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Abstract

Relations of simulated annealing and quantum annealing are studied by a mapping from the

transition matrix of classical Markovian dynamics of the Ising model to a quantum Hamiltonian

and vice versa. It is shown that these two operators, the transition matrix and the Hamiltonian,

share the eigenvalue spectrum. Thus, if simulated annealing with slow temperature change does

not encounter a difficulty caused by an exponentially long relaxation time at a first-order phase

transition, the same is true for the corresponding process of quantum annealing in the adiabatic

limit. One of the important differences between the classical-to-quantum mapping and the con-

verse quantum-to-classical mapping is that the Markovian dynamics of a short-range Ising model is

mapped to a short-range quantum system, but the converse mapping from a short-range quantum

system to a classical one results in long-range interactions. This leads to a difference in efficiencies

that simulated annealing can be efficiently simulated by quantum annealing but the converse is not

necessarily true. We conclude that quantum annealing is easier to implement and is more flexible

than simulated annealing. We also point out that the present mapping can be extended to accom-

modate explicit time dependence of temperature, which is used to justify the quantum-mechanical

analysis of simulated annealing by Somma, Batista, and Ortiz. Additionally, an alternative method

to solve the non-equilibrium dynamics of the one-dimensional Ising model is provided through the

classical-to-quantum mapping.
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I. INTRODUCTION

Quantum annealing has been developed as a generic method to solve combinatorial op-

timization problems using quantum-mechanical fluctuations [1–5]. It is closely related with

adiabatic quantum computation [6], which can be regarded as a restricted version of quan-

tum annealing where the time evolution follows the adiabatic condition. Quantum annealing

is to be contrasted with simulated annealing, in which classical thermal fluctuations assist

the system to explore the phase space toward the optimal solution [7]. A large number of

comparative studies of quantum annealing and simulated annealing have been reported from

theoretical, numerical, and experimental perspectives, which generally show superiority of

quantum annealing over simulated annealing, at least quantitatively [1–4, 8]. An early ex-

perimental study of a disordered magnet also revealed faster relaxations toward equilibrium

through a quantum path than by a real thermal annealing path [9]. Recent studies concern-

ing the D-Wave machine show mixed results [10–24], and further careful investigations are

necessary before firm conclusions are drawn.

The present paper concerns a theoretical analysis to compare quantum annealing and

simulated annealing from a very different viewpoint than the above-mentioned studies. Re-

lations between quantum and classical systems have been known for years through the

path-integral formulation of quantum mechanics [25] as well as by the Suzuki-Trotter de-

composition of the Boltzmann factor of a quantum system [26]. A relatively new development

is a mapping of classical Markovian dynamics to a quantum system, and vice versa, in the

same spatial dimension [27, 28]. This method was originally proposed in the context of the

Rokhsar-Kivelson point of quantum dimer Hamiltonians. Somma et al. applied this idea

to the analysis of simulated annealing [29] and rederived the result of Geman and Geman

[30] for the temperature-annealing schedule through the adiabatic theorem of quantum me-

chanics. See [31] for a related development. We also refer the reader to a zero-temperature

quantum Monte Carlo method employed in [32] for a different type of quantum-to-classical

mapping suitable for classical stochastic studies of quantum systems.

Although the work of Somma et al. is quite interesting since it uses quantum mechanics

to study a purely classical problem, it nevertheless includes a few points that need further

scrutiny. First, only the equivalence between the equilibrium state of a classical system and

the ground state of a quantum system has been emphasized. However, wider spectra of the
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transition matrix and the quantum Hamiltonian should be taken into account to study the

detailed behavior of the energy gap/relaxation time at a quantum/classical phase transition.

Second, the converse mapping from quantum to classical systems needs to be discussed to

complete a comparative study of quantum annealing and simulated annealing, in particular

to determine whether or not quantum annealing can perform a wider class problems than

simulated annealing does. Third, a relation needs to be established between the classical

Markovian dynamics with time-dependent temperature and the time-dependent Schrödinger

equation, if we want to know what happens when the temperature changes relatively quickly

or when quantum annealing is applied beyond the limit of adiabatic evolution.

The goal of the present paper is to shed new light on the possibilities and limitations

of quantum annealing in comparison with simulated annealing and to solve the above-

mentioned problems.

This paper is organized as follows. We first review a few basic aspects of Markovian

dynamics of the classical Ising model in Sec. II to fix the notation. Then, in Sec. III, we

establish a mapping of classical Markovian dynamics to a quantum Hamiltonian. A few

examples are given for the one-dimensional case. The converse mapping from quantum to

classical systems is given in Sec. IV. Similarities and differences between the classical-to-

quantum and quantum-to-classical mappings are discussed. A more general case of explicitly

time-dependent temperature is analyzed and the work of Somma et al. is discussed in Sec.

V. Summary and conclusion are given in the final section.

II. MARKOVIAN DYNAMICS OF THE CLASSICAL ISING MODEL

We briefly summarize the Markovian dynamics of the Ising model to fix the notation. The

temperature T , or its inverse β, is assumed to be time-independent until otherwise stated

at a later section. The master equation representing the Markovian dynamics is written as

dPσ(t)

dt
=
∑

σ′

Wσσ′Pσ′(t) =
∑

σ′(6=σ)

(

Wσσ′Pσ′(t)−Wσ′σPσ(t)
)

, (1)

where σ is a set of N Ising spins, {σ1, σ2, · · · , σN}, and Pσ(t) is the probability that the

system is in the state σ at time t. The Hamiltonian of the Ising model will be denoted as

H0(σ). In the context of simulated annealing and quantum annealing, the goal is to find

the ground state of H0(σ). The transition probability from σ′ to σ is denoted as Wσσ′ ,
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non-vanishing off-diagonal (σ 6= σ′) elements of which satisfy the detailed balance condition,

Wσσ′P
(0)
σ′ =Wσ′σP

(0)
σ

(

P (0)
σ =

e−βH0(σ)

Z
, Z =

∑

σ

e−βH0(σ)
)

. (2)

We write Ŵ for the 2N × 2N matrix with elements (Ŵ )σσ′ =Wσσ′ . All matrices and vectors

will be represented in the σ-basis. The non-vanishing off-diagonal element of Ŵ can be

expressed as

Wσσ′ = wσσ′e−
1

2
β(H0(σ)−H0(σ′)), (3)

where wσσ′ is symmetric, wσσ′ = wσ′σ, according to the detailed balance condition (2).

The quantity wσσ′ can be chosen arbitrarily as long as the resulting Wσσ′ can be regarded

as a conditional probability. For example, the Metropolis update rule has

wσσ′ = min
(

e−
1

2
β(H0(σ′)−H0(σ)), e

1

2
β(H0(σ′)−H0(σ))

)

, (4)

and the heat-bath method is realized by

wσσ′ =
1

e−
1

2
β(H0(σ′)−H0(σ)) + e

1

2
β(H0(σ′)−H0(σ))

. (5)

The eigenvalues of the transition matrix Ŵ are negative semi-definite. The largest

eigenvalue is 0 and corresponds to thermal equilibrium. If we denote the eigenvalues as

λ0 = 0 > λ1 > λ2 > · · · , a general solution to the master equation (1) is written as

Pσ(t) =
∑

n=0

ane
−|λn|tψ(R,n)

σ . (6)

Here, ψ
(R,n)
σ is the σ component of the nth right eigenvector ψ̂(R,n) of Ŵ ,

Ŵ ψ̂(R,n) = λnψ̂
(R,n). (7)

In particular, the right eigenvector corresponding to λ0 = 0 is

ψ(R,0)
σ = P (0)

σ . (8)

III. QUANTUM HAMILTONIAN DERIVED FROM CLASSICAL DYNAMICS

We now derive a quantum Hamiltonian Ĥ from the classical transition matrix Ŵ . The

original idea comes from Castelnovo et al. [28], but we proceed with carefully keeping in

mind the correspondence between quantum annealing and simulated annealing.
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A. Construction of quantum Hamiltonian

Let us denote by Ĥ0 the diagonal matrix with H0(σ) as its diagonal elements, (Ĥ)σσ =

H0(σ). A quantum Hamiltonian is then defined from Ŵ as

Ĥ = −e 1

2
βĤ0Ŵe−

1

2
βĤ0. (9)

It is straightforward to verify that Ĥ is real and symmetric, i.e. Hermitian, using the

detailed balance condition (2). We can therefore regard Ĥ as the Hamiltonian of a quantum

system. The eigenvalue spectrum of Ŵ ,

Ŵ ψ̂(R,n) = λnψ̂
(R,n), (10)

is shared with Ĥ:

Ĥφ̂(n) = −e 1

2
βĤ0Ŵ ψ̂(R,n) = −λnφ̂(n), (11)

where

φ̂(n) = e
1

2
βĤ0ψ̂(R,n). (12)

Equations (10)-(12) show one-to-one correpondence between the eigenvalues and eigenvec-

tors of Ĥ and Ŵ , which establishes a classical-to-quantum mapping in the same spatial

dimension.

The classical Ising model Ĥ0 has the relaxation time toward equilibrium as τ = 1/|λ1|
according to Eq. (6). If Ĥ0 has a phase transition at a temperature Tc, the relaxation time

diverges at Tc as a function of the system size N . If the transition is of second order, τ

diverges polynomially τ ∝ Na (a > 0), and the divergence is exponential τ ∝ ebN (b > 0)

at a first-order transition. Correspondingly, the quantum system Ĥ has a quantum phase

transition at the system parameter determined by the correspondence (9). The energy gap

∆ = |λ1| between the ground state (whose energy is λ0 = 0) and the first excited state

closes polynomially ∆ ∝ N−a at a second-order transition and exponentially ∆ ∝ e−bN at a

first-order transition.

It should be kept in mind that these discussions apply to the case of time-independent

temperature for the classical dynamics and stationary states for the quantum system. This

means that, in the context of simulated annealing, the system is supposed to evolve in quasi-

equilibrium, i.e. the temperature changes very slowly such that the system stays very close
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to thermal equilibrium. The corresponding quantum system is driven adiabatically, and the

system is kept infinitesimally close to the instantaneous stationary state. The case with

strong time dependence of temperature in simulated annealing and non-adiabatic evolution

in quantum annealing will be analyzed in Sec. V.

The normalized ground-state wave function of Ĥ is written as

φ̂(0) =
e−

1

2
βĤ0

√
Z

∑

σ

|σ〉, (13)

according to Eqs. (8) and (12). If we write 〈Q̂〉0 for the expectation value of a matrix Q̂

diagonal in the σ-basis by the ground-state wave function (13), this expectation value is

equal to the thermal expectation value of the corresponding classical system,

〈Q̂〉0 =
1

Z

∑

σ

〈σ|Q̂|σ〉e−βH0(σ). (14)

B. Explicit formulas for the quantum Hamiltonian

We next derive the explicit form of Ĥ. Non-vanishing off-diagonal elements are

(Ĥ)σσ′ = Hσσ′ = −e 1

2
βH0(σ)Wσσ′e−

1

2
βH0(σ′) = −wσσ′ (< 0). (15)

Diagonal elements are

Hσσ = −Wσσ =
∑

σ′(6=σ)

Wσ′σ =
∑

σ′(6=σ)

wσ′σe
− 1

2
β(H0(σ′)−H0(σ)), (16)

where the condition of probability conservation,
∑

σ′ Wσ′σ = 0, has been used. These equa-

tions lead to the following form of Ĥ , using wσσ′ = wσ′σ,

Ĥ =
1

2

∑

σσ′

wσσ′

(

e−
1

2
β(H0(σ′)−H0(σ))|σ〉〈σ|+ e

1

2
β(H0(σ′)−H0(σ))|σ′〉〈σ′| − |σ′〉〈σ| − |σ〉〈σ′|

)

(17)

=
∑

σ

∑

σ′

wσσ′

(

e−
1

2
β(H0(σ′)−H0(σ))|σ〉〈σ| − |σ′〉〈σ|

)

. (18)

The second term of this last expression represents a transverse-field term if σ′ is different

from σ only by a single-spin flip because the transverse-field operator σx
i flips a single spin

at site i. The first term is then a diagonal interaction of a usual classical Ising model

with interaction range comparable to that of the original classical Ising model because the

quantity in the exponent, H0(σ
′) − H0(σ), includes only local interactions if σ′ and σ are
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different at a single site. Examples will be given below. It has hence been shown that

Markovian dynamics of a classical Ising model with short-range interactions is equivalent to

the stationary-state quantum mechanics of a transverse-field Ising model with comparable

interaction range. It is concluded that simulated annealing under quasi-static condition can

be exactly mapped to quantum annealing under adiabatic condition. In other words, if a

given combinatorial optimization problem expressed in terms of a short-range Ising model

can be solved efficiently by simulated annealing in the sense that no problematic first-order

phase transition occurs in the process, the same is always possible by quantum annealing.

In this sense, the efficiency of quantum annealing is at least comparable to that of simulated

annealing.

C. One-dimensional Ising model

As a concrete example, let us discuss the simple case of the one-dimensional Ising model

with nearest-neighbor interactions under a periodic boundary condition. The dynamics is

supposed to proceed under single-spin flip processes. Since σ′ is different from σ only at a

site, which is chosen as site j,

H0(σ
′)−H0(σ) = 2Jσj(σj−1 + σj+1) = −2Hj , (19)

where the final equality defines Hj.

First, for the heat-bath dynamics with Eq. (5), the diagonal and off-diagonal coefficients

in Eq. (18) are

wσσ′e−
1

2
β(H0(σ′)−H0(σ)) =

eβHj

eβHj + e−βHj
, wσσ′ =

1

eβHj + e−βHj
. (20)

It is relatively straightforward to evaluate these expressions using Eq. (19) to find the

following formula of the quantum Hamiltonian,

Ĥ =
N

2
− 1

2
tanh 2K

N
∑

j=1

σz
jσ

z
j+1 −

1

2 cosh 2K

N
∑

j=1

(

cosh2K − sinh2K σz
j−1σ

z
j+1

)

σx
j , (21)

where K = βJ , and σj has been replaced by the Pauli matrix σz
j . Equation (21) is a

one-dimensional transverse-field Ising model with nearest-neighbor interactions. In the high-

temperature limitK = 0, Eq. (21) reduces to a non-interacting transverse-field Hamiltonian,

Ĥ =
N

2
− 1

2

N
∑

j=1

σx
j , (22)
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whose ground state is completely disordered in the σz-basis. This is exactly the initial state

of quantum annealing. In the opposite limit K → ∞,

Ĥ =
N

2
− 1

2

N
∑

j=1

σz
jσ

z
j+1 −

1

4

N
∑

j=1

(

1− σz
j−1σ

z
j+1

)

σx
j . (23)

The state with all σz
j having eigenvalue 1 is an eigenstate of this Hamiltonian. The Perron-

Frobenius theorem assures that this is the unique ground state. Thus, the quasi-static

simulated annealing from high temperature to zero temperature has been mapped to the

behavior of the quantum system starting from the disordered state and ending up in the

ordered state after an adiabatic evolution.

The usual transverse-field Ising model with the Hamiltonian

Ĥ = −J
∑

j

σz
jσ

z
j+1 − Γ

∑

j

σx
j (24)

has a phase transition at Γ/J = 1. In contrast, the present model (21) with the additional

term involving σz
j−1σ

z
j+1 in front of σx

j has no phase transition between the two limiting cases

of Eqs. (22) and (23) because the original classical Ising model has no finite-temperature

transition. We thus conclude that the additional term in Eq. (21) having σz
j−1σ

z
j+1 drives

the system away from the quantum critical point, thus realizing a smooth (non-singular)

process in the course of quantum annealing. In Eq. (21), the coefficient of the transverse-

field term is small (cosh2K − sinh2K = 1) when the local spin alignment is ferromagnetic

σz
j−1σ

z
j+1 = 1 and is large (cosh2K + sinh2K > 1) when the spin alignment is different from

the target state σz
j−1σ

z
j+1 = −1. This means that the local, adaptive change of the coefficient

of transverse field is effective to avoid problematic quantum phase transitions in quantum

annealing. Although this lesson has been extracted from the simple one-dimensional Ising

model, it may be worth considering to implement a similar process of adaptive change of

the coefficient of the quantum driving term in more complicated cases when one encounters

difficulties in quantum annealing.

Another comment concerns the exact solution of the quantum system (21). This Hamil-

tonian can be diagonalized by the Jordan-Wigner transformation as will be discussed in the

next section. This serves as an additional route to the complete solution of the dynamics of

the one-dimensional classical Ising model pioneered by Glauber [33].

The Metropolis method with Eq. (4) can be analyzed in the same manner. The resulting
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quantum Hamiltonian is

Ĥ =
N

4
(3 + e−4K)

− 1

4
(1− e−4K)

N
∑

j=1

(

2σz
jσ

z
j+1 + σz

j−1σ
z
j+1

)

− 1

2
(1 + e−2K)

N
∑

j=1

(

1− tanhK σz
j−1σ

z
j+1

)

σx
j .

(25)

We again find that the coefficient of the transverse-field term is adaptively changed according

to the alignment of the local spins, σz
j−1σ

z
j+1. Notice that the diagonal interaction term now

involves next-nearest-neighbor interactions. It is of course still of short-range, but this

example shows that the range generally changes slightly.

It is also possible to implement random interactions,

H0(σ) = −
N
∑

j=1

Jjσj−1σj . (26)

The final expression of the Hamiltonian for the heat-bath update rule is then

Ĥ =
N

2
− 1

2

∑

j

cjsj
c2jc

2
j+1 − s2js

2
j+1

σz
j−1σ

z
j −

1

2

∑

j

cj+1sj+1

c2jc
2
j+1 − s2js

2
j+1

σz
jσ

z
j+1 (27)

− 1

2

∑

j

(

cjcj+1

c2jc
2
j+1 − s2js

2
j+1

− sjsj+1

c2jc
2
j+1 − s2js

2
j+1

σz
j−1σ

z
j+1

)

σx
j , (28)

where cj = cosh βJj and sj = sinh βJj. This Hamiltonian can be reduced to a quadratic form

of Fermion by the Jordan-Wigner transformation. It is not possible to completely diagonalize

the quadratic form using Fourier transformation due to the lack of translational invariance.

The quadratic expression nevertheless would give us a tool to analyze the classical dynamics

of the one-dimensional disordered Ising model by numerical diagonalization of large systems.

D. Non-equilibrium dynamics of the one-dimensional Ising model

The quantum Hamiltonian of Eq. (21) representing the heat-bath dynamics of the one-

dimensional Ising model can be solved exactly by an application of the Jordan-Wigner

transformation. Before it is applied, we transform the Hamiltonian to a more customary

form by performing π/2 rotations about the y-axis so that x→ z and z → −x. Following this
transformation, local fields are along the z-direction, coupling to σz

j , two-body interactions

are proportional to σx
j−1σ

x
j , and the three-body terms are ∝ σx

j−1σ
z
jσ

x
j+1.
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We introduce new operators

aj =
σx
j − iσy

j

2

j−1
∏

ℓ=1

(−σz
ℓ ) and a†j =

σx
j + iσy

j

2

j−1
∏

ℓ=1

(−σz
ℓ ) , (29)

which can be verified to obey the Fermionic anti-commutation relations:
{

aj , a
†
k

}

= δjk and

{aj , ak} =
{

a†j , a
†
k

}

= 0. With this substitution, the Hamiltonian (21) may be rewritten as

Ĥ = C+J1

N
∑

j=1

(

aj−a†j
)(

aj+1+a
†
j+1

)

+J2

N
∑

j=1

(

aj−1−a†j−1

)(

aj+1+a
†
j+1

)

−Γ
N
∑

j=1

(

a†jaj−aja†j
)

,

(30)

with C = N/2, J1 = (tanh 2K)/2, J2 = sinh2K/(2 cosh 2K), and Γ = cosh2K/(2 cosh 2K).

Interestingly, because Fermionic annihilation and creation operators (29) carry a chain prod-

uct
∏

ℓ(−σz
ℓ ), the three-body terms of the form σx

j−1σ
z
jσ

x
j+1 become quadratic after the trans-

formation. For the Metropolis dynamics, the quantum Hamiltonian Eq. (25) contains also

terms ∝ σx
j−1σ

x
j+1 giving rise to quartic terms. The exact analytical solution is possible only

for the heat-bath update rule.

Because of the way the boundary terms σx
Nσ

x
1 , σ

x
Nσ

z
1σ

x
2 , and σx

N−1σ
z
Nσ

x
1 are treated in

applying the transformation (29), boundary conditions require special treatments. For states

with even number of Fermions, anti-periodic boundary conditions (aN+k ≡ −ak) should be

used in Eq. (30); periodic boundary conditions (aN+k ≡ ak) will be used for states with odd

number of Fermions.

Diagonalization of Eq. (30) is performed using a variant of the Bogolyubov transforma-

tion. The quadratic form Eq. (30) can be written in a matrix form as

(

a† a

)





A B

−B −A









a

a†



 , (31)

where the only non-zero elements of matrices A and B are

Aj,j = −Γ, Aj,j±1 = −1
2
J1, Aj,j±2 = −1

2
J2, (32)

Bj,j±1 = ∓1
2
J1, Bj,j±2 = ∓1

2
J2. (33)

Here we assume that matrix indices are periodic (e.g. B1,−1 ≡ B1,N−1). Matrix (31) can

be diagonalized in terms of new quasiparticles with annihilation/creation operators γj, γ
†
j

connected to aj , a
†
j via a linear transformation





a

a†



 =





U V

V U









γ

γ
†



 , (34)
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so that

Ĥ =
(

γ
†
γ

)

(

ǫ 0

0 −ǫ

)(

γ

γ
†

)

≡
∑

α

ǫα
(

γ†αγα − γαγ
†
α

)

(35)

Lastly, we perform another transformation





F

G



 =
1√
2





1 1

−1 1









U

V



 (36)

to obtain a particularly compact formulation. Single-particle energies corresponding to

diagonal elements of ǫ satisfy the eigenvalue equation,

Γfj + J1fj+1 + J2fj+2 = ǫgj

Γgj + J1gj−1 + J2gj−2 = ǫfj ,
(37)

where fj and gj are, respectively, columns of F and G. Solutions to Eq. (37) can be sought

in the form fj = feipj, gj = geipj, where p is the momentum: p = π(2k + 1)/N for a sector

with even number of Fermions and p = 2πk/N for the odd sector (k = 0, 1, . . . , N − 1).

From the vanishing condition of the determinant for the system above, we obtain

ǫ2p =
∣

∣Γ + J1e
ip + J2e

2ip
∣

∣

2
=

1

4
(1 + tanh 2K · cos p)2 . (38)

No single-particle states with positive energies are occupied in the ground state. The

ground-state energy is E0 = C −
∑

p ǫp which is trivially verified to be zero as should be

expected. Energies of excited states can be written as

Ep1,...,pν = 2ǫp1 + 2ǫp2 + · · ·+ 2ǫpν , (39)

corresponding to ν excitations with momenta p1, . . . , pν chosen from the appropriate set,

depending on the parity of ν. This additive form is in general agreement with the origi-

nal analysis by Glauber who used a different technique to find the spectrum [33]. In the

more general case of random interactions, nearest-neighbor and next-nearest-neighbor cou-

plings become site-dependent. Single-particle energies are easily obtained numerically by

diagonalizing a sparse matrix.

From Eqs. (38) and (39) we see that the gap remains finite in the thermodynamic limit

∆ = Emin = 1 − tanh 2K > 0 at non-zero temperature, consistent with a lack of phase

transition for the classical model.
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IV. QUANTUM HAMILTONIAN TO CLASSICAL DYNAMICS

The next step is to find a converse mapping from a quantum Hamiltonian to classical

dynamics, again following Castelnovo et al [28].

Suppose we are given a quantum Hamiltonian Ĥ , whose ground-state energy is chosen

to be 0 by a shift of the energy standard, Ĥφ̂(0) = 0. In order to derive the Markovian

dynamics of a classical Ising model from the quantum Hamiltonian Ĥ, we assume that this

Ĥ is represented in the basis to diagonalize {σz
i }i and also that off-diagonal elements are

negative semi-definite, Hσσ′ ≤ 0 (σ 6= σ′). Then, according to the Perron-Frobenius theorem

applied to Ĥ ′ = −Ĥ , the eigenvector φ̂(0) of Ĥ ′ for the largest eigenvalue is not degenerate

and all its elements can be chosen to be positive. This allows us to take the logarithm of

each element to define the classical Ising model,

H0(σ) = −2 logφ(0)
σ . (40)

This definition is motivated by the opposite mapping (13) up to a constant. Then, the

matrix defined by

Ŵ = −e− 1

2
Ĥ0Ĥe

1

2
Ĥ0 (41)

satisfies the following conditions required for a transition matrix of classical dynamics,

Wσσ′ ≥ 0 (σ 6= σ′) (42)

(1, 1, 1, · · · , 1)Ŵ = 0 (43)

Ŵe−βĤ0

∑

σ

|σ〉 = 0 (44)

Wσσ′e−H0(σ′) = Wσ′σe
−H0(σ). (45)

Equation (42) follows from Hσσ′ ≤ 0. Equation (43) for the conservation of probability

comes from

∑

σ

Wσσ′ = −
∑

σ

e−
1

2
H0(σ)Hσσ′e

1

2
H0(σ′) = −

∑

σ

φ(0)
σ Hσσ′e

1

2
H0(σ′) = 0, (46)

where we have used Ĥφ̂(0) = 0. Equation (44) for equilibrium is due to Ĥφ̂(0) = 0. Finally,

Eq. (45) can be derived from Eq. (41).

A quantum-to-classical mapping has thus been established. An important difference

from the opposite classical-to-quantum mapping is the range of interactions in the resulting
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classical Hamiltonian. To accommodate the values of φ
(0)
σ for all spin configurations of

σ = (σ1, · · · , σN ), the Hamiltonian H0(σ) of Eq. (40) should be expressed as a linear

combination of all possible products and sums of spin variables,

H0(σ) = J (0) +
∑

i

J
(1)
i σi +

∑

i,j

J
(2)
ij σiσj +

∑

ijk

J
(3)
ijkσiσjσk + · · ·+ J (N)σ1σ2 · · ·σN . (47)

By relating this expression with φ
(0)
σ following Eq. (40) and assigning all possible values of σ

to Eq. (40), we obtain a set of linear equations for the 2N coefficients J (0), {J (1)
i }i, · · · , J (N).

Its solution generally has non-vanishing values of all those coefficients. This means that

the Hamiltonian H0 has very complicated multibody long-range interactions as given in

Eq. (47) even if the original quantum Hamiltonian Ĥ has only short-range interactions.

Although the eigenvalues and eigenstates are shared by the quantum Ĥ and the classical Ŵ ,

an implementation of the classical dynamics in simulated annealing is actually inefficient due

to the complicated interactions. This is in marked contrast with the opposite classical-to-

quantum mapping, where short-range interactions are mapped to short-range interactions.

Another point to notice is the constraint of negative semi-definiteness of the off-diagonal

elements, Hσσ′ ≤ 0. This is necessary for wσσ′ to be positive as required for a transition

matrix. This condition excludes, for example, the interesting case of an antiferromagnetic

fluctuation term ∝ (
∑

i σ
x
i )

2 with a positive coefficient in addition to the usual transverse-

field term with a negative coefficient in Ĥ , which has been shown to be effective to remove

problematic first-order quantum phase transitions [34, 35].

It is possible to devise a quantum-to-classical mapping without the above-mentioned neg-

ative semi-definiteness of off-diagonal elements [28]. However, in such a case, it is necessary

to choose the eigenstates of Ĥ as the basis of matrix representation to carry through the

mapping, which makes it difficult to interpret the resulting classical Hamiltonian as an Ising

model.

V. TIME-DEPENDENT TEMPERATURE

If the temperature has explicit dependence on time as is the case in most simulated

annealing applications, the transition matrix also has time dependence. This section is

devoted to classical-to-quantum correspondence in such a case
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A. Classical to quantum mapping

The master equation with time-dependent transition matrix is written as

dP̂ (t)

dt
= Ŵ (t)P̂ (t), (48)

where P̂ (t) is a vector with element (P̂ (t))σ = Pσ(t). The corresponding quantum system

is constructed as

Ĥ(t) = −e 1

2
β(t)Ĥ0Ŵ (t)e−

1

2
β(t)Ĥ0 . (49)

If we introduce a wave function as

φ̂(t) = e
1

2
β(t)Ĥ0 P̂ (t), (50)

the master equation (48) is rewritten as

−dφ̂(t)
dt

=

(

Ĥ(t)− 1

2
β̇(t)Ĥ0

)

φ̂(t). (51)

This is regarded as an imaginary-time Schrödinger equation: If we rewrite the time as t→ it

in the time-derivative on the left-hand side, the usual form of the Schrödinger equation

results,

i
dφ̂(t)

dt
=
(

Ĥ(t)− 1

2
β̇(t)Ĥ0

)

φ̂(t). (52)

Equations (51) and (52) show that an additional term proportional to the time derivative

of the inverse temperature is to be appended to the quantum Hamiltonian to accommodate

explicit time dependence of temperature in the classical-to-quantum mapping.

B. Convergence condition of simulated annealing

Somma et al. [29] discussed the convergence condition that the temperature as a function

of time, T (t), should satisfy in simulated annealing for the system to reach the ground

state. They used the classical-to-quantum mapping without explicit time dependence of

temperature as developed in Sec. III, though in a slightly different form as will be discussed

below. Then they applied the adiabatic theorem to the quantum system Ĥ and derived a

result that is essentially equal to that of Geman and Geman [30], β(t) ∝ log t/pN , where p

is an O(1) constant. We discuss here a few problems in their analysis and show that their

result turns out to be justifiable by appropriately amending their argument.
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First, the adiabatic theorem of quantum mechanics is derived from the time-dependent

Schrödinger equation, but they did not discuss explicitly the relation between the original

classical master equation, which governs simulated annealing, and the Schrödinger equation.

Our result in Eq. (51) indicates that the master equation is written as an imaginary-time

Schrödinger equation, not the usual real-time Schrödinger equation. It has, nevertheless,

been shown [8] that the adiabatic theorem holds in the same form also for the imaginary-

time Schrödinger equation, which validates their analysis.

The second point concerns the additional term, −1
2
β̇(t)Ĥ0. Somma et al. did not take

this term into account. However, according to their result, β(t) ∝ log t/(pN), the additional

is inversely proportional to the system size and thus can be neglected in the limit of large

system size. This serves as an a posteriori justification of their analysis using only the Ĥ

term.

The final comment is on the choice of the symmetric part of the transition matrix, wσσ′ ,

which they chose as wσσ′ = e−pN , where p ≈ maxj |Hj|. This is allowed as it does not

violate the conditions that the transition matrix should satisfy. However, this choice of wσσ′

is different from the commonly-used heat-bath and Metropolis methods, which have explicit

dependence on σ and σ′. This latter dependence is reflected in the dependence on σz
j−1σ

z
j+1

of the transverse-field term in Eqs. (21) and (25). Although it may happen that the final

conclusion of Somma et al., β(t) ∝ log t/(pN), does not depend upon the specific choice

of the transition matrix, it is an interesting problem to complete their analysis for more

common types of wσσ′ .

VI. SUMMARY AND CONCLUSION

We have analyzed the framework of classical-quantum correspondence of Castelnovo et

al. and have applied it to simulated annealing of the classical Ising model to study its

relation with quantum annealing using the transverse-field Ising model. It has been shown

that the eigenvalue spectrum is shared by the transition matrix of the classical dynamics

and the corresponding quantum Hamiltonian. It then follows that the existence or absence

of a phase transition and its order are shared by the classical and quantum systems. An

important consequence is that simulated annealing of the classical Ising model and quantum

annealing by the corresponding transverse-field Ising model have the same degree of efficiency
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as long as both are run very slowly in the change of relevant parameters, that is, in quasi-

equilibrium classically and adiabatically in the quantum case. Thus, simulated annealing and

quantum annealing can be regarded as equivalent if the transition matrix and the quantum

Hamiltonian are chosen to satisfy the key relation of Eq. (9). The classical-to-quantum

mapping has also been shown to provide an alternative solution to the non-equilibrium

dynamics of the one-dimensional Ising model.

The classical and quantum approaches, nevertheless, have an important difference in the

range of interactions in the Hamiltonians. The classical-to-quantum mapping yields short-

range interactions for the quantum Hamiltonian if the range is short in the classical case, but

the converse is not true. The classical Hamiltonian generated from a quantum system has

in general very complicated many-body long-range interactions. The range of interactions

affects the efficiency in implementation of annealing, and we may conclude that quantum

annealing has a wider range of practical usefulness. This conclusion is reinforced by the

restriction of the sign of matrix elements of quantum Hamiltonian that can be mapped to

classical dynamics.

System parameters such as the temperature are changed relatively rapidly in practical

applications of simulated annealing and quantum annealing. We have formulated a classical-

to-quantum mapping to cover such a case. The Markovian dynamics has been shown to be

mapped to an imaginary-time Schrödinger dynamics with an additional term proportional

to the time-derivative of the inverse temperature. This formulation would serve as a tool to

analyze the performance of rapid processes.

An overall conclusion is that simulated annealing and quantum annealing share common

aspects in their essential part in spite of the complete difference of classical and quantum

processes. Quantum annealing, nevertheless, covers a wider range of efficient implementa-

tion.
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