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To construct continuum stochastic growth equations for competitive non-equilibrium surface-
growth processes of the type RD+X that mixes random deposition (RD) with a correlated-growth
process X, we use a simplex decomposition of the height field. A distinction between growth processes
X that do and do not create voids in the bulk leads to the definition of the effective probability peff of
the process X that is a measurable property of the bulk morphology and depends on the activation

probability p of X in the competitive process RD+X. The bulk morphology is reflected in the surface
roughening via nonuniversal prefactors in the universal scaling of the surface width that scales in
peff . The equation and the resulting scaling are derived for X in either a Kardar-Parisi-Zhang or
Edwards-Wilkinson universality class in (1+1) dimensions, and illustrated by an example of X being
a ballistic deposition. We obtain full data collapse on its corresponding universal scaling function
for all p ∈ (0; 1]. We outline the generalizations to (1 + n) dimensions and to many-component
competitive growth processes.

PACS numbers: 05.10.-a, 89.75.Da, 02.50.Fz, 81.15.Aa, 89.20.-a

I. INTRODUCTION

Many dynamical complex physical systems in nature
are studied by their mapping onto a suitable nonequilib-
rium surface-growth problems. The dynamics of corre-
lation buildup in these physical systems, and their other
properties, can then be explored with the use of surface-
growth methodologies. Numerous examples of such stud-
ies, experimental as well as theoretical and computa-
tional, come from a variety of fields such as tumor-growth
processes [1] in cancer research; growth of cell colonies
[2] in biophysics; roughening of lipid bilayers [3] in soft-
matter bio-materials; dynamics of combustion fronts [5];
film-growth processes [6]; time-series and market price
analyses in econo-physics [7]; and, scalability and syn-
chronization of parallel-computing system [8, 9] in com-
puter science, to give representative examples.

Large-scale properties are described within a contin-
uum model by universal stochastic growth equations and
tested with simulation models. On the theory side, the
trouble is that simple discrete models, such as SOS, are
often not adequate to reproduce the complex physics of
observed surface phenomena, as they assume only one
universal process alone being responsible for surface for-
mation. Such an idealization does not reflect actual ex-
perimental settings where the observed surface phenom-
ena may involve contributions from several universal pro-
cesses. The continuum description of such a multicom-
ponent growth process has not yet been developed. Such
mixed-growth systems display many nontrivial properties
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[10–35].

A representative example comes from an applied model
in computer science [9] when the asynchronous dynamics
of conservative updates in a system of parallel proces-
sors is modeled as a virtual-time surface that represents
nonequilibrium processes in this system. When the load
per processor is minimal, this dynamics belongs to the
Kardar-Parisi-Zhang (KPZ) universality class [37]. How-
ever, when the load is increased to reflect real operations,
the realistic dynamics is a competitive growth process
that combines a universal KPZ process with a random de-
position (RD) process, i.e., is of the type RD+KPZ [22].
Consequently, in order to fully understand the statistics
of the updates and make quantitative predictions, it is
important to know how the nonuniversal properties of
the multi-component processes affect the universal scal-
ing of a RD+KPZ process. This is a still unsolved prob-
lem of nonequilibrium surface growth science. In applied
modeling, even if not explicitly assumed, competitive dy-
namics naturally arises. Studying these systems should
also contribute to the understanding of differences be-
tween the expected and the actual scaling of rough in-
terfaces, often encountered both in simulations and in
experiments.

By a competitive-growth process Y+X— alternatively
called a two-component system or a mixed-growth pro-
cess — we understand a dynamical process where process
Y alternates with process X in accordance with the rule
of the exclusive alternative: “either process Y (active
with probability q) or process X (active with probabil-
ity p),” is active. Here q + p = 1, and Y belongs to a
different universality class than X. It is understood that
in competitive surface-growth processes an event on the
surface is triggered by only one process at a time, even if
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both mechanisms X and Y are simultaneously present.

In this article we introduce a method by which a con-
tinuum stochastic growth equation can be constructed
for competitive growth processes. We investigate a con-
nection between surface roughening and the bulk mor-
phology formed during the deposition in the competitive
growth process RD+X, where X is a correlated growth
process of universal dynamics different from RD. This
connection has been already established in simulations
of competitive growth models [10] and of binary growth
of thin films [14], and for diffusion-limited-aggregation
models [36]. A new aspect of our study is to provide
a direct theoretical link between nonuniversal proper-
ties of process X, as read from the bulk, and the con-
tinuum equation that underlies the observed universal
scaling laws for the competitive RD+X processes. In
this work, we derive from first principles a continuum
equation to show that its model-dependent coefficients
do reflect the bulk structure. This will lead to a distinc-
tion between void-producing and simple desorption and
adsorption processes. As discussed later, this division
into subclasses is a necessary first step towards a theory
of many-component processes. In particular, it explains
variations in scale dilatations observed in RD+X mod-
els [17, 18, 21, 22, 28, 30–35]. In our analysis we use
as an example the universal RD+KPZ growth process in
(1+ 1) dimensions, and generalize our approach to other
processes in (1 + n) dimensions.

This article is organized as follows. Scaling of the in-
terface width in competitive RD+X models is outlined
in Sec. II, where we show that the full data collapse
scaling can be obtained in a geometric scaling given by
Eqs. (2)-(3). This type of scaling was heuristically pro-
posed in Ref. [33] and its explicit form was derived in
Ref. [34]. Geometric scaling confirms that the RD+X
systems are in the universality class of process X [30],
but, such data collapse is not a dynamic finite-size scal-
ing. In the remaining part of Sec. II we focus on dy-
namic scaling that provides a connection with stochastic
dynamics as described by a continuum-growth equation.
In Sec. III, where we define the adsorption-bulk-compact
and the dense-or-lace-bulk processes, we use a concept of
simplectic decomposition to derive from first principles
the stochastic growth equation for simple RD+X pro-
cesses. Hence, we find a connection between the bulk
morphology and the surface roughening for these pro-
cesses. Results of Sec. III are discussed in Sec. IV, where
we demonstrate by examples that in RD+X processes the
nonuniversal prefactors in Family-Vicsek universal scal-
ing function are nontrivial and have connection with the
bulk morphology. In Sec. IV we also give the extension
of the approach introduced in Sec. III to (1 + n) dimen-
sional models of two-component processes, outline a pos-
sible generalization to many-component competitive pro-
cesses, and discuss further developments. Conclusions
are summarized in Sec. V.
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FIG. 1: (Color on line) Typical time evolution of the inter-
face width w(t) in a competitive process RD+X for selected
system sizes L and activation probabilities p of process X. (a)
Synthetic data from Eq. (1) when process X is in the KPZ
universality class. (b) The collapse of the data in (a) that
is produced by the geometric scaling (x, y) → (x′, y′) given
by Eqs. (2)-(3) (shown in the figure). Here, β1 = 1/2 and
β2 = 1/3.

II. SCALING OF THE INTERFACE WIDTH

Time-evolution of the correlation length is reflected in
the interface width w(t) of the growing surface. Both
the correlation length and w(t) have the same scaling
properties. In SOS models of surfaces growing on a
substrate of L sites, w(t) is measured as: 〈w2(t)〉 =

〈L−1
∑k=L

k=1 [hk(t) − h̄(t)]2〉, where hk(t) is the column
height at site k at time t, and h̄(t) is its mean over L
sites. The time t is measured as a number of deposited
monolayers. The angular brackets denote configurational
averages. For brevity of notation, we set w ≡

√

〈w2〉.
In competitive growth processes that mix correlated-

growth process X with randomness, i.e., of the type
RD+X, results of simulations with a flat-substrate initial
condition at t = 0 can be summarized by the following
two-parameter family of curves [22]:

w(t;L, p) =







c1
√
t , t ∈ [0; t1(p)]

c2t
β2 , t ∈ (t1(p); t2(L, p))

c3L
α2 , t ∈ [t2(L, p); +∞],

(1)

where p and L are parameters; and, c1, c2, and c3 are
constants. The effect of the parameter p on the time-
evolution of w(t;L, p=1) is a nonuniversal dilatation of
time and length scales, as discussed in Ref. [30]. Be-
cause of these dilatations the times t1(p), when the ini-
tial RD transients terminate, and the times t2(p), when
the saturation phases begin, have different values for dif-
ferent curves w(t;L, p). In Eq. (1) β2 and α2 are uni-
versal scaling exponents (the growth and the roughness
exponents, respectively) characteristic of the universal-
ity class of process X . For processes RD+KPZ (when
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α = α2 = 1/2 and β = β2 = 1/3) the family given
by Eq. (1) is illustrated in Fig. 1a, where y = logw is
plotted versus x = log t. In the (x, y)-plane, the fam-
ily in Eq. (1) can be collapsed onto one curve shown
in Fig. 1b by the means of the shift-and-scale operator
Ĝ : (x, y) −→ (x′, y′) [34],

x → x′ =
x− x1

x2 − x1

1

β2
, (2)

y → y′ =
y − y1
y2 − y1

, (3)

where x′ = log t′ and y′ = logw′. In Eqs. (2)-(3) the
pairs of numbers x1 = log t1(p) and y1 = logw1(p), and,
x2 = log t2(L, p) and y2 = logw2(L, p), have different val-
ues for each curve w(t;L, p). Explicitly, w1 = w(t1(p))

and w2 = w(t2(L, p)) by Eq. (1). Operator Ĝ shifts
all curves in Eq. (1) to one position where all cross-
over points (t×, wsat) to saturation are mapped onto

one point (1/β2, 1). Subsequently, Ĝ scales the length

(x2 − x1)
√

1 + 1/β2
2 of the correlated-growth phase in

(x, y)-plane for each curve to the length of
√

1 + 1/β2
2 .

The full data collapse obtained by Ĝ is possible because
each curve in Eq. (1) has one universal footprint, where
the initial RD transient is followed by a specific univer-
sal correlation phase. Such a collapse of the data in the
(x, y)-plane by geometric scaling is an illustration of the
previously proven fact [30] that competitive-growth pro-
cesses RD+X are in the universality class of process X.
It must be stressed, however, that this geometric scal-
ing expressed by Ĝ does not give the universal dynamic
scaling function that would explain the universal shape
of the curve in Fig. 1b in terms of finite-size scaling of
the corresponding stochastic dynamics as described by
the continuum model and, possibly, nonuniversal correc-
tions to scaling when p 6= 1. Manipulation of Eqs. (2)-
(3) to obtain explicitly w(t) leads back to Eq. (1); thus,
Eqs. (2)-(3) do not contain any new physical information
in addition to that already present in Eq. (1). In sum-
mary, to this point the geometric scaling lacks physical
meaning and does not connect with the Family-Vicsek
dynamic scaling.
A dynamic scaling hypothesis for competitive RD+X

processes [30] states that if a correlated growth X occurs
with a constant probability p, its continuum equation
must be invariant under the scaling

x → x , h → h/g(p) , t → t/f(p) , (4)

where g(p) and f(p) are arbitrary suitable functions of
p ∈ (0; 1]. This invariance implies that f(p) = g2(p).
When X=KPZ, the dynamic scaling hypothesis leads to
the KPZ equation [38] for the RD+KPZ mix [30]:

ht = ν0f(p)hxx + (λ0/2)f
3/2(p)h2

x + η(x, t) , (5)

where h ≡ h(x, t) is the height field; x and t are the
spacial and time coordinates, respectively; subscripts de-
note partial derivatives; η(x, t) is the white noise; and,

ν0 and λ0 are constants. When λ0 = 0, Eq. (5) is the
Edwards-Wilkinson (EW) equation [39] when X=EW.
When ν0 = λ0 = 0, Eq. (5) defines universal RD dy-
namics.
Many simulation models of RD+EW and RD+KPZ

growth processes [21, 30–32] suggest g(p) = pδ in Eq. (4),
which leads to the Family-Vicsek universal scaling [40] of
the average surface width w(p, t) [30]:

w(p, t) =
Lα

pδ
F

(

p2δ
t

Lz

)

. (6)

For substrates of size L, F (y) describes two limit-regimes
of evolution: F (y) ∼ yα/z if y ≪ 1 (growth); and,
F (y) ∼ const if y ≫ 1 (saturation). In Eq. (6), α and
z are the universal roughness and dynamic exponents,
respectively, of the universality class of the correlated-
growth process X. The scale-dilatation exponent δ in the
scaling prefactors in Eq. (6), however, is nonuniversal.
It has been observed that in some models δ ≈ 1 across
universality classes, and in some other models 0 < δ / 1
within a single universality class [22, 28, 30]. Also, there
are some models where the prefactors in Eq. (6) do not
at all obey a power law in p [32, 41]. In the next section,
we shall establish that this variation is not accidental in
flux-conserving models, but rather reflects the properties
of the bulk of the deposited material.

III. AB INITIO CONTINUUM EQUATION BY

SIMPLECTIC DECOMPOSITION

Consider aggregations where identical particles fall
onto a substrate of L sites. On the substrate, the incom-
ing particles may be accepted in accordance with a rule
that generates correlations among the sites, i.e., in accor-
dance to process X. It is understood here that the flux
of the incoming particles is uniform and time indepen-
dent, i.e., the average rate at which the particles arrive at
the substrate does not vary with time and does not vary
with the position along the substrate. The correlated-
growth X occurs with probability p, and competes with
RD growth that occurs with probability q = 1 − p. It
is understood here that the probability p remains con-
stant for the entire duration of the process RD+X, i.e.,
the average frequency of process X does not change with
time and does not depend on the position of the site on
the substrate. When a particle is accepted at a site, the
site increases its height by ∆h. If, e.g., component 1 is
RD, and component 2 is a correlated-growth in the KPZ
universality class, their corresponding growth equations
are

h1,t = η1(x, t) , (7)

h2,t = ν0h2,xx + (λ0/2)h
2
2,x + η2(x, t) , (8)

where hn(x, t), n = 1, 2, is the column height at x after
time t when the component n acts alone. Assume for sim-
plicity that the noise terms are of the same strength, i.e.,
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η ≡ η1 = η2. In two-component growth, when both com-
ponents act simultaneously together, the column height
h(x, t) is incremented due to either of the components
with their corresponding probabilities p̃ and q̃, p̃+ q̃ = 1:

∆h(x, t) = p̃∆h2(x, t) + q̃∆h1(x, t) . (9)

Here, probability p̃ (or q̃) is the fraction of contributions
to h from component 2 (or 1). For some processes this
fraction is identical to a fraction of times when h(x) is in-
cremented due to component 2 (or 1) for the times from
0 to t. However, as explained later, this is not so for
all processes. In Eq. (9), ∆hn is understood as “being
incremented due to the process n,” n = 1, 2. In this
statistical sense, Eq. (9) expresses a simplectic decompo-
sition of ∆h(x, t) into its vertex-components ∆hn(x, t).
Dividing Eq. (9) by ∆t, and taking the limit ∆t → 0,
gives the equation for time rates, ht = p̃h2,t + q̃h1,t, to
which we substitute Eqs. (7)-(8) to obtain:

ht = ν0p̃h2,xx + (λ0/2)p̃h
2
2,x + (p̃+ q̃)η(x, t) . (10)

In Eq. (10), h(x, t) is the column height that rises at x
as the result of two processes acting simultaneously from
the beginning to time t. Here, h2(x, t) is the part of
h(x, t) that was created by the component 2 in this time.
The other part was created by component 1. In other
words, h2(x, t) is so far an unknown fraction of h(x, t).
To find a relation between h and h2, one must consider
nonuniversal properties of aggregation processes.
We distinguish between the following two groups of

surface growths processes. In one group we place all sim-
ple adsorption processes with conserved flux that do not
create voids in the bulk of the deposited material. We
call this group adsorption-bulk-compact (ABC) growths.
For example, a simple random deposition or random de-
position with surface relaxation fall into the ABC cate-
gory. The other group, which we call dense-or-lace-bulk
(DOLB) growths, contains processes that are not ABC-
type. The DOLB group includes desorption processes
that may lead to a dense bulk as well as adsorptions that
lead to the formation of voids. The only type of desorp-
tion processes studied here are ones due to local spon-
taneous desorption at the surface, not desorption pro-
cesses where an incoming particle strikes the surface and
causes desorption. The latter type of desorption process
would have shadowing effects, and hence would be ex-
tremely dependent on the direction of the incoming parti-
cles. Note, the DOLB category contains flux-conserving
as well as flux-non-conserving processes. For example,
ballistic deposition and deposition to local interface min-
ima are both in the DOLB group. Note that all RD
universal processes are ABC-growth processes. As we
show in the next paragraph, when component 2 is of
the ABC-type, probabilities p̃ and q̃ in Eq. (9) express
fractional contributions to h in terms of times, and then
h2(x, t) = ph(x, t). This is not true when component 2 is
a DOLB growth.
Consider a discrete representation of events at coor-

dinate x. Suppose, there are t deposition events in to-

tal, with t1 events due to component 1, and t2 events
due to component 2, t = t1 + t2. In ABC growth, af-
ter t events, the total column height is h = t∆h, where
contributions from components 1 and 2 are, respectively,
h1 = t1∆h and h2 = t2∆h. Thus, h1/h = t1/t = q and
h2/h = t2/t = p. Therefore, in ABC growth h2 = ph,
and in Eqs. (9)-(10) we can identify p̃ = p and q̃ = q.

Next consider that the component 2 is a DOLB growth
that creates voids. Now, an individual deposition event
due to component 2 not only increases h by ∆h, but
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FIG. 2: (Color on line) Bulk sections obtained in Monte Carlo
simulations of surfaces, generated by: (a) random deposition
(RD); (b) ballistic deposition (BD) that creates the bulk com-
pactness c = 0.468; and, (c) the competitive RD+BD process
when p = q = 1/2. Coloring indicates time intervals. In
(c), within a time interval, coloring is used to differentiate
between deposits created by RD and those created by BD.
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may also result in the creation of voids (as illustrated
in Fig. 2b, an example of ballistic deposition). The net
effect is as though component 2 deposited ∆h and the
voids. Therefore, in t2 events, its contribution to the
column height is h2 = (t2 +m)∆h, where m∆h reflects
the increase in the field height due to the presence of
voids. The component 1 is RD, i.e., ABC-type, and h1 =
t1∆h. After t events, the net column height is h = h1 +
h2 = (t + m)∆h. Thus, h1/h = t1/(t + m) < t1/t = q
and h2/h = (t2 + m)/(t + m) > t2/t = p. The explicit
form of these mutually complementary fractions, hn/h
for n = 1, 2, allows them to be directly measured from
the bulk. They are, in fact, the effective probabilities

qeff ≡ h1/h and peff ≡ h2/h (11)

of deposition events due to components 1 and 2, respec-
tively, as they would result from measuring the column
height.
For some types of two-component growth with RD, the

probability peff can be expressed approximately as the
power law peff = pδ [41], where the ‘best’ exponent δ can
be estimated heuristically. For DOLB-type growth pro-
cesses that produce voids, the exponent is δ < 1 because
peff > p. When the component 2 is a DOLB growth with
desorption, in the above reasoning one should change
m → −m. This will give qeff > q and peff < p, and
peff = pδ with δ > 1. The value of δ depends on nonuni-
versal particulars of the deposition rule of the component
process 2. Therefore, in a DOLB growth h2 = peffh, and
in Eqs. (9)-(10) p̃ = peff and q̃ = qeff .
In general, relations h2(x, t) = peffh(x, t) and p̃ ≡ peff

hold for all processes. When the correlation component is
an ABC growth, its effective probability is identical with
its frequency: peff = p, provided that column-height in-
crements are identical for the both processes 1 and 2.
Thus, when process X is in the KPZ universality class,
Eq. (10) gives the exact stochastic dynamics for the com-
petitive RD+X processes:

ht = ν0p
2
effhxx + (λ0/2)p

3
effh

2
x + η(x, t) . (12)

When the correlation component X is a DOLB growth,
and when the effective probability is well approximated
by a power law pδ, the above result can be summa-
rized as peff = pδ, where δ = 1 for ABC growths, and
δ 6= 1 for DOLB growths. This result is combined with
Eq. (12) to give the approximate continuum equation for
the RD+KPZ mix:

ht = ν0p
2δhxx + (λ0/2)p

3δh2
x + η(x, t) . (13)

When in Eq. (8) λ0 ≡ 0, the analogous reasoning gives
the exact result for RD+EW dynamics:

ht = ν0p
2
effhxx + η(x, t) . (14)

In Eq. (14), we can explicitly set peff = p because all pro-
cesses in the Edwards-Wilkinson universality class are
ABC-type processes. When the flux particles are identi-
cal, the exponent δ = 1 is exact.
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FIG. 3: (Color on line) Properties of the bulk formed in com-
petitive process RD+X, where X is an adsorption process that
creates voids. When X acts alone, i.e., in the absence of RD,
it produces a bulk with compactness c. (a) Compactness of
the bulk c(p) as a function of the activation probability (i.e.,
frequency) p of X, plotted for selected values of c. (b) The
effective probability peff(p) of X for selected values of c.

IV. DISCUSSION

Both results, Eqs. (12)-(13) and Eq. (14), are in ac-
cord with our former derivation that lead to Eq. (5) [30].
Matching Eq. (13) with Eq. (5) gives f(p) = p2δ, which
form of f(p) was used formerly to derive the approxi-
mate prefactors in Eq. (6). The inverse of the scaling
(4) when applied to Eqs. (13)-(14) transforms them to
continuum equations for a “pure” correlated processes of
p = 1. Explicitly, it collapses all evolution curves w(p, t)
(for all L and p) either onto w(1, t) or onto a neighbor-
hood of w(1, t) [30], following Eq. (6), provided the ef-
fective probabilities peff can be well approximated by the
power-law pδ. When such a fit is not possible, Eq. (6) is
still obeyed but then the scaling prefactors must be ex-
pressed directly in terms of effective probabilities. This
is because the factor pδ in the coefficients of Eq. (13) is
only a fit to the effective probability peff .

Effective probabilities, defined by Eq. (11), are func-
tions of the activation probability p of process X, i.e.,
the average frequency of process X in the mix RD+X.
Properties of the bulk morphology created by RD+X can
be equivalently expressed either in terms of peff(p) or in
terms of qeff(q), because of the identities peff + qeff = 1
and p+ q = 1. Effective probability peff of X in the mix
RD+X can be expressed in various equivalent functional
forms that may involve either the average compactness
c(p) [or the number density of voids v(p)] of the bulk cre-
ated by the mix RD+X or the average compactness c (or
the number density v of voids) of the bulk created by the
process X acting alone (i.e., in the absence of RD when
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p = 1):

peff(p) =
h2

h
=

m+ t2
m+ t

= v(p) + pc(p) = 1− qc(p), (15)

where c(p) = t/(m + t), v(p) = m/(m + t), and c(p) +
v(p) = 1;

peff(p) =
h2

h
=

m+ t2
m+ t

=
p

c+ pv
=

p

p+ qc
, (16)

where c = t2/h2, v = m/h2, p = t2/t, and c + v = 1.
Combining Eq. (15) with Eq. (16) gives the compactness
c(p) of the RD+X bulk as a function of the activation
probability p of process X:

c(p) =
c

c+ pv
. (17)

Equations (15), (16), and (17) show that c(p) and peff(p)
can be easily measured in experiment as well as in simu-
lations: All that is needed is to measure the average den-
sity of voids in a sample cross section of the bulk when
the correlated process X acts alone (i.e., in the absence
of RD when p = 1). Equations (16) and (17), plotted for
several values of c in Fig. 3, show that neither the com-
pactness c(p) nor the effective probability peff(p) follow
a power law in p when c < 1.
The dynamic scaling hypothesis for RD+X processes,

Eq. (4), can be reinstated by expressing f(p) explicitly
in terms of peff : f(peff) = g2(peff), since Eq. (16) can
be inverted to give p(peff). Repeating the steps outlined
in Ref. [30] gives the following generalization of Family-
Vicsek scaling for the surface roughness:

w2(p, t) =
L2α

f(peff)
FRD+X

(

f(peff)
t

Lz

)

, (18)

where FRD+X(·) describes the three regimes of the evo-
lution seen in Fig. 1b. The effect of the nonuniversal
prefactors f(p) in Eq. (18) is a dilatation of length and
time scales, as discussed in Ref. [30]. The physical mean-
ing of p is that of a noise-tuning parameter.
In Fig. 4 we give an example of the exact scaling where

nonuniversal prefactors in Eq. (6) are directly expressed

by peff via the substitution pδ → pδeff(p) =
√

f(p) for
the RD+BD model when ballistic deposition (BD) is the
NN sticking rule [42]. Here, the effective probability de-
pends on both p and the mean compactness c(p) of the
bulk formed in the RD+BD process, given by Eq. (15)
[41]. The excellent data collapse in the full range of
p ∈ (0; 1], seen in Fig. 4, can be contrasted with Fig. 5 of
Ref. [30] that shows only an approximate data collapse
for the same system with the best fit exponent δ ≈ 0.41
in Eq. (6). It needs to be said explicitly that the scal-
ing where δ = 1/2 in Eq. (6), proposed in Refs.[26, 31]
for RD+BD models, does not produce data collapse at
all. The RD+BD model when BD is the NNN sticking
rule [42] provides an example where peff(p), and thus the
nonuniversal prefactors f(p) and g(p) in Family-Vicsek

universal scaling, cannot be expressed by a power-law pδ

[32]. In this system the surface roughening obeys power
laws in effective probability that incorporates either the
compactness or the void density of the bulk, resulting in
excellent data collapse of w(p, t), similar to that seen in
Fig. 4 [41].
The approach introduced here by the example of a

KPZ processes, can be applied to a broad range of
stochastic growth models RD+X, where component 2 can
be any isotropic growth in (1 + n) dimensions:

h2,t(~x, t) = D̂(h2) + η2(~x, t) , (19)

where ~x is n dimensional, and the operator D̂ represents
only local interactions [42]. In the general case, Eq. (10)
is written as ht = peffh2,t + qeffh1,t, and combined with
Eqs. (7) and (19), to find for the competitive growth

ht(~x, t) = peffD̂(peffh) + η(~x, t) , (20)

where η = (1 − peff)η1 + peffη2, and the noise strengths
may be different. Eqs. (19)-(20) represent the same uni-
versality class since the multiplication by peff does not
modify local interactions: peff affects the noise strength
and the gradient of the height field, but does not gen-
erate any new terms other than those already given
by operator D̂. Hence, if a correlated growth belongs
to a given universality class, its mix with RD will re-
main in the same universality class. Elementary calcu-
lations show that Eq. (20) is invariant under the scaling
g(p)h(~x, t) = h′(~x, t′ = f(p)t). If g(p) = peff(p) and
f(p) = p2eff(p), and if the noise strengths are the same,
this scaling maps the universal dynamics (20) of RD+X
onto the universal dynamics of X. In this case the in-
variance implies g(p)w(p, t) = w′(f(p)t), where w′(·) has
universal scaling properties of the process X. When X is
either in the KPZ or in the EW universality class, and if
additionally peff ≈ pδ, we recover Eq. (6).
When both the RD and the correlation component 2

have deposits of unit height, when peff ≈ pδ, we have

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

ln[f(p)t/L
z
]

-8

-7

-6

-5

-4

-3

-2

-1

ln
[f(

p)
w

2 (t
)/

L2α
] p= 0.1

p= 0.2
p= 0.3
p= 0.4
p= 0.5
p= 0.6
p= 0.7
p= 0.8
p= 0.9
p= 1.0

RD + BD

f(p)= peff
2δ

(p)

2δ= 1.765

peff= 1-qc(p)

q= 1-p

FIG. 4: (color on line) Scaled time-evolution w2(p, t) in the
RD+BD model. In this example, the scaling function f(p) =
g2(p) explicitly incorporates the compactness c(p) of the bulk
formed in the RD+BD process. Here, L = 500, 2α = 1, and
averaging was performed over 400 surface configurations, i.e.,
independent simulations.
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δ = 1 if component 2 is of the ABC-type; and, δ 6= 1 if
it is of the DOLB-type. In the latter case, the value
of the exponent δ is specific to component 2. When
peff incorporates explicitly bulk properties, the scaling is
g(p) = pδeff(p), where the new scale-dilatation exponent δ
is obtained from the slope of lnw2(p) plotted vs ln peff(p)
at saturation. In DOLB growth with voids, peff can be
determined by measuring the mean density of voids in
the bulk (Figs. 2 and 4). Similarly, in DOLB growth
with desorption, peff is connected to the mean fraction of
the removed material (or flux) [41].

The analysis presented here explains scaling results of
the following mixed-growth models in (1+1) dimensions.
Model A [17, 21, 30]: component 2 is RD with surface re-
laxation. Model B [30]: component 2 simulates a deposi-
tion of a sticky non-granular material of variable droplet
size. Model C [18, 21, 30]: component 2 is the NN sticking
rule of BD. Model D [22, 30]: component 2 is a deposition
of Poisson-random numbers to the local surface minima.
Models A and B are ABC growths in the EW universal-
ity class, where peff = p and δ = 1 (Fig. 5). Models C

and D belong to the KPZ universality class. Model C is
an example of DOLB growth with voids, with a 53.2%
void density in the bulk when p = 1, and in this case
δ ≈ 0.41 < 1. Model D is a DOLB-type growth that
produces a compact bulk but component 2 is flux non-
conserving, and here δ ≈ 1. Extensions of Models A and
C to (1 + n) dimensions [21], n = 2, 3, yield results that
conform to our theoretical predictions of peff ≈ pδ with
δ 6= 1 for mixing RD with DOLB processes, and δ = 1
for mixing RD with ABC processes. Additional exam-
ples include cases [28] when component 2 is a restricted
Kim-Kosterlitz solid-on-solid model [43] (where RD+X is
in KPZ universality class), and when it simulates a con-
served restricted SOS growth of Kim et al [44]. In the
latter case the process RD+X is in the Villain-Lai-Das
Sarma universality class [24, 45].

An interesting lattice simulation model has been re-
cently considered by Banerjee et al [35] in an attempt
to describe a realistic sedimentation. The Banerjee et

al model is a competitive growth process that has three
component processes: one RD process and two DOLB
processes, where one DOLB process is BD with the NN
sticking rule and the other DOLB process is BD with the
NNN sticking rule. In the language of our study, the over-
all process is the RD+X process, where X=X1+X2 and,
as the convex linear combination of two KPZ processes,
X is in KPZ universality class. Accordingly, this system
should obey the scaling law of Eq. (18) in the effective
probability of the combined process X. Time-evolution
plots of the surface roughness in Ref. [35] suggest such
scaling.

The extension of the approach presented here to other
competitive growth processes may provide a tool to un-
derstand the observed dynamics of surface growth. Re-
alistic systems may involve many component-processes,
some of which may be dominant. Within our formalism
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α
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L=512
L=1024

1 10

1/p
δ

0.1

1.0

w
/L

α 

L=100
L=500
L=1000

1

1/p
δ

1w
/L

α

L=128
L=512
L=1024

1 10

1/p
δ

1

10

w
/L

α 

L=2000
L=1000
L=100

(a)

(d)(c)

(b)

δ = 1

δ ≅  0.41

δ = 1

δ ≅ 1

2α = 0.99

2α = 0.93 2α = 0.9

2α = 0.95
Model A Model B

Model DModel C

ABC

DOLB

ABC

EWEW

KPZKPZ

DOLB

FIG. 5: Scaled widths at saturation w vs the parameter 1/pδ :
(a) and (b) are for Models A and B, respectively; (c) and (d)
are for Models C and D, respectively. Reference lines have
slope 1. Data are scaled with the α values shown.

a departure point may be a generalization of Eq. (9):

∆h(~x, t) =
∑

k

p
(k)
eff ∆h(k)(~x, t) , (21)

where the summation is over all contributing processes,
and ∆h(k) is the column-height increment due to the kth

process. In a first approximation, component processes
are not explicitly correlated. Each process is encoun-
tered with the activation probability or frequency pk,
∑

k pk = 1, and contributes to the growth with an ef-

fective probability p
(k)
eff ,

∑

k p
(k)
eff = 1. In the trivial case

when all components are ABC-type models with the unit

mean deposit height we have p
(k)
eff = pk. For a DOLB-type

growth the p
(k)
eff will have to be determined. Depending

on the model, p
(k)
eff can be estimated by analyzing the

growth when process k acts alone, and measuring either
the mean bulk density or the mean fraction of the de-
tached material or both [41]. Simplectic decompositions
like the one proposed in Eq. (21) have a long history of
applications in many diverse fields and are the precursors
of probability measures.
Stochastic theory of multi-component competitive far-

from-equilibrium surface-growth processes is a newly
emerging topic in statistical physics. During the re-
cent two decades, in addition to model-specific simulation
studies of two-component (either RD+EW or RD+KPZ
lattice) growth models, a special case of RD+RD has
been considered both in a theoretical mean-field ap-
proach and in simulations [46]. The absence of a con-
sistent continuum theory for the RD+X mix hindered
scale-invariance studies of more complex systems such
as EW+EW or KPZ+KPZ or EW+KPZ, or more gen-
eral three-component systems (such as, e.g., those in
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Ref. [35]). Understanding the dynamics of real physi-
cal systems calls for more realistic models that would
go beyond a one-process theory of kinetic roughening.
For example, in realistic modeling of ion-bombardment
experiment, where shadowing effects matter, the mech-
anism of ion desorption must be (at least) accompanied
by ion diffusion along the substrate as well as by random
deposition. The construction of a continuum stochastic
growth equation, outlined in this article, will be helpful
for future studies of two- and three-component competi-
tive non-equilibrium growth systems.

V. CONCLUSION

In summary, we have derived continuum stochastic-
growth equations and the resulting scaling for competi-
tive RD+X growth processes. The RD+X growth pro-
cesses show that model-dependent prefactors in universal
scaling laws can be linked with the bulk morphology and
determined from bulk structures. This necessitates the
distinction between the adsorption-bulk-compact (ABC)

and the dense-or-lace-bulk (DOLB) growth processes in
dynamic-scaling analysis of competitive mixed-growth
models. For competitive systems, the activation prob-
ability of process X, i.e., its frequency in the RD+X
mix, alone does not provide sufficient information to cor-
rectly describe their dynamics. The essential physical
non-universal parameter here is the effective probability,
peff , of X. The bulk morphology allows one to obtain peff
for either experimental or computational studies. Fur-
thermore, peff is parameterized by the activation proba-
bility.
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