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We study the dynamics of non-aligning, non-interacting self-propelled particles confined to a
box in two dimensions. In the strong confinement limit, when the persistence length of the active
particles is much larger than the size of the box, particles stay on the boundary and align with
the local boundary normal. It is then possible to derive the steady-state density on the boundary
for arbitrary box shapes. In non-convex boxes, the non-uniqueness of the boundary normal results
in hysteretic dynamics and the density is non-local, i.e. it depends on the global geometry of the
box. These findings establish a general connection between the geometry of a confining box and the
behavior of an ideal active gas it confines, thus providing a powerful tool to understand and design
such confinements.

I. INTRODUCTION

Active systems are non-equilibrium systems whose
constituent units consume energy to generate motion or
mechanical forces. Originally inspired by biology, e.g.
bacterial colonies [1, 2], healing tissues [3, 4], or flock-
ing animals [5], the field now encompasses a variety of
artificial systems that share this ability to inject energy
at the microscopic level and emulate the unique prop-
erties of their biological counterparts, from flocking to
spontaneous aggregation [6–15]. Beyond biomimetism,
the study of active matter has led to new applications
not found in nature, such as bacteria-powered micro-
gears [16–18].

One distinctive yet relatively unexplored property of
active systems is their sensitivity to boundary effects.
Striking macroscopic effects may be obtained by pattern-
ing confining walls on the micro-scale, as exemplified by
the rectification phenomenon [19–24]. More generally,
any real-world system must have boundaries, and un-
derstanding their role is paramount to designing active
matter based devices. Whether the boundaries are only
present by necessity or designed as an integral compo-
nent of an active system, it is important to note that
boundary effects are not merely size effects: the exact
shape of the boundary is crucial. However, most existing
studies are only concerned with one among a handful of
specific geometries [21, 25–38], and little is known about
how the shape of a boundary affects the behavior of the
active system it confines.

In this paper, we focus on non-aligning self-propelled
particles, a model that has recently attracted attention
as a minimal model for self-propelled matter [28, 39–46].
In particular, we neglect alignment interactions such as
those that would arise from hydrodynamic couplings in
a fluid environment. Our results thus apply to systems
in which such coupling torques are weak. Furthermore,
we restrict ourselves to the “ideal active gas” limit in
which particles interact with the wall, but not with each
other [28]. We recently showed, for such a system, an
analytic relationship between the density and pressure

of the active gas and the shape of the box for a gen-
eral class of box shapes [47]. In the strong confinement
regime, where the persistence length of the active parti-
cles is much larger than the size of the box, and when the
box is convex, we showed that particles never leave the
boundary and always align their self-propulsion direction
with the local boundary normal. Furthermore, the den-
sity and the pressure on the boundary are proportional
to the local boundary curvature. It is then possible to
predict the density and pressure on the boundary of any
convex box, regardless of the details of its shape. How-
ever, existing applications suggest that active devices are
most effective when their boundaries have both convex
and concave regions.

In this paper, we extend the theoretical framework in-
troduced in Ref. [47] to the case of non-convex boxes.
The presence of concave regions is a significant compli-
cation, as it implies that the same normal is found at
multiple locations on the boundary, leading to multi-
stability and hysteresis. Furthermore, particles within
concave regions undergo complex, accelerated dynamics
that sometimes launches them off the wall. Nonetheless,
we demonstrate that in the strong confinement regime:
(i) this complex dynamics can be understood in terms
of non-local “jumps”, (ii) the density of particles within
concave regions vanishes and (iii) it is possible to predict
the density everywhere on the boundary. We present a
general algorithm to obtain this relationship and we test
our predictions against the results of molecular dynamics
simulations in a family of boxes with both concave and
convex regions. Finally, we discuss the role of interac-
tions and the limits of the ideal gas approximation.

The paper is arranged as follows. Section II intro-
duces the model. Section III explores the particle dy-
namics on the boundary and shows how the accelerated
dynamics over concave regions can be recast as instanta-
neous jumps between disparate convex regions (see also
appendices A and B). Section IV presents a theory for
the density on the boundary in the strong confinement
regime, and shows how to obtain the steady-state den-
sity. Section V presents the results of molecular dynamics
simulations and compares them against the predictions
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FIG. 1. (Color online) Notations for a particle at the wall.
The particle is characterized by its arclength s along the wall
and its orientation ν̂ = cos θ x̂ + sin θ ŷ. The local normal to
the wall is n̂ = cosψ x̂ + sinψ ŷ.

of sections III and IV. Section VI discusses the scope of
our model and the role of convexity in confined active
gases.

II. MODEL

We consider a collection of confined, overdamped,
self-propelled particles in two dimensions. Each par-
ticle is characterized by its position r and orientation
ν̂ = cos θ x̂ + sin θ ŷ. The dynamics obeys the following
equations of motion:

ṙ = v0ν̂ + µFw , θ̇ = ξ(t) (1)

where v0 is the self-propulsion speed, µ is the mobility, ξ
is a white Gaussian noise with zero mean and correlations
〈ξ(t)ξ(t′)〉 = 2Drδ(t − t′), and over-dots indicate time
derivatives. The medium on which the self-propulsion
force is exerted is treated as a momentum sink; in par-
ticular, we neglect hydrodynamic interactions. The con-
fining walls are hard and frictionless; whenever the ve-
locity of a particle is such that it would drive the particle
into the wall, its component normal to the wall is can-
celled by the wall force. More precisely, the wall force
Fw is zero if the particle is not at the wall, or if it
is at the wall but pointing away from it; otherwise it

is equal to −
(

v0

µ ν̂i · n̂
)
n̂, where n̂ = cosψ x̂ + sinψ ŷ

is the local normal to the wall pointing outwards [48].
This is the simplest choice of wall potential consistent
with overdamped dynamics. It neglects alignment terms
that can arise when particles are anisotropic or experi-
ence hydrodynamic effects, and thusis appropriate when
the re-orientation rate induced by such torques is slow
in comparison to particle translation (this point is dis-
cussed further in section VI). Finally, since particles are
non-interacting, we may restrict the discussion to a single
particle.

When a particle is at the wall, its configuration is char-
acterized by its arclength s ∈ [0, L) along the boundary,
where L is the box perimeter, and its orientation relative
to the local boundary normal φ = θ − ψ (see Fig. 1).

There are two important lengths scales in the system:
the active persistence length v0/Dr, i.e. the typical dis-
tance a free (unconfined) particle travels before its orien-
tation decorrelates, and the global size of the confining

box. However, for a boundary with nonuniform curva-
ture, the variations in the local radius of curvature lead
to additional length scales. Which one is most relevant
depends strongly on the geometry of the box, as discussed
in Ref. [47] and in the rest of the paper.

The regime we study in this paper is the strong confine-
ment regime, obtained when the persistence length v0/Dr

is much larger than the size of the box. It is obtained at
large self-propulsion, small angular noise or small box
size, and we will often refer to it as the small angular
noise regime, or simply the small noise regime (the an-
gular noise is the only noise in our model).

III. DYNAMICS AT THE WALL

We first look at the dynamics of a single particle mov-
ing along the wall. In particular, we explore the fun-
damental difference between convex and concave regions
and show how the latter cause fast jumps and bi-stability
in the low noise regime. To this end, we project the equa-
tions of motion (1) onto the tangent to the wall:

ṡ = v0 sinφ , φ̇ = ξ(t)− v0

R(s)
sinφ (2)

where s is the arclength along the wall, φ = θ − ψ is
the angle between the particle’s orientation ν̂ and the
boundary normal n̂ (see Fig. 1), and R(s) = ds/dψ is
the local radius of curvature. Eqs. (2) remain valid as
long as |φ| ≤ π/2; as soon as |φ| > π/2, the particle
leaves the boundary.

A. Dynamics at zero angular noise

In the absence of noise (Dr = 0), the orientation ν̂ =
cos θx̂ + sin θŷ of the particle is constant and its gliding
velocity only depends on its location (see Fig. 2):

ṡ = v0 sin(θ − ψ(s)) (3)

When |θ − ψ| > π/2 (lower uncolored half of the box
in the bottom left panel of Fig. 2), there is no gliding.
Instead, the particle travels in a straight line through the
interior of the box until it hits the boundary again.

Locations along the boundary where ψ(s) = θ (i.e. the
particle is aligned with the normal) act as fixed points.
They are stable in convex regions (R(s) > 0) and un-
stable in concave regions (R(s) < 0), as can be seen by
linearizing Eq. (3) near the arclength s0 of the fixed point:

d

dt
(s− s0) = − v0

R(s0)
(s− s0) +O

(
(s− s0)2

)
(4)

Graphically, the fixed points are located at the in-
tersection(s) of the curve y = ψ(s) with the horizontal
dashed line y = θ in the top right panel of Fig. 2. In con-
vex boxes, ψ(s) is monotonic and the fixed point corre-
sponding to the orientation θ is always stable and unique.
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FIG. 2. (Color online) Dynamics in a confining box in the
absence of angular noise. Top left: Real space representation.
The concave region (between B and C) is shown in orange
(grey). The arclength s is counted counter-clockwise. The
points A and D have the same normal (shown as a straight
arrow) as C and B, respectively. Top right: Normal angle
ψ as a function of arclength s. The dynamics of a parti-
cle with constant orientation θ is controlled by the distance
φ = θ − ψ between the curve and the horizontal dashed line.
The fixed points as shown as filled (stable) and empty (un-
stable) squares. Bottom left: Gliding velocity ṡ = v0 sinφ for
a particle with orientation ν̂ (shown inside the box). The ori-
entation and fixed points are the same as those shown in the
top right panel. Arrow heads indicate the gliding direction.
The colorbar is shown on the right.

Conversely, in the presence of concavity there are multi-
ple locations with the same normal, and multiple fixed
points for some values of θ.

B. Quasi-static dynamics

We now let the orientation θ vary slowly. When the
rate of change of θ is small enough, the particle spends
most of its time at a fixed point, and only a small fraction
of its time travelling between fixed points. This quasi-
static regime is obtained when the angular noise Dr is
small, i.e. in the strong confinement regime. The particle
is then confined to the boundary: the fixed point condi-
tion θ = ψ implies that the particle always points toward
the boundary, whereas leaving the boundary would re-
quire pointing away from it (|θ − ψ| > π/2).

In general, a small change dθ in the orientation θ causes
a small displacement ds = R(s)dθ of the corresponding
fixed point. In a convex region, the particle relaxes ex-
ponentially toward the new fixed point. The quasi-static
regime is then obtained when the corresponding relax-
ation time R(s)/v0 is much shorter than the reorientation
time D−1r .

In a concave region, on the other hand, an infinitesimal
change in the orientation θ can trigger a large displace-
ment, which we refer to as a jump. Consider the box
shown in Fig. 2, and a particle at pointB with orientation

θ = ψB + dθ where dθ > 0 is a small perturbation. Since
there is no fixed point with normal angle ψB + dθ in the
vicinity of B, the particle has to travel to the next convex
location with normal angle ψB , i.e. point D. Concretely,
the perturbation dθ sends the particle into the concave
region where its gliding speed continuously increases. It
only starts to decelerate once it reaches the end C of the
concave region, and eventually comes to a stop at point
D. The quasi-static regime is obtained when the jump
from B to D is much faster than the reorientation time
D−1r . In appendix B we show that this is the case for
small angular noise. We also discuss the possibility and
implications of particles leaving the boundary during a
jump. Within the quasi-static approximation, however,
the details of a jump are irrelevant: it is considered in-
stantaneous, and only its landing point matters.

In summary, the presence of concavity causes non-
trivial dynamics in the quasi-static regime. A particle
reaching the end of a convex region experiences an in-
stantaneous jump to a new convex location with the same
normal angle. As a result, the vicinity of a concave re-
gion exhibits bi-stability and hysteresis (in Fig. 2, jumps
from B to D and from C to A create an hysteresis loop
around ABCD).

Finally, these results have important consequences for
the steady-state density (see section IV). First, the in-
stantaneousness of the jumps over concave regions im-
plies that those regions are empty. Second, the fact that
jumps do not stop at the end of the concave region but
continue into the next convex region causes non-local
density fluxes within the system. As we show next, the
requirement that these fluxes cancel at steady-state en-
ables predicting the density profile everywhere on the
boundary.

IV. QUASI-STATIC STEADY-STATE DENSITY

We now use the results of section III to predict the
steady-state density of a particle in a box of arbitrary
shape in the quasi-static regime. Our starting point is
the assumption that the particle is always at a stable
fixed point, i.e. at a convex point where the particle’s
orientation is aligned with the boundary normal (θ = ψ).
This has three important consequences. First, the parti-
cle always points toward the boundary and never leaves
it. As a result, the density is zero in the bulk and the
problem is effectively limited to the (one-dimensional)
boundary. Second, the particle never visits concave re-
gions, where fixed points are always unstable. The den-
sity on the boundary therefore vanishes in those regions.
Third, the normal angle at the location of the particle
follows a simple random walk: ψ̇ = θ̇ = ξ(t) where ξ is
the same noise as in Eqs. (1) and (2). Thus, the density
on the boundary in ψ space (unit circle) obeys the usual
diffusion equation:

∂tρ
ψ = Dr∂

2
ψρ

ψ. (5)
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whose steady-state solution is given by ρψ(ψ) =
1

2π
.

A. Role of convexity

In a convex box, R(s) is positive everywhere and ψ(s)
is monotonic. The density of particles per unit length
of boundary is then obtained by making the change of
variable ψ → s. At steady-state, this yields [47]

ρ(s) = ρψ(ψ)
dψ

ds
=

1

2πR(s)
(6)

The density on the boundary is thus proportional to the
local boundary curvature.

In a non-convex box, on the other hand, there are mul-
tiple locations on the boundary with the same normal an-
gle ψ (see Fig. 2). Unlike the density ρ(s), the normal an-
gle density ρψ(ψ) does not discriminate between those lo-
cations. Thus, ρ(s) cannot be inferred from ρψ(ψ) alone
for a box with concave boundary regions.

B. Formulating the problem

To retain all the information contained in ρ(s) while
working in normal angle space, where the dynamics is
simply diffusive, we number the convex regions 1 to n and

introduce the normal angle density ρψi in region i. Region
i is delimited by the two inflexion points A2i−1 and A2i

(see Fig. 3). Inflexion point Ai has normal angle ψi and

arclength si. Each ρψi is defined over the entire [0, 2π)
interval but only takes non zero values between ψ2i−1
and ψ2i, so that we can write ρψ =

∑
i ρ
ψ
i . The concave

regions, where the density is assumed to be zero, are not
explicitly described, but manifest themselves through the

boundary conditions ρψi (ψ2i−1) = ρψi (ψ2i) = 0. Inflexion
points act as one-way teleportation devices that send the
particle to a new convex location with the same normal
angle ψ. These instantaneous jumps often, but not al-
ways, connect consecutive regions (see appendix A).

From the point of view of each ρψi , the start of a jump
is a particle sink and its end a particle source. Apart
from jumps, the dynamics in a convex region is indistin-

guishable from that in a convex box and ρψi (ψ) obeys the
same diffusion equation as ρψ(ψ). The result is a set of
coupled diffusion equations:

∂tρ
ψ
i = Dr∂

2
ψρ

ψ
i +

∑
k

εikJkδ(ψ − ψk) (7)

where δ is the Dirac delta function and the sum is over
jumps. Jump k occurs at normal angle ψk and carries a
current Jk > 0 from its starting point Ak to its landing
point Bk. εik encodes the relationship between jump k
and region i. If jump k starts in region i, εik = −1 and
the corresponding term in Eq. (7) is a sink. Conversely,
if jump k lands in region i, εik = 1 and the corresponding
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FIG. 3. (Color online) Three representations of a non-convex
box showing the concave regions in orange (grey) and the
jumps over the concave regions (curved arrows). Convex re-
gions are indexed by a number 1 to 3. Region i is delimited
by the two inflexion points A2i−1 and A2i. Each Ai is the
starting point of a jump over the neighboring concave region
that lands at Bi, which has the same normal angle ψi as Ai.
Top: Shape of the box. The ‘x’ on the right is the arclength
origin, s = 0. Bottom left: Normal angle vs. arclength. Bot-
tom right: Normal angle representation. The vertical axis
labels the convex region corresponding to each interval. Re-
gion 1 appears split into two parts due to periodic boundary
conditions.

term in Eq. (7) is a source. Finally, if jump k does not
involve region i then εik = 0; in other words the sum in
Eq. (7) is restricted to jumps that involve region i [49].

In order for ∂tρ
ψ
i to remain finite, each jump must create

a discontinuity in ∂ψρ
ψ
i proportional to Jk: ∂ψρ

ψ
i (ψ+

k )−
∂ψρ

ψ
i (ψ−k ) = −Jk/Dr where the superscripts± symbolize

one-sided limits. The currents Jk may then be eliminated

from Eq. (7) in favor of the densities ρψi .

Once the density in normal angle space is known in
every convex region, the linear density on the boundary
ρ(s) is obtained using the change of variable ψ → s,
which is monotonic within each convex region:

ρ(s) =


ρψi (ψ(s))

R(s)
if s is in convex region i

0 if s is in a concave region

(8)

where R(s) is the radius of curvature.
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C. Steady-state

From the form of Eq. (7), it is clear that the steady-
state density in each convex interval is piecewise linear,
with a change of slope at the location ψk of every jump

that starts or lands in the interval. We also require ρψi to
be continuous, and to vanish at the ends of the interval
(beyond which the boundary is concave and thus empty):

ρψi (ψ2i−1) = ρψi (ψ2i) = 0. As a result, the entire set of

density functions {ρψi (ψ)}1≤i≤n is fully determined by
its 2n values at the location of every jump landing Bk
(see Fig. 3). Let xk = ρψi(k)(ψk), k ∈ [1, 2n] be those

unknowns, with i(k) the index of the convex region in
which jump k lands.

On the other hand, Eq. (5) implies that the steady-

state total density ρψ =
∑
i ρ
ψ
i is equal to 1/(2π).

Using the piecewise linearity of ρψi , ρψi (ψ) can always
be expressed as a linear combination of xk’s. Writing
ρψ(ψ) = (2π)−1 at 2n distinct values of ψ then leads to
a 2n× 2n linear system that can be solved to obtain the
xk’s. In order for the system not to be degenerate, the
2n values of ψ need to be spread across all subregions of
all convex regions so that no xk is left out. A convenient
choice is to use the locations ψk of the jumps.

Once the ρψi ’s are known, the density per unit length
of the boundary is given by Eq. (8).

The entire process can be automated, i.e. it is possi-
ble to write a program that, starting with a parametriza-
tion of the boundary, identifies the convex regions and
the jumps, writes the linear system, solves for the xk’s,

and generates the functions ρψi and ρ. We used such a
program to create most of our figures and analyze our
simulation results (section V).

Below we go through the method step-by-step in sev-
eral situations of interest. In sections IV C 1 and IV C 2,
we consider boxes in which the number of convex loca-
tions with the same normal is limited to 2 (section IV C 1)
and 3 (section IV C 2). In both cases, we show that
the density can be expressed in a simple form. In sec-
tion IV C 3 we give a detailed description of the algorithm
that leads to the steady-state density in the general case.

1. Multiplicity no greater than 2

We start with the box pictured in Fig. 3. In order to
write ρψ(ψk) = (2π)−1 in terms of the unknowns {xj},
we look at the normal angle representation (bottom right
panel of Fig. 3) and take a vertical slice at ψk. Looking
at, e.g., the slice through B5, we see that A5 and B5 are
the only two locations on the boundary where the normal
angle is equal to ψ5. At B5, the density is by definition
x5, while at A5 it is zero because it is the entrance of
a concave region. Therefore, the total density at ψ5 is
simply x5, and the equation for that slice is x5 = (2π)−1.
The situation is the same at every jump location, and

0 ψ3 ψ2 ψ5 ψ4 ψ1 ψ6 2π
0

1

2πρψ3

0

1

2πρψ2

0

1

2πρψ1

FIG. 4. (Color online) Density of particles in normal angle
space as a function of the normal angle ψ in each of the three
convex lobes of the box shown in Fig. 3. ψi is the normal angle
of the inflexion point Ai as well as that of its corresponding
landing point Bi (see Fig. 3).
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FIG. 5. (Color online) Density of particles per unit length
of boundary as a function of arclength s for the box shown
in Fig. 3. si and s′i are the arclengths of the inflexion points
Ai and corresponding landing points Bi (see Fig. 3)). Right
panel: Heat map for the density along the boundary, shown
in real space.

the corresponding linear system is trivial:

∀k ∈ [1, 2n], xk =
1

2π
(9)

Recalling the piecewise linearity and boundary conditions

ρψi (ψ2i−1) = ρψi (ψ2i) = 0, the resulting partial densities

ρψi in ψ space then take the form shown in Fig. 4.

Finally, Fig. 5 shows the density in real space and s
space, where the overlaps between convex regions disap-
pear and the empty concave regions reappear.

More generally, let m(ψ) be the multiplicity, i.e. the
number of convex locations that have normal angle ψ.
Graphically, in the normal angle representation (bottom
right panel of Fig. 3), m(ψ) is the number of convex
intervals that intersect the vertical line at ψ. Since a
jump connects two regions, m(ψk) ≥ 2. If m(ψ) never
exceeds 2 over the entire boundary, then Ak and Bk are
the only convex locations with normal angle ψk, and the
equation ρψ(ψk) = (2π)−1 always takes the trivial form
given by Eq. (9), regardless of the number n of convex
regions or their sizes.
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FIG. 6. (Color online) Three representations of a non-convex
box showing the concave regions in orange (grey) and the
jumps over the concave regions (curved arrows). Convex re-
gions are indexed by a number 1 to 4. Top: Shape of the
box. The origin of arclengths is the rightmost point on the
boundary, halfway between B3 and B8. Bottom left: Normal
angle vs. arclength. Bottom right: Normal angle representa-
tion. The vertical axis labels the convex region corresponding
to each interval. Region 1 appears split into two parts due to
periodic boundary conditions.

2. An example with multiplicity 3

We now consider the box shown in Fig. 6, defined in
polar coordinates by r(θ) = 1 + 0.6 sin (4θ).

There are n = 4 convex regions, delimited by the 8 in-
flexion points A1 to A8. The jump starting at Ai ends at
Bi, which is located in a neighboring lobe. Although the
jumps involve leaving the boundary and flying straight
through the bulk for a short period of time (see sec-
tion A), these flights do not alter the location of the
landing points Bi and thus are irrelevant to the steady-
state.

In real space, the most important difference between
this box and the box of Fig. 3 is the order of the landing
points. For example, B5 comes before B2 when moving
counter-clockwise. This “inversion” is a signature of mul-
tiplicities higher than 2, as can be seen by comparing the
bottom panels of Figs. 3 and 6.

Following the method outlined in previous sections, we

set out to write ρψ(ψk) =
∑
i ρ
ψ
i (ψk) = (2π)−1 at each

jump location ψk in terms of the variables xk. We start
with jump 7 and draw a virtual vertical line through A7

0ψ8 ψ5 ψ2 ψ7 ψ4 ψ1 ψ6 ψ3 2π
0

1
2πρψ4

0

1
2πρψ3

0

1
2πρψ2

0

1
2πρψ1

FIG. 7. (Color online) Density of particles in normal angle
space as a function of the normal angle ψ in each of the four
convex lobes of the box shown in Fig. 6.

and B7 in the normal angle representation (bottom right
panel of Fig. 6). This line intersects region 4 at A7, region
3 at B7, and region 2 at a point C located between B2

and A4. We can therefore write

(2π)−1 = ρψ4 (ψ7) + ρψ3 (ψ7) + ρψ2 (ψ7)

= x7 +
ψ4 − ψ7

ψ4 − ψ2
ρψ2 (ψ2) +

ψ7 − ψ2

ψ4 − ψ2
ρψ2 (ψ4)

= x7 +
ψ4 − ψ7

ψ4 − ψ2
x2 (10)

The second line is obtained by using the boundary con-

dition ρψ4 (ψ7) = 0, the definition ρψ3 (ψ7) = x7, and the

linearity of ρψ2 between B2 and A4. The third line is ob-

tained by using the boundary condition ρψ2 (ψ4) = 0 and

the definition ρψ2 (ψ2) = x2. Applying the method to each
jump yields the system

2π



1 0 0 α1 0 0 0 0
0 1 0 0 α2 0 0 0
0 0 1 0 0 α3 0 0
0 0 0 1 0 0 α4 0
0 0 0 0 1 0 0 α5

α6 0 0 0 0 1 0 0
0 α7 0 0 0 0 1 0
0 0 α8 0 0 0 0 1


·



x1
x2
x3
x4
x5
x6
x7
x8


=



1
1
1
1
1
1
1
1


(11)

where αk =
ψk−3 − ψk
ψk−3 − ψk−5

(indices are defined modulo

2n). The solution to this system is not in general com-
pact; however, here the four-fold symmetry implies that
αk ≡ α is independent of k,and the solution simply reads:

∀k, xk =
1

2π(1 + α)
(12)

The corresponding densities in normal angle space, in
arclength space and in real space are shown in Figs. 7
and 8.



7

0s′8
s2
s3

s′5s′2
s4
s5

s′7s′4
s6
s7

s′1s′6
s8
s1

s′3
L

s

0.0

0.5

ρ

ρ
0.01

0.1

1

FIG. 8. (Color online) Density of particles per unit length
of boundary as a function of arclength s for the box shown
in Fig. 6. Right panel: Heat map for the density along the
boundary, shown in real space.

3. General case

The method used above to compute the steady-state
density in simple boxes can be readily extended to arbi-
trary shapes. We now write down the steps leading to
the solution in the general case.

As a preliminary step, in each region i we iden-
tify the set Ki = {k ∈ [1, 2n] | s′k ∈ [s2i−1, s2i]}
of jumps that land in the region, with s′k the ar-
clength of landing point Bk. We also define the set
Ei = {A2i−1, A2i} ∪ {Bk | k ∈ Ki} of jump ends in
region i, i.e. the two ends of the region plus any jump
landings. Then, for each jump landing Bk, we perform
the following sequence of operations:

1. Identify the region i that contains Bk. By defini-

tion ρψi (ψk) = xk.

2. Pick a region j other than i. In the set Ej , identify
the two points C and D whose normal angles are
closest to ψk on each side:

ψC = max
M∈Ej

{ψM | ψM ≤ ψk}

ψD = min
M∈Ej

{ψM | ψM ≥ ψk}

By construction, ρψj is linear between C and D;
therefore

ρψj (ψk) =
ψD − ψk
ψD − ψC

ρψj (ψC) +
ψk − ψC
ψD − ψC

ρψj (ψD). (13)

Furthermore, ρψj (ψC/D) is either 0 if C/D is A2j−1
or A2j , or xl if C/D is Bl; therefore the right-hand
side of Eq. (13) is a linear combination of 0, 1 or 2
of the xl’s (if the region has no jump landing, or if
ψk is outside of the region, the right-hand side is
simply zero).

3. Repeat the previous step until every region has
been considered, then sum Eq. (13) over j. The

left-hand side is (by definition) ρψ(ψk) = (2π)−1,
while the right-hand side is a linear combination of
xl’s.

At the end of step 3, a linear system of the form∑
j aijxj = (2π)−1 is obtained, whose coefficients aij de-

pend on the ψk’s. After inverting the system to get the

xj ’s and thus the normal angle space densities {ρψi (ψ)},
“unfolding” normal angle space onto arclength space and
dividing by the radius of curvature yields the density ρ(s)
per unit length of boundary (see Eq. (8)).

As pointed out at the beginning of section IV, the
process can be automated. This is particularly useful
when the number of non-zero elements in aij is large,
which happens when the multiplicity m is large. On the
other hand, a small multiplicity leads to a sparse ma-
trix. In particular, m = 2 yields a diagonal matrix (see
section IV C 1).

V. SIMULATIONS

We test the results of sections III and IV by performing
molecular dynamics simulations of Eqs. (1) in the family
of boxes defined in polar coordinates by

r(θ) = 1 + r1 sin (kθ) (14)

The boxes shown in Figs. 3 and 6 belong to this family,
with (k, r1) = (2, 0.5) and (4, 0.6) respectively.

A. Angular distribution

We first test our core assumption, that the deviation of
the particle orientation from the boundary normal van-
ishes: φ ≈ 0, and the reasoning that led to it (see sec-
tion III), by characterizing the statistics of φ at various
locations along the boundary. In convex regions, the the-
ory predicts that the distribution of φ will exhibit a nar-
row peak centered around φ = 0. On the other hand,
particles jumping over a concave region should generate
secondary peaks, much smaller than the primary peak,
and centered around a position-dependent non-zero value
φ = ψ0−ψ where ψ0 and ψ are the normal angles at the
inflexion point where the particle entered the jump and
at the current location, respectively. In concave regions,
there should be no central peak, only “secondary” ones.

To compare these predictions with the simulation re-
sults, we measure the distribution P (φ) at regularly
spaced locations along the boundary. At each point, we
determine the heights of the distribution’s peaks {Pmax}
and their corresponding orientations {φmax}. In Fig. 9
we show the peak orientations as a function of arclength
in a single convex region, as well as the prediction asso-
ciated with each jump involving the region. Every de-
tected peak falls on one of the predicted branches: φ = 0
or φ = ψi − ψ with i ∈ 1, 2, 3, 8 depending on whether
the corresponding jump started at A1, A2, A3, or A8.
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L

8
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8

A8

B8

A1
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FIG. 9. (Color online) Positions of peaks in the distribution
of the orientations P (φ) relative to the normal as a function
of the arclength s over one lobe of the box defined by Eq. (14)
with k = 4 and r1 = 0.5. The lobe geometry is shown in the
right panel. The angular diffusion constant is Dr = 10−4,
deep in the strong confinement regime. The simulation data
is shown as circles. The theoretical prediction is shown as
lines. Colors denote the origin of the particles: blue for parti-
cles jumping from A8 (upper gray curve), orange for particles
jumping from A3 (lower gray curve), and black for particles
from the lobe under consideration. Dotted lines represent the
paths of particles that fly through the bulk.

Fig. 9 also illustrates particles leaving the boundary to
fly straight through the bulk (see middle row of Fig. 12):
since φ is only defined at the boundary, the peak corre-
sponding to these particles is absent between their leav-
ing the boundary and their hitting it again (dotted lines
in Fig. 9).

B. Steady-state density

We now assess the accuracy of the predictions made in
section IV by plotting in Fig. 10 the observed boundary
density ρ as a function of the predicted density ρpr for
various box shapes and angular diffusion constants Dr.

The plot can be interpreted in terms of two linear
asymptotes. In boundary locations with moderate and
high density, we observe good agreement between theory
and simulation, i.e. ρ ≈ ρpr, up to Dr ∼ 10−2. Deep in
the strong confinement regime (Dr = 10−4), the agree-
ment is excellent and persists over two decades. In loca-
tions with low density, on the other hand, the prediction
underestimates the density: the predicted density van-
ishes altogether over regions of zero or negative curvature
while the observed density is finite everywhere, resulting
in a horizontal asymptote whose position depends on the
box’s shape and the angular noise’s strength. Note that
because of the logarithmic scale, regions where the pre-
dicted density is zero do not appear in Fig. 10; instead
the data visible on the left of the plot comes from weakly
convex areas near the inflexion points.

As discussed in section III B and appendix B, the den-
sity in flat and concave regions is controlled by the ra-
tio of the time spent crossing them to the reorientation

10−3 10−2 10−1 100

Predicted Density

10−3

10−2

10−1

100

D
en

si
ty

Dr

10−4

10−3

10−2

10−1

FIG. 10. (Color online) The density observed in simulations
at various positions along the boundary is plotted against
the predicted density for six boxes from the family defined
by Eq. (14) and for four values of the angular diffusion con-
stant Dr. The dashed line corresponds to a density equal to
the predicted density. The symbol associated with each box
geometry is shown at the center of that box on the right side.

time D−1r . This ratio only vanishes in the Dr → 0 limit,
therefore a finite density is to be expected in those re-
gions at finite Dr. Since the crossing time is largest in
flat regions, this is where the deviations from the quasi-
static theory are most prominent. Additionally, the time
it takes to cross the vicinity of an inflexion point grows
with its “flatness”, as inferred from the second derivative
of the normal angle with respect to the arclength (i.e.
the derivative of the curvature). This explains the po-
tentially counter-intuitive observation that the accuracy
of our predicted density is better in “strongly concave”
boxes [e.g. the box denoted by left-pointing triangles (/)
in Fig. 10] than in “weakly concave” boxes [e.g. the box
denoted by squares (�)]. Despite their weaker concavity,
the latter exhibit larger “flat” regions.

ψ1 ψ8 ψ3 ψ2

ψ

0

1

2πρψ1

Dr

10−4

10−3

10−2

10−1

FIG. 11. (Color online) Density in normal angle space in the
convex region shown in Fig. 9 for several values of the an-
gular diffusion constant Dr from deep in the strong confine-
ment regime (Dr = 10−4) to outside of it (Dr = 10−1). The
dashed line is the theoretical prediction from section IV C 2
(see Eq. (12)), corresponding to Dr → 0.

Finally, we plot in Fig. 11 the density ρψ = Rρ in nor-
mal angle (ψ) space. There, each convex region must be
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treated separately; we consider the region labelled 1 in
Fig. 6. The predicted density is piecewise linear with a
trapezoidal shape. At very small noise (Dr = 10−4), the
density observed in simulations closely matches the pre-
diction. As the noise is increased, the trapezoidal shape
gets smoothed out and some of the density is transferred
from the tip to the base (as well as the neighboring con-
cave region, not shown in this representation), suggest-
ing that finite noise effects may be treated as a pertur-
bation to our zero-noise theory. On the other hand, at
Dr = 10−1 the predicted form of the density is not rec-
ognizable anymore and a different approach is required.
Note that this description over-emphasizes the finiteness
of the observed density at the ends of the convex interval
where the radius of curvature, and thus ρψ, diverges.

VI. DISCUSSION

In summary, we have presented a systematic approach
to predict the density of a non-aligning ideal active gas
in a small box of arbitrary shape, thus establishing a
connection between the geometry of a confining box and
the properties of the active gas it confines. Our results
hold as long as the persistence length (the distance a free
particle travels before it loses its orientation) is much
larger than the size of the box.

In the special case of convex boxes, there is a strikingly
simple relationship between the density and the bound-
ary geometry: the density is zero in the bulk and on the
boundary it is proportional to the local boundary cur-
vature [47]. Here, we have shown that boundaries with
concave regions lead to a much richer particle dynamics,
including multi-stability, hysteretic dynamics, and parti-
cles flying through the bulk of the box between disparate
boundary locations. However, we showed that the par-
ticle density still vanishes in the bulk and we described
an algorithm to calculate the steady-state density profile
on the boundary of a 2D box with any shape. The pre-
dicted particle density vanishes in concave regions, while
in convex regions it can be written as the product of the
local curvature and a “splitting factor” which obeys the
following property: given a unit vector n̂, the sum of the
splitting factor over all the locations on the boundary
where the normal is n̂ is equal to one. In other words,
boundary points that share the same normal also share
the same “pool” of particles with the corresponding ori-
entation.

Despite the complexity intrinsic to concave regions,
understanding non-convex shapes is essential to ratio-
nally design active micro-devices with specific function-
alities. This is nicely illustrated by the micro-gears
used in Refs. [16–18], which trap particles in sharp cor-
ners where they exert torques that make the gear ro-
tate [50]. Effectively trapping active particles requires
sharp corners [29, 30, 33, 47], and the total torque on the
gear is maximized by having several such trapping sites.
This cannot, however, be achieved with convex shapes

in which the number of sharp corners is limited to two.
It is then clear that understanding and using non-convex
confinements is a necessary step toward designing a broad
class of active devices.
Scope of the model. Finally, we consider limitations

and avenues for extension of the model. Firstly, since we
neglect interparticle interactions our results are limited
to dilute systems. For example, above a threshold pack-
ing fraction, steric effects will prevent all particles from
residing on the boundary. The effect of steric interactions
will be discussed in a future publication, but preliminary
simulations confirm that our results apply at least quali-
tatively at finite particle densities. Secondly, our results
apply to the strong confinement limit, in which particles
circumnavigate the box faster than they reorient and thus
tend to align with the boundary normal. Within this
limit, we expect the results to remain valid regardless of
the reorientation mechanism, including angular diffusion
or aligning interactions with the wall such as may arise
due to hydrodynamics. However, if particle-wall interac-
tions drive particles to align with the wall, or divert away
from it, on timescales comparable to the circumnaviga-
tion time (∼ v0/R with R the boxsize), then a different
approach is required.

Appendix A: Types of jumps

Depending on the geometry of the concave region they
cross, jumps may lead to particles leaving the boundary
to travel in the interior of the box. This situation, which
is illustrated in Fig. 12, occurs when the angle between
the normals at the two ends of the concave region (B and
C) is larger than π/2. As a result, there exists a point
E between B and C where φ = ψB − ψE = π/2. At E,
the particle’s orientation is aligned with the tangent and
it leaves the boundary to travel in a near-straight line
through the box, until it hits the boundary again. The
three possible jump scenarios are explained in Fig. 12.

Appendix B: Jump duration

To evaluate the duration of a jump, we consider the
box shown in the top panel of Fig. 12 and a particle at
the entrance B of the concave region with orientation
θ = ψB + dθ where dθ > 0 is an infinitesimal forward
velocity needed to start the jump. In the absence of
angular noise (Dr = 0), the gliding speed ṡ = v0 sinφ is
controlled by the relative angle φ = θ − ψ ≈ ψB − ψ,
shown in the top right panel of Fig. 12.

In particular, we want to show that in the small angu-
lar noise limit Dr → 0, the duration of the jump from B
to D is negligible compared with the reorientation time
τ0 ≡ D−1r .

To this end, we divide the jump into three regions num-
bered (i), (ii) and (iii) (see top right panel of Fig. 12),
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FIG. 12. (Color online) Types of jumps over a concave re-
gion. The right column shows the orientation φ = ψB − ψ
relative to the boundary as a function of the arclength s
(counted counter-clockwise). Concave regions are in orange
(grey). Trajectories through the interior of the box are shown
as arrows. B and C are the inflexion points delimiting the
concave region. D is the first location after C with the same
normal as B. Top row: the particle follows the boundary
and stops at D. See section B for the definition of regions
(i), (ii), (iii). The dashed (in green) and the dot-dashed (in
blue) curves correspond to a quadratic expansion near B and
a linear expansion near D, respectively. Middle row: when
ψB −ψC > π/2, the particle leaves the boundary at E where
ψE = ψB − π/2. It travels in a straight line through the bulk
until F , then follows the boundary to D. Bottom row: when
ψB − ψC > π/2 and there are multiple concave regions, the
particle may fly past D to end its jump in a non-neighboring
convex region at a point D′ with the same normal as B.

and define τα as the time it takes to cross region α. Re-
gions (i) and (iii) correspond to the vicinity of B and
D, respectively, while region (ii) contains the remaining
middle part of the jump.

Region (ii) is the fastest of the three, with a relative
angle φ ∼ 1 and a gliding speed ṡ ∼ v0. This leads to
a crossing time τii ∼ `/v0 where ` is the length of the
jump, which is of the same order or smaller as the size
of the box. Note that instances of the particle leaving
the boundary (see section A, and the middle and bottom
row of Fig. 12) do not modify the scaling of τii. Indeed,
when flying through the box the particle travels at speed
v0 for a distance at most of the order of the box size.
Comparing with the reorientation time, we get τii/τ0 ∼
`Dr/v0, which vanishes in the small noise limit.

In region (iii), linearizing the gliding velocity around
D leads to Eq. (4) with s0 = sD the arclength of point
D. The dynamics is an exponential relaxation towards
D, which takes a time τiii ∼ RD/v0 where RD is the
radius of curvature at point D [51]. Comparing with the
reorientation time, we get τiii/τ0 ∼ RDDr/v0, which also
vanishes in the small noise limit.

Region (i) is the slowest part of the jump. While B is
a fixed point, it is also an inflexion point, and thus the
linear contribution in Eq. (4) vanishes. A second order
expansion yields ẋ = v0dθ + v0κx

2 where x = s − sB ,
κ = 1

2 (d2ψ/ds2), and v0dθ is the initial velocity required
to start the jump. Integrating leads to the displacement

x(t) =

√
dθ

κ
tan

(
v0t
√
κdθ

)
(B1)

However, evaluating τi requires additional assumptions
on dθ. In fact, noise and curvature both play a role in
setting τi. Although noise is initially the only contri-
bution, its fluctuations soon get amplified by curvature
effects, and understanding their interplay is necessary to
evaluate τi.

For our purpose, however, it is sufficient to note that
the curvature in region (i), however small, always makes
the particle progress faster than on a flat edge. The case
of a flat edge was discussed in Ref. [47] in the context
of polygonal boxes, and we briefly summarize it here. In
the absence of curvature, the relative angle φ follows a
random walk. Its typical value then grows diffusively:
φ ∼ (Drt)

1/2. Integrating with respect to time gives
the typical distance travelled along the boundary after a

time t: s ∼ v0D
1/2
r t3/2. Travelling a length ` then takes

a typical time τ ∼ (`/v0)2/3D
−1/3
r . The length of region

(i) can be evaluated by noting it ends when ψ−ψB ≈ κx2
is of order 1. This gives ` ≈ κ−1/2 and τi ∼ (v20κDr)

−1/3.
Comparing with the reorientation time, we get τi/τ0 ∼
(v0Dr)

2/3(κ)−1/3, which goes to zero in the small noise
limit as well.

In summary, in the small noise limit Dr → 0 jumps
over concave regions happen much faster than the par-
ticles reorient. This in turn ensures the consistency of
the quasi-static approach to steady-state density in non-
convex boxes. Additionally, the duration of the jump is
controlled by its slowest and earliest stage, near the in-
flexion point, which grows with the inverse of the second
derivative (d2ψ/ds2) of the normal angle with respect to
arclength. In other words, the flatter the region near
inflexion points, the slower the associated jumps.
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