,

(
3

2
3 J

2Γ( 1
3 )β

2
3

)
≈ 0.94, which depends on properties

of the microscale velocity gradient (β = 15
2 〈e33〉) and the

angular dependence of the concentration boundary layer
thickness (through J ). The second term gives the de-
pendence of the first-passage probability on the location
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(µ′) and length (ξ′) of the microvillus that releases the
toxin. The last term gives the dependence of the first-

passage probability on the Péclet number ∼ Pe−
2
3 . Note

the dramatic reduction (see Fig. 8) of the first-passage
probability as compared to the earlier case of diffusive
transport (Pe = 0), for which ΠD = 1/ξ′.

Comparing to the result in the case of pure diffusion,
Eq. (7), we see that in the advection dominated regime
the first passage probability is reduced as compared to
the purely diffusive first capture probability. One can
continue the perturbation program by calculating more
of the {ck} and the leading order corrections to the first

passage probability. Provided that α
1
3 = Pe−

1
3 is small

these corrections will not change the qualitative result of
the zeroth order calculation.

1 1.2 1.4 1.6 1.8 20

0.2

0.4

0.6

0.8

1

ξ ′

Π

ΠD

Π0

FIG. 8: (Color online) The first-passage probability Π as
a function of the microvilli tip location ξ′. The result for
the case of pure diffusion (Pe = 0), ΠD, is shown as a blue
line. The zeroth order result for the case of strong-advection
(Pe = 2062), Π0, is shown as a red line. Note that in the
advection-dominated case, the values of ξ′ over which there
is a rapid decrease in absorption probability agree quite well
with the length of embryonic microvilli. Microvilli of height
h = 2, 5, and 10µm correspond to ξ′ = 1.05, 1.125, and 1.25,
respectively.

The drastic reduction of uptake probability for mi-
crovilli lengths in quantitative agreement with experi-
mental measurements of microvilli structure supports a
functional significance to tip localization of toxin trans-
porters. When viewed through the lens of the toxin trans-
port problem, one might say that the microvilli length
has been evolutionarily selected to probe the thickness
of the concentration boundary layer. Toxin molecules re-
leased at the tips of microvilli will be advected away from
the embryo, decreasing the probability that they will be
reabsorbed and have to be exported again, which is en-
ergentically costly for the embryo. Within the biological
transporter literature, this sequence of export and sub-
sequent reabsorption is refered to as futile cycling [28].

Within the present first-passage formalism, we can
quantify the cost associated with futile cycling of toxin
molecules. The cost to the embryo to efflux a single toxin
molecule is two molecules of ATP. As a result, the aver-
age number of ATP consumed to efflux a single toxin
molecule is

〈NATP 〉 =

∞∑
n=1

2nΠn−1(1−Π) =
2

1−Π
. (63)

As demonstrated in Fig. 9, the effect of reducing the
absorption probability is compounded when computing
the cost of the transporter system for the embryo, with a
significant reduction in the energy budget for the trans-
porter system provided by the enhanced mass transport
at large Pe.

1.2 1.4 1.6 1.8 20

5

10

15

20

25

30

ξ ′

⟨NATP⟩

Pe = 2062

Pe = 0

FIG. 9: (Color online) The average number of ATP molecules
〈NATP 〉 required to efflux a single toxin molecule as a function
of the microvilli tip location ξ′. The result for the case of pure
diffusion (Pe = 0) is shown as a blue line. The zeroth order
result for the case of strong-advection (Pe = 2062) is shown
as a red line.

VI. SURFACE ROUGHNESS

Thus far in our discussion, the role of the microvilli
has been to simply displace the toxin above the surface
of the embryo, where it is subsequently released into the
extracellular fluid. In our calculations of the first-passage
probability, we have only considered absorption on the
smooth spherical surface of the embryo. In this approxi-
mation, the phantom microvilli do not contribute to the
surface area available for absorption, and do not modify
the fluid flow in the vicinity of the embryo. In this sec-
tion we discuss how modifying these assumptions might
affect the first-passage probabilities.

To begin we collect some results about the microvillar
architecture during sea urchin embryogenesis (see Figs.
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10a and 10b). The microvilli are solitary, unbranched,
cylindrical cell membrane protrusions. There is substan-
tial heterogeneity in the length of microvilli on the sea
urchin embryo, with at least two populations of microvilli
[29, 30]. The short microvilli (SMV) have a length of
hSMV ' 2−3µm, comparable to the thickness of the hya-
line layer that surrounds the embryo [6, 31]. The elon-
gated microvilli (EMV) are substantially longer, span-
ning the perivitelline space between the embryo surface
and the fertilization envelope. Their length depends on
the width of the perivitelline space, in Strongylocentro-
tus purpuratus hEMV ' 35µm. The radius % ' 0.1µm
of the microvilli is the same for both populations (SMV
and EMV). According to studies on Strongylocentrotus
droebachiensis there are N ≈ 3 × 105 microvilli covering
the embryo [30].

The presence of microvilli increases the effective sur-
face area of the embryo available for absorption and as a
result should increase the first-passage probability. The
embryo’s total surface area is

Aembryo = 4πR2 +N(2π%h). (64)

The first contribution is from the smooth spherical sur-
face, and the second takes into account the cylindrical
microvilli with average length h. For an embryo with ra-
dius R = 40µm, the smooth surface provides an area of
2.0× 104 µm2. With an average length of h = 2µm, the
microvilli provide an area of 3.8× 105 µm2. The result is
that a rough embryo has a surface area at least 20 times
as large as its smooth counterpart!

R

〈c〉 = 0 on smooth surface

c = 0

c = 0 on smooth surface

on rough surface

h ≈ 2 µm

λ

ξ = 1

ξ = 1 + λ

microvilli

a) b)

c)

! ≈ 0.1 µm

FIG. 10: (Color online) a) Hundreds of thousands of microvilli
(short lines) roughen the surface of a spherical embryo of ra-
dius R ≈ 40µm in a microscale velocity gradient (blue ar-
rows). b) Schematic of an individual microvillus, a cylindri-
cal cell membrane protrusion of radius % ≈ 0.1µm and length
h ≈ 2µm. c) In the multiple scattering calculation, the effect
of surface roughness is to displace the smooth surface by a
distance λ.

To calculate the effect of surface roughness on the first-
passage probability presents a significant challenge. The

technical problem is how the absorbing boundary condi-
tion can be applied on the rough surface. An analytic
approach to related problems has been developed based
on ideas from multiple scattering theory [32]. In princi-
ple the idea is to replace the exact boundary condition
for the concentration c on the rough surface (in our case
the Dirichlet condition c = 0 on the rough surface) by an
effective boundary condition for the ensemble averaged
concentration 〈c〉rough on the underlying smooth surface
[33]. The subscript “rough” has been utilized so as not to
confuse this averaging procedure with the temporal av-
erage utilized earlier in the paper for the computation of
the fluid velocity. The ensemble averaged concentration
is defined as

〈c〉rough(~ξ ) =
1

N !

∫
dCN P (CN ) c(~ξ |N). (65)

The notation c(~ξ |N) emphasizes that the concentration

depends not only on the position ~ξ but also on the con-
figuration of the microvilli. The averaging procedure
is with respect to all possible arrangements of the mi-
crovilli on the smooth spherical surface. Each arrange-
ment of the microvilli is called a configuration denoted by

CN ≡ (~Y1, ~Y2, ..., ~YN ). Here ~Yi denotes the position of the
base of microvillus i with respect to a curvilinear coordi-
nate system on the smooth surface. The normalization
is defined by

N ! =

∫
dCN P (CN ) =

∫
d2~Y1 · · ·

∫
d2~YN P (CN ), (66)

with a configuration appearing in the ensemble with
probability P (CN ). The theory has been worked out in
detail for the case of Laplace’s equation [33], ∇2

ξc = 0,
which is the same as the steady-state diffusion equation.
The main result is an effective boundary condition for
the ensemble averaged concentration, which, for a uni-
form spatial distribution of microvilli takes the form

〈c〉rough|ξ=1 = −λ ∂〈c〉rough

∂ξ

∣∣∣∣
ξ=1

. (67)

Note that the effect of surface roughness is to introduce
a new lengthscale in the problem through the effective
boundary condition. The physical interpretation of λ is
a measure of the displacement of the 〈c〉rough = 0 surface
above the smooth surface, as shown in Fig. 10c. In other
words, if the Dirichlet boundary condition c = 0 applies
at the smooth surface ξ = 1, the effect of surface rough-
ness is to impose the condition 〈c〉rough = 0 at the surface
ξ = 1+λ. Introducing the fraction of the smooth surface

covered by the microvilli, ϕ = Nπ%2

4πR2 , the dimensionless
length

λ = (1 + k)ϕ
h

R
. (68)

Here k is a dimensionless number which in general de-
pends on ϕ. In the dilute limit, ϕ � 1, k depends only
on the shape of the microvilli.
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FIG. 11: (Color online) The first passage probability Π as a
function of the microvilli tip location ξ′. The effect of surface
roughness is to increase the first-passage probability. Heuris-
tic estimates for the magnitude of the effect are provided by
the dashed lines.

As an example to illustrate the potential effect of sur-
face roughness, consider the solution of Laplace’s equa-
tion ∇2

ξc = 0 for the dimensionless concentration c, with

the Dirichlet boundary condition c(ξ = 1) = 0. If the far
field boundary condition is a constant concentration c∞,
the solution is readily obtained as

c = c∞

(
1− 1

ξ

)
. (69)

The dimensionless Sherwood number is calculated as

ShD =
1

4πc∞

∫ π

0

sin θ dθ

∫ 2π

0

dφ
∂c

∂ξ

∣∣∣∣
ξ=1

= 1. (70)

To determine the effect of surface roughness, consider the
related problem for the ensemble averaged concentration
〈c〉rough, with the Dirichlet boundary condition replaced
by Eq. (67). We calculate the concentration

〈c〉rough = c∞

(
1− 1

1− λ
1

ξ

)
. (71)

The result for the Sherwood number is then

〈ShD〉rough =
1

1− λ. (72)

The increase of toxin current density impining on the
rough sphere should translate into an increase in the first-
passage probability. Unfortunately, a direct application
of these results to the first-passage problem is somewhat
problematic, since the effective boundary condition Eq.
(67) is specific to the homogeneous Laplace equation. For
the first-passage application we would need results for
Poisson’s equation (for the case of pure diffusion), and
the equation governing C0 (for the advection dominated
regime). An interesting avenue for future research is to
extend the work of [33] to the present first-passage for-
malism.

In what follows we consider a slightly more heuristic
approach to capturing the effect of surface roughness.
Recall that the effective boundary condition can be in-
terpreted as displacing the Dirichlet boundary condition
above the smooth surface. This suggests that we might
be able to capture the effect of surface roughness by in-
creasing the radius of the embryo and decreasing the
length of the microvilli.

Rrough = R+ λR (73)

hrough = h− λR (74)

Considering our earlier result for the diffusive first-
passage probability, ΠD = 1/ξ′, and recalling ξ′ = 1+ h

R ,
after rescaling we find

〈ΠD〉rough =
1

ξ′rough

=
(1 + λ)

ξ′
= (1 + λ) ΠD. (75)

This result is in agreement with our calculation of the
Sherwood number, which suggests enhancement by the
factor 1/(1−λ), with deviations at O(λ2). By performing
the same rescaling (see Fig. 11), a naive extension to our
result in the advection dominated regime suggests that

〈Π0〉rough ≈
(

3
2
3J

2Γ( 1
3 )β

2
3

)
g(µ′)(

ξ′

1+λ

)2 (
ξ′

1+λ − 1
)2 Pe−

2
3 +O(Pe−

4
3 ). (76)

To determine λ we first calculate the surface fraction
ϕ ≈ 0.47. This is not so small so as to safely rely on the
dilute results for k, so as a first approximation we con-

sider the numerical results derived at finite ϕ. Note that
the numerics are for the case of hemispherical microvilli
[33]. We find 1 + k ≈ 1.93 and λ ≈ 0.05.
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We caution the reader that the discussion above is
somehwat speculative, since the effective boundary con-
dition Eq. (67) is specific to the homogeneous Laplace
equation. An interesting avenue for future research is to
extend the work of [33] to the present first-passage for-
malism. This would entail deriving an effective bound-
ary condition similar to Eq. (67) for the inhomogeneous
equations governing the concentration. Multiple scatter-
ing mehtods have also been applied to the problem of
determining the disturbance in the flow field produced
by surface roughness elements [34]. The ensemble av-
eraged flow field could then be utilized as input for the
advection-diffusion equation to capture the effect of the
microvilli on modifying the flow in the vicinity of the em-
bryo surface. This is a significant task for future research.

VII. CONCLUSIONS

In this paper we considered a spherical embryo of ra-
dius R ∼ 40µm in a flow-field with characteristic veloc-
ity U0 ∼ R/τη as is typical for the smallest eddies in
a turbulent macroscale flow. The diffusion coefficient of
the toxin in the extracellular fluid is D ∼ 10−5 cm2 s−1.
The dimensionless Péclet number which characterizes the
competition between advection and diffusion is

Pe =
RU0

D
� 1. (77)

This means that relative to transport of the toxin in
the extracellular fluid, advection is much more impor-
tant than diffusion. In this regime of large Pe, a con-
centration boundary layer forms near the embryo. The
boundary layer length scales as

` = RPe−
1
3 . (78)

This gives a boundary layer of several microns in thick-
ness. Interestingly, this agrees quite well with the mi-
crovilli length, and would provide a physical reason for
a distribution of transporters localized on the tips of the
microvilli. At the tips of the microvilli, the toxin concen-
tration approaches the far-field value. Toxins released at
this height will be advected away from the embryo before
having a chance to diffuse to the surface and be internal-
ized. The major result of the paper, Eq. (62), is illus-
trated in Fig. 8. The argument is that the tip-localized
transporter distribution and the microvilli architecture
are evolutionarily adapted to probe the thickness of the
concentration boundary layer. The success and efficiency

of the multi-drug transporters relies crucially on the pres-
ence of fluid flow in the open ocean environment of the
sea urchin embryo. Ignorant of the biochemical details
of the transporter system, the physics governing mass
transport at large Péclet number provides a compelling
reason for the observed length of embryonic microvilli
during sea urchin development.

A number of simplifications have been made in the
present paper. For the purposes of building a tractable
model system which does not obscure the underlying
physics, many details of the sea urchin biology have been
stripped away, including the presence of the hyaline layer
surrounding the embryo and the fertilization envelope.
We have not considered how the microvilli will alter the
fluid flow in the vicinity of the embryo. Further work, in a
computational fluid dynamics framework, could address
these issues and incorporate a spatially varying toxin dif-
fusivity. Incorporating details of the chemical kinetics of
the transporter system would pose a challenging problem
of reaction, advection, and diffusion in a heterogeneous
media.

The major take home message from the paper on the
relationship between the length scale of surface rough-
ness elements and the mass transport problem is likely
applicable beyond the scope of sea urchin development.
Villi are ubiquitous structures in biology [35], and similar
ideas will carry over in other settings with a gradient in
fluid velocity. The design of a diverse variety of transport
and mechanosensory systems may be guided by similar
underlying principles [4], from toxin export by aquatic or-
ganisms residing in the benthic boundary layer [12, 36],
to mechanotransduction by epithelial cells in the kidney
[37].
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Appendix A: The Case of Pure Diffusion (Pe = 0)

This appendix outlines the solution for the first-
passage probability in the purely diffusive case, where
Pe = 0. Using the completeness relation for the delta
function in spherical polar coordinates

δ3(~ξ − ~ξ′) =
1

ξ2
δ(ξ − ξ′)

∞∑
`=0

∑̀
m=−`

Y ∗`m(θ′, φ′)Y`m(θ, φ) (A1)
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and inserting the expansion Eq. (4) into Eq. (3) yields the radial equation

d2a`m
dξ2

+
2

ξ

da`m
dξ
− `(`+ 1)

ξ2
a`m − γ2a`m = − 1

ξ2
δ(ξ − ξ′). (A2)

Here we have defined γ2 = s. Making the substitution a`m = b`m
(γξ)1/2

the radial equation becomes

ξ2 d2b`m
dξ2

+ ξ
db`m
dξ
−
[(

`+
1

2

)2

+ (γξ)2

]
b`m = −(γξ)

1
2 δ(ξ − ξ′). (A3)

As is evident from the form of the differential equation, the homogeneous solutions for the b`m are the modified Bessel
functions of order `+ 1

2 , denoted by I`+ 1
2
(γξ) and K`+ 1

2
(γξ). The solution to Eq. (A3) which is finite at infinity is

b`m(ξ, ξ′) = K`+ 1
2
(γξ>)[AI`+ 1

2
(γξ<) +BK`+ 1

2
(γξ<)]. (A4)

Here ξ< (ξ>) represents the smaller (larger) of ξ and ξ′. The absorbing boundary condition b`m = 0 at the surface of

the embryo ξ = 1 is satisfied by the choice B = −A
I
`+1

2
(γ)

K
`+1

2
(γ) . The remaining constant A = ( γξ′ )

1/2 is determined by

integrating Eq. (A3) from ξ = ξ′ − ε to ξ = ξ′ + ε and noting that the Wronskian of the modified Bessel functions is
given by

I`+ 1
2
(x)

dK`+ 1
2
(x)

dx
−

dI`+ 1
2
(x)

dx
K`+ 1

2
(x) = − 1

x
. (A5)

Hence the solution for the b`m is

b`m(ξ, ξ′) =

(
γ

ξ′

) 1
2

K`+ 1
2
(γξ>)

(
I`+ 1

2
(γξ<)−

I`+ 1
2
(γ)

K`+ 1
2
(γ)

K`+ 1
2
(γξ<)

)
. (A6)

We define the spherical modified Bessel functions i`(x) =√
π
2xI`+ 1

2
(x) and k`(x) =

√
2
πxK`+ 1

2
(x). Note that the

numerical factors in the definitions of i`(x) and k`(x)
differ [11]. Making this substitution above and recalling

the relation a`m = b`m
(γξ)1/2

, the solution to Eq. (A2) is

Eq. (5) from the main text,

a`m(ξ, ξ′) = γk`(γξ>)

[
i`(γξ<)− i`(γ)

k`(γ)
k`(γξ<)

]
. (A7)

To calculate the first passage probability

ΠD =

∫ ∞
0

dt

∫∫
~J · ~da (A8)

note that the current density ~J = −D~∇C and ~da =
−r̂ R2 sin θ dθ dφ. Moving to the dimensionless variables
introduced earlier the equation can be written as:

ΠD = lim
s→0

∫ ∞
0

e−sτ (τ) dτ = lim
s→0

̃(s) (A9)

(τ) =

∫ π

0

sin θ dθ

∫ 2π

0

dφ
∂c

∂ξ

∣∣∣∣
ξ=1

(A10)

This establishes that the first-passage probability can be
calculated from the Laplace transform of the current ̃(s)
by taking the limit that s→ 0. We calculate

̃(s) =

∞∑
`=0

∑̀
m=−`

γk`(γξ
′)

(
∂i`(γξ)

∂ξ
− i`(γ)

k`(γ)

∂k`(γξ)

∂ξ

)∣∣∣∣
ξ=1

Y ∗`m(θ′, φ′)

∫ π

0

sin θ dθ

∫ 2π

0

dφY`m(θ, φ). (A11)

As a result of the angular integration∫ π
0

sin θ dθ
∫ 2π

0
dφY`m(θ, φ) =

√
4πδ`,0δm,0 the only

nonzero term has ` = m = 0. Using the fact that

i0(x) = sinh(x)/x and k0(x) = e−x/x a short calculation
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gives

̃(s) =
e−γ(ξ′−1)

ξ′
. (A12)

Recalling that γ2 = s and taking the limit that s→ 0 of
the above expression yields the final result quoted in the
main text,

ΠD =
1

ξ′
. (A13)

Appendix B: The Case of Strong Advection (Pe � 1)

This appendix provides details necessary for the solu-
tion for the first-passage probability in the case of strong
advection, where Pe � 1. Defining a spherical polar co-
ordinate system with the x3-axis along the direction of
the ambient vorticity, the Cartesian components of the
antisymmetric part of the velocity gradient tensor take
the form Ωij = − 1

2εij3ω. The spherical polar components
are calculated as

 Ωrr Ωrθ Ωrφ
Ωθr Ωθθ Ωθφ
Ωφr Ωφθ Ωφφ

 =

 sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0

 0 −ω2 0
ω
2 0 0
0 0 0

 sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0


=

ω

2

 0 0 − sin θ
0 0 − cos θ

sin θ cos θ 0

 . (B1)

The spherical polar components of the symmetric part
of the velocity gradient tensor E can be calculated in a
similar fashion from the Cartesian components, which
satisfy Eij = Eji. Moving to a frame of reference that

is rotating with the embryo by making the replacement
φ → φ − Pe τ , the leading contributions to the time-
averaged velpocity components expressed in terms of the
radial variable ρ are:

〈∗uξ〉 =

(
15

2
ρ2 α

2
3 − 20ρ3 α+O

(
α

4
3

))
〈e33〉 (B2)

〈∗uθ〉 =

(
−15

4
ρα

1
3 +

15

2
ρ2 α

2
3 − 15ρ3 α+O

(
α

4
3

))
sin(2θ)〈e33〉 (B3)

〈∗uφ〉 = 0 (B4)
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