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We report erosion of synchronization in networks of coupled phase oscillators, a phenomenon where perfect

phase synchronization is unattainable in steady-state, even in the limit of infinite coupling. An analysis reveals

that the total erosion is separable into the product of terms characterizing coupling frustration and structural

heterogeneity, both of which amplify erosion. The latter, however, can differ significantly from degree hetero-

geneity. Finally, we show that erosion is marked by the reorganization of oscillators according to their node

degrees rather than their natural frequencies.

PACS numbers: 05.45.Xt, 89.75.Hc

Synchronization of network-coupled oscillators is a central

topic of research in the field of complex systems [1–3] due

to its importance in many natural [4, 5] and engineered sys-

tems [6, 7]. In the case of diffusively-coupled limit-cycle os-

cillators, Kuramoto showed [8] that the dynamics of an en-

semble of N oscillators can be treated through a reduction to

N phase oscillators θi for i = 1, . . . , N . When placed on a

network, the evolution of each oscillator is governed by

θ̇i = ωi +K

N
∑

j=1

AijH (θj − θi) , (1)

where ωi is the natural frequency of oscillator i, K > 0 is the

global coupling strength, [Aij ] is the adjacency matrix encod-

ing the network, and H is the coupling function, which we

assume to be 2π-periodic and continuously differentiable.

Investigations of Eq. (1) have deepened our understand-

ing of emergent collective behavior and the interplay be-

tween structure and dynamics [9–19]. A key and essential

element in this vein is the coupling function H(θ) that en-

codes the manner in which interactions between oscillators

occur. In particular, we refer to interactions as frustrated if

h = |H(0)/
√
2H ′(0)| > 0. In other words, a system is frus-

trated if the contribution to the dynamics in Eq. (1) does not

vanish when all phases are equal. The presence of coupling

frustration is essential in modeling excitable and reaction-

diffusion dynamics because neighboring oscillators cannot re-

act simultaneously, but rather one after another [20]. Such

examples are numerous in biological, chemical, and physi-

cal systems including neuron excitation [21], cardiac dynam-

ics [22], and the Belousov-Zhabotinsky reaction [23]. With

regard to the network dynamics we ask, what are the conse-

quences of coupling frustration? In this Letter we introduce

and study erosion of synchronization, a novel phenomenon

that occurs in frustrated systems in which perfect phase syn-

chronization (characterized by θ1 = θ2 = · · · = θN ) becomes

unattainable even in the limit of infinite coupling strength. We

measure the degree of phase synchronization using the order

parameter [8]

reiψ =
1

N

N
∑

j=1

eiθj , (2)

where reiψ denotes the phases’ centroid in the complex unit

circle and r ranges from 0 (complete incoherence) to 1 (per-

fect synchronization). We define total erosion as the limiting

value of 1 − r as K → ∞, denoted as 1 − r∞. Our anal-

ysis reveals that total erosion is separable into a product of

two terms characterizing, respectively, the coupling frustra-

tion and structural heterogeneity of the network, which relates

to the alignment of the nodal degrees with the eigenvectors

of the network Laplacian matrix. We find that both coupling

frustration and structural heterogeneity amplify erosion. De-

spite the nontrivial dependence of total erosion on network

structure, the synchronized oscillators in fact organize accord-

ing to their degrees instead of their natural frequencies. For

the remainder of this Letter we present a general analysis that

illustrates our findings, which we then support with numerical

experiments.

We now consider the dynamics of Eq. (1) in the strong cou-

pling regime where r ≈ 1, following Ref. [18]. We note that

such a state can be obtained in several ways, most notably

by considering a large enough coupling strength or a small

enough spread in the natural frequencies. In fact, these two

cases are the same since increasing K is equivalent to appro-

priately rescaling the natural frequencies and time. Thus, the

results presented in this Letter describe the dynamics in both

cases. For simplicity we assume that the underlying network

is connected, unweighted, and undirected, such thatAij = 1 if

an edge exists between nodes i and j, and otherwise Aij = 0.

In the strong coupling regime phases become tightly clustered

around the mean phase ψ such that |θi − θj | ≪ 1 for all (i, j)
pairs. We will later numerically corroborate this assumption.

In this regime Eq. (1) can be linearized to

θ̇i ≈ ωi +KH(0)di −KH ′(0)

N
∑

j=1

Lijθj , (3)
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where di =
∑N

j=1
Aij is the degree of node i and [Lij ] is

the Laplacian matrix, defined by Lij = δijdi − Aij , which

has the following spectral properties. First, since the net-

work is connected and undirected, all eigenvalues of L are

real, non-negative, and can be ordered 0 = λ1 < λ2 ≤
· · · ≤ λN−1 ≤ λN . Second, the normalized eigenvectors

{vi}Ni=1
form an orthonormal basis for RN . The eigenvec-

tor associated with λ1 = 0 is v1 ∝ 1, which corresponds to

the synchronization manifold. Finally, L has pseudo-inverse

L† =
∑N
j=2

λ−1

j v
j
v
jT [24], whose null space is the span of

v
1. Thus, L† projects vectors onto the subspace of zero-mean

vectors.

Inspecting Eq. (3), we find that the mean velocity is Ω =
〈ω〉 + KH(0)〈d〉, where 〈·〉 denotes average over the pop-

ulation. In the rotating reference frame θi 7→ θi − Ωt, the

steady-state solution is given by

θ
∗ =

L†

H ′(0)

(

ω

K
+H(0)d

)

, (4)

where ω and d respectively denote the vectors containing the

node frequencies and degrees. We now consider the order pa-

rameter for the steady-state solution θ
∗ in Eq. (4). First, in the

strong coupling regime, |θ∗j | ≪ 1 for all j, and thus Eq. (2)

can be rewritten as

r ≃ 1− ‖θ∗‖2/2N. (5)

Next, by the spectral decomposition of the pseudo-inverse L†

and using ‖θ∗‖2 = 〈θ∗, θ∗〉, we obtain

r ≃ 1− J(ω̃, L)/2K2H ′2(0), (6)

where ω̃ = ω + KH(0)d and J is the synchrony alignment

function [18]

J(ω̃, L) =
1

N

N
∑

j=2

λ−2

j 〈vj , ω̃〉2. (7)

In Ref. [18] we derived the synchrony alignment function

to optimize synchronization properties of networks under the

condition that H(0) ≪ H ′(0). Here, we will demonstrate its

utility in studing erosion of synchronization. In particular, in

the limit K → ∞ we obtain from Eqs. (6) and (7) that

1− r∞ ≃ H2(0)

2H ′2(0)
J(d, L). (8)

Equation (8) provides a quantitative measure of the total

erosion of synchronization as a product of the square of the

coupling frustration h = |H(0)/
√
2H(0)| and the structural

heterogeneity J(d, L). Note that the natural frequencies ω

have no effect on the total erosion. We point out that this

separation allows us to seamlessly combine the coupling and

structural properties of the network to predict the total ero-

sion of synchronization and is reminiscent of the separation

of dynamical and structural properties in the Master Stabil-
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FIG. 1. (Color online) Erosion of synchronization. Profiles 1− r vs

K for (a) a fixed network of model I (γ = 3) varying α between

0 (black circles, bottom) and 0.4 (red diamonds, top), (b) several

networks of model I with γ between 4.5 (blue circles, bottom), and 3
(red diamonds, top) with fixed α = 0.2, and (c) several networks of

model II with β between 0 (blue circles, top) and 1 (red diamonds,

bottom) with fixed α = 0.3. Theoretical predictions for 1 − r∞ are

denoted with dashed horizontal lines. Other network parameters are

N = 1000, 〈d〉 = 4, and m = 1.6. (d) J(d, L) vs degree variance

σ2

d for network models I (blue circles) and II (red triangles). Data

point in (b) and (c) represent an averages over 20 networks, and data

point in (d) represent averages over 100 networks.

ity Function approach for analyzing network synchronization

of identical [25] and nearly-identical oscillators [26]. Equa-

tion (8) also implies that perfect synchronization is possible if

and only if h or J(d, L) is zero. For a fixed network with non-

zero J(d, L), the total erosion is amplified by coupling frus-

tration and disappears only in its absence. On the other hand,

for a given coupling function, the effect on network structure

on erosion may be understood through J(d, L). While it is

straightforward to show that J(d, L) = 0 for regular networks

(i.e., d1 = d2 = · · · = dN ), as we will show with numerical

experiments, increasing the amount of degree heterogeneity

can either increase or decrease J(d, L).

Two key observations follow from the theory developed in

Eqs. (3)-(8). First, a tightly clustered state |θi − θj| ≪ 1
for all (i, j) pairs is equivalent to r being close to one. From

Eq. (8) it follows that our theory remains valid provided that

h2J(d, L) ≪ 1, which we demonstrate in examples below.

Second, we note that the steady-state solution in Eq. (4) is

stable for small enough h since the Jacobian DF of Eq. (1)

evaluated at θ∗ is approximately proportional to the negative

Laplacian, and thus its spectrum is contained in the left-half

complex plane. Towards the end of the Letter we will demon-

strate that the solution remains stable for significantly larger

frustration values as well.

As an illustrative example of our theory, we consider for

the remainder of this Letter the Sakaguchi-Kuramoto (SK)
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model [27], which is characterized by H(θ) = sin(θ − α)
and has found extensive applications in reaction-diffusion [8]

and excitable systems [28] and has been linked with the for-

mation of chimera states [29, 30] and non-universal synchro-

nization transitions [31]. Importantly, the coupling frustration

h = | tan(−α)|/
√
2 is tunable via the phase-lag parameter

α ∈ (−π/2, π/2).
Moreover, we consider two network models. Model I con-

sists of scale-free (SF) networks with power-law degree distri-

bution P (d) ∝ d−γ built using the configuration model with a

fixed mean degree 〈d〉 and tunable exponent γ [32]. Model II

is given by the following generalization of Ref. [33]: For a

prescribed heterogeneity parameter β ∈ [0, 1] and minimum

degree d0, a network is initialized with d0+1 fully connected

nodes. Nodes are then added one-by-one, each making d0
links to the previously existing nodes until the network con-

sists of a total of N nodes. Each link is made either pref-

erentially or at random: with probability β the link is made

preferentially to a node i with probability pi ∝ (di − m),
and otherwise the link is made uniformly at random. Here the

parameter m < d0 modifies the heterogeneity of the network.

Networks generated by model II have mean degree 〈d〉 = 2d0.

When β = 0 the model yields an Erdős-Rényi random net-

work [35] with an approximately Poisson degree distribution,

whereas β = 1 gives a preferential attachment network [34]

with degree distribution P (d) ∝ d−γ with γ = 3 − m/d0.

In all simulations the natural frequencies are independently

drawn from the unit normal distribution.

We now numerically explore erosion of synchronization.

Beginning with the effect of frustration, we consider for

model I a fixed network of size N = 1000 with γ = 3,

〈d〉 = 4, and varying α. In Fig. 1(a) we show 1− r as a func-

tion of the coupling strength K from simulations of Eq. (1)

using α values between 0 to 0.4. While 1 − r decays as a

power-law for α = 0 (i.e., no frustration), for non-zero α the

1 − r values approach their expected values given by Eq. (8)

(dashed horizontal lines).

To explore the effect of network structure on erosion we

first consider networks from model I withN = 1000, 〈d〉 = 4,

varying γ, and fixed α = 0.3. As shown in Fig. 1(b), for

each γ the value 1 − r approaches 1 − r∞ as the coupling

strength K increases. The total erosion 1 − r∞ increases as

γ decreases, that is, increased degree heterogeneity amplifies

the total erosion. Interestingly, the same does not hold true if

we consider networks of model II. Figure 1(c) shows that for

model II networks of the same size N = 1000 and average

degree 〈d〉 = 4, total erosion is in fact mitigated by increasing

the degree heterogeneity, here represented by the increase of

β. This surprising result suggests that erosion of synchroniza-

tion depends significantly on other microscopic and macro-

scopic properties of the network in a highly nontrivial man-

ner. This is further supported in Fig. 1(d), where we show that

J(d, L) tends to increase and decrease, respectively, in net-

work models I and II as the degree variance σ2

d = 〈d2〉 − 〈d〉2
increases.

To explore the combined effect of coupling frustration
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FIG. 2. (Color online) Parameter space of erosion. Total erosion

1 − r∞ as a function of heterogeneity (γ or β) and phase-lag α for

(a) model I and (b) model II. Results are averaged over 100 network

realizations with N = 1000, 〈d〉 = 4, and m = 1.6.

and network structure on the erosion of synchronization, we

present in Fig. 2(a) and (b), respectively, the parameter space

for the total erosion of synchronization for models I and II.

Specifically, color indicates 1− r∞ as a function of both frus-

tration (parameter α) and network heterogeneity (parameter γ
in model I and β in model II), which once again highlights that

while greater frustration amplifies erosion, larger degree het-

erogeneity either amplifies (model I) or mitigates (model II)

erosion.

Next we discuss the microscopic properties of synchronized

states, which will elucidate the mechanism for erosion of syn-

chronization. Revisiting Eq. (3), the two contributing terms

to the heterogeneity of the oscillators’ dynamics are the natu-

ral frequencies ωi and the degrees KH(0)di. When the cou-

pling frustration h = |H(0)/
√
2H ′(0)| = 0 the latter van-

ishes and heterogeneity is captured solely in the natural fre-

quencies. Thus, from Eq. (4) we see that in a strongly syn-

chronized state oscillators organize themselves according to

θ
∗ ∝ L†

ω, i.e., their positions are determined jointly by the

network structure as well as natural frequencies. In fact, the

oscillators’ organization has a strong positive correlation with

the natural frequencies, which we illustrate in Fig. 3(a) for a

network of type II (N = 1000, β = 0.5, 〈d〉 = 4, m = 1.6).

On the other hand, in the presence of frustration (h 6= 0), for

large enough K the term KH(0)di dominates and the natu-

ral frequencies can be neglected. In this case Eq. (4) implies

that oscillators in a strongly synchronized state organize ac-
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FIG. 3. (Color online) Microscopic reorganization. Organization in a

synchronized state (a) without frustration θ∗i ∝ (L†
ω)i vs ωi and (b)

with frustration θ∗i ∝ (L†
ω)i vs ωi. The network is model II with

N = 1000, β = 0.5, 〈d〉 = 4, and m = 1.6. For easy visualization

we have normalized θ
∗ to have unit standard deviation.
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FIG. 4. (Color online) Stability of synchronization. Averaged over

1000 model II networks with β = 0 (blue circles) and 1 (red trian-

gles), (a) the fraction of unstable solutions and (b) the average real

part of the maximal nontrivial Jacobian eigenvalues (standard devi-

ation indicated by dashed line tubes). Other network parameters are

N = 1000, 〈d〉 = 4, and m = 1.6. Each data point is an average

over 1000 independent network realizations.

cording to θ
∗ ∝ cL†

d, where the sign of c is determined by

H(0)/H ′(0), i.e., their position depends solely on the net-

work structure. The oscillators’ organization is strongly cor-

related with the degrees, which we illustrate in Fig. 3(b).

Before concluding, we briefly discuss the stability of the

steady-state solution θ
∗ given by Eq. (4). In particular, θ∗

is stable if the nontrivial eigenvalues of the Jacobian DF of

Eq. (1) all have negative real part. The entries of the Jaco-

bian are given by DFij = KAijH
′(θ∗j − θ∗i ) for j 6= i and

DFii = −K∑

j 6=iAijH
′(θ∗j − θ∗i ). Thus, for small frus-

tration DF ∝∼ −L and consequently the solution is stable.

As the coupling frustration increases, the eigenvalues of DF
can potentially cross into the right-half complex plane, ren-

dering the solution θ
∗ unstable. We investigate this transition

by computing the spectra of networks from model II with two

different choices of β (0 and 1) and α ∈ [0, π/4]. Other net-

work parameters are N = 1000, 〈d〉 = 4, and m = 1.6.

In Fig. 4(a) we plot the fraction of 1000 network realizations

that yield unstable solutions, and in Fig. 4(b) we plot the max-

imum real part of the nontrivial eigenvalues plus and minus

the standard deviation (dashed curves). The instability transi-

tion occurs only if at least one entry in the off-diagonal ofDF
is positive, which gives a necessary condition for instability,

min
Aij 6=0

H ′

(

H(0)

H ′(0)

[

(L†
d)j − (L†

d)i

]

)

< 0. (9)

Using Eq. (9) we calculate for each experiment above the

lower-bound αc for instability to occur, indicating the aver-

age αc with vertical lines (dashed and dot-dashed for β = 0
and 1, respectively) in Fig. 4(a), which are in good agreement

with our numerics.

In this Letter we have investigated erosion of synchroniza-

tion, a novel phenomenon where perfect synchronization be-

comes unattainable in steady-state, even in the limit of infinite

coupling strength. Our analysis reveals that erosion arises due

to the presence of two system properties: frustration in the

coupling function governing the oscillators’ interactions and

structural heterogeneity of the underlying network. In partic-

ular, the total erosion of synchronization can be quantified as

a product of terms that correspond to these respective proper-

ties, and which both amplify erosion. Erosion is marked by

oscillators reorganizing themselves according to their local

network structure, rather than according to their natural fre-

quencies. Finally, we showed that a sufficiently large amount

of frustration can cause the synchronized state to lose stability.

Our theoretical results center on the synchrony alignment

function given by Eq. (7), which is a quantitative measure

of the interplay between a vector (here the degree vector d)

and the network Laplacian. The synchrony alignment func-

tion was recently derived and utilized for the optimization of

synchronization in the absence of coupling frustration [18].

Here, we adopted it as an analytical tool for studying the ero-

sion of synchronization that emerges in networks of coupled

oscillators under the presence of coupling frustration. One

particularly interesting and somewhat counterintuitive find-

ing is that the structural heterogeneity of a network cannot

be merely extrapolated from its degree distribution or other

simple local characteristics such as degree-degree correlation

and clustering. Depending on the detailed connection of the

nodes, a network with a relatively homogeneous degree distri-

bution can in fact be relatively structural heterogeneous, and

vice versa. Given the importance of frustrated interactions

in physical, chemical, and biological applications [20, 28],

deeper investigation into the effects of macroscopic and mi-

croscopic network properties could be vital in developing a

full understanding of the dynamics of Eq. (1) and other cou-

pled systems of nonlinear dynamical systems.

Finally, we point to a possible application and future work.

With the goal of optimizing synchronization in mind, one

key question is how synchronization erosion can be mitigated

when coupling frustration and network heterogeneity are un-

avoidable. We hypothesize that in a more general setting, cou-

pling frustration and network heterogeneity, both of which in-

dividually cause and amplify erosion, can in fact be jointly

exploited to improve and even optimize synchronization.
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