
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Combining Kohn-Sham and orbital-free density-functional
theory for Hugoniot calculations to extreme pressures

Daniel Sheppard, Joel D. Kress, Scott Crockett, Lee A. Collins, and Michael P. Desjarlais
Phys. Rev. E 90, 063314 — Published 22 December 2014

DOI: 10.1103/PhysRevE.90.063314

http://dx.doi.org/10.1103/PhysRevE.90.063314


Combining Kohn-Sham and orbital-free density-functional theory

for Hugoniot calculations to extreme pressures

Daniel Sheppard,1, ∗ Joel D. Kress,1 Scott Crockett,1

Lee A. Collins,1 and Michael P. Desjarlais2

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

2Pulsed Power Sciences, Sandia National Laboratories, Albuquerque, New Mexico 87185

Abstract

The shock Hugoniot for Lithium 6 Deuteride (6LiD) was calculated v ia first principals using

Kohn-Sham density functional theory molecular dynamics (KSMD) for temperatures of 0.5-25 eV.

The upper limit of 25 eV represents a practical limit where KSMD is no longer computational

feasible due to the number of electronic bands which are required to be populated. To push the

Hugoniot calculations to higher temperatures we make use of Orbital-Free density functional theory

molecular dynamics (OFMD). Thomas-Fermi-Dirac based OFMD gives a poor description of the

electronic structure at low temperatures so the initial state is not well defined. We propose a method

of bootstrapping the Hugoniot from OFMD to the Hugoniot from KSMD between 10-20 eV where

the two methods are in agreement. The combination of KSMD and OFMD allows construction

of a first-principles Hugoniot from the initial state to 1000 eV. Theoretical shock-compression

results are in good agreement with available experimental data and exhibit the appropriate high

temperature limits. We show that unified KSMD/OFMD Hugoniot can be used to assess the

quality of the existing equation of state (EOS) models and inform better EOS models based on

justifiable physics.

∗Electronic address: danielsheppard@lanl.gov

1



I. INTRODUCTION

At present, for an extensive range of temperatures and densities from melt to a fully-

ionized plasma, Density Functional Theory Molecular Dynamics [DFT-MD, also known as

Q(uantum)MD] provides the most consistent determination of microscopic properties such

as equation of state, mass diffusion, viscosity, opacity, and thermal conductivity. Given

the nature of the warm dense matter (WDM) regime, the fast-moving electrons require a

quantum mechanical treatment through the solution of a Schrödinger-like equation for the

complex many-electron wave function from which the basic electronic properties and forces

on the ions derive. In turn, the slow-moving ions advance according to classical Newtonian

equations-of-motion by standard MD prescriptions. For the electronic component, which

computationally dictates the rate-determining step, we employ finite-temperature density

functional theory (DFT) formulations in two distinct flavors: the orbital-based Kohn-Sham

(KS) and the density-based orbital-free (OF). The computational cost of the KSMD ap-

proach confines its applications to temperatures below about 20 eV for matter at ambient

solid densities. However, as the density increases so too does the effective temperature range.

For example, KSMD has effectively treated hydrogen at 80 g/cm3 up to a temperature of

800 eV[1, 2]. The KSMD uses highly sophisticated treatments of the electrons that can pro-

duce results at the level of quantum chemistry and condensed matter accuracy. For higher

temperatures at which quantum effects become less important, we appeal to OFMD with

semi-classical approximations to the electron contributions, which in turn smoothly extends

into the extreme temperature limit of a hot plasma. The OFMD therefore forms a natural

bridge between the low- and high-temperature regimes.

Hugoniots based solely on KSMD simulations have become a common feature since the

turn of the millennium [3, 4] with constructions for a variety of materials, for example, N2

[5], diamond[6], and Xe[7]. However, the above-mentioned limitations have restricted the

range of applications. Several recent studies[8–13] have documented a generally smooth

transition between the KS and OF regimes for a few species over specific ranges of temper-

ature and densities for selected properties such as equation of state (EOS), mass transport,

and conductivities. Wang and Zhang even leverage this overlap to calculate the Hugoniot

for H2 using OFMD[14]. Such auspicious findings call for a systematic examination of the

efficacy of generating equation-of-state (EOS) tables or Hugoniots using both formulations
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in tandem to cover a broad expanse of phase space. In addition, the role such ab initio

approaches might play in providing better data for the generation of empirical EOSs needs

further clarification. To examine some of these possibilities, we focus on the 6LiD system,

which presents sufficient complexities to provide a illustrative example.

The remainder of the paper includes three sections. In Section II, we briefly describe the

KSMD and OFMD approaches as well as the matching procedure for systematically joining

the two. We will summarize available LiD shock data and also discuss the construction of

empirical equations of state. The next section presents the results of a set of calculations for

the principal Hugoniot of 6LiD that demonstrate the efficacy of bootstrapping the OFMD

from the KSMD and gives a comparison with the empirical models. Section IV summarizes

our findings and observations.

II. FORMULATION

A. Quantum Molecular Dynamics

For both flavors of the QMD, we consider a cubic cell of volume (V=L3) of Ni ions and

Ne electrons, periodically-replicated throughout space to represent a fluid and invoke the

Born-Oppenheimer approximation to separate the electronic and nuclear motions. The nu-

clei move according to classical equations of motion (EOM) in response to a force on an

ion from the interactions with other ions and a quantal contribution from the electrons at

a fixed ion configuration [Ri, i=1,Ni]. The repetition of this two-step process over a se-

ries of timesteps constitutes the molecular dynamics prescription that produces a trajectory

of ionic positions and velocities as well as an electronic wavefunction Ψ(rj ,Ri, t) and den-

sity ne =
∫
Ψ∗Ψdr with the electrons occupying positions r ≡ [r1, ..., rNe

]. Various static,

dynamic, and conductive properties derive from the direct trajectory information. Local

thermodynamic equilibrium results in equal electron and ion temperatures (Te = Ti = T )

with the former held fixed, and the latter maintained through an isokinetic thermostat[15].

The KS-DFT calculations employed the Vienna Ab initio Simulation Package, VASP

[16–18] with the electronic wavefunctions described by a plane-wave basis set within the

Generalized Gradient Approximation (GGA) for the Perdew-Burke-Ernzerhof[19] (PBE)

exchange-correlation having the ion-electron interaction represented by projector augmented
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wave (PAW) potentials [20] in the all-electron GW forms. The energy cut-offs for plane

waves and augmentation charges were set to 823 eV and 1706 eV, respectively. These values

correspond to the optimum cut-off when building the PAW, with kinetic energy errors of

0.0078 eV/atom for Li and 0.0026 eV/atom for D. The standard MD simulation employed

the Baldereschi mean-value point[21] with 32 6Li and 32 D atoms. The timesteps varied

from 0.025 fs to 0.2 fs, depending on the temperature, with trajectory lengths of thousands

of time steps. We also performed calculations with larger numbers of atoms as well as higher

energy cut-offs and observed only small differences of a few per cent.

In OFMD simulations[8, 9, 22, 23], the force due to the electrons arises from the min-

imizations of a finite-temperature orbital-free density functional(OF-DFT) in terms of the

electron density ne(r) of the form:

Fe[ne] = T0[ne] + Uen[ne] + Uee[ne] + Fxc[ne]. (1)

We operate in a Thomas-Fermi-Dirac mode with the kinetic-entropic T0[ne] of Perrot [24],

the electron-ion interaction Uen from a regularization prescription[8], the electron-electron

Hartree contribution Uee, and the exchange-correlation term Fxc from a local density Perdew-

Zunger form[25]. The number of plane waves describing the local electronic density is then

adjusted to converge the thermodynamic properties to within 1%. The OF procedure treats

all electrons on an equal footing, albeit approximately, with no distinction between bound

and ionized electrons.

The molecular dynamics simulations employed 64 6Li and 64 D atoms with timesteps

varying for 0.01 fs to 0.1 fs according to the temperature with trajectories extending over

104 timesteps. For a given temperature and density, the mean time between collisions

is estimated from the average interatomic distance (determined from the atomic volume)

and the thermal speeds of Li and D. The timestep is chosen to accurately integrate the

equations of motion of the ions between collisions and accurately resolve the fluctuations in

the pressure. The total pressure was converged to less than 0.5% for timestep and to 3% or

less for system size. Ref. 13 extensively details OFMD simulations of LiH for T up to 10

keV and was used to inform parameters for OFMD calculations in this work. Details for the

analysis of radial distribution functions are included in the Appendix. All structures in this

temperature and density range resemble that of a simple liquid[10].

4



B. Hugoniot match and bootstrapping methodology

The Rankine-Hugoniot jump conditions describe the states on either side of the shock

wave as

U − U0 =
1

2
(P + P0)(V̄ − V̄0), (2)

where U is the internal energy, P is the pressure, and the specific volume is the reciprocal

of the density V̄ = 1/ρ. To construct the Hugoniot for KSMD, we first calculate the initial

state (U0, ρ0, and P0). For 6LiD, ρ0=0.80 g/cm3 is chosen to match the experimental

density from Marsh[26], P0=0 is assumed, and U0 is then calculated from the T=0 solid.

The ambient Hugoniot reference state included corrections for the zero-point energy effects,

determined from the phonon density of states [27] and quasi-harmonic theory. The final

conditions {U , ρ, and P} representing solutions to Eq. (2) delineate the shock Hugoniot.

The internal energy U = 3

2
kBT + E

N
is the sum of ion kinetic energy and the time-averaged

DFT internal energy E, where kB is the Boltzmann constant and N is the number of atoms

in the supercell. Similarly, P = Pe + NkBT , is the sum of the ion kinetic contribution

and the electronic pressure, Pe derived from Hellmann-Feynman forces. In lieu of directly

simulating the shock Hugoniot points, the steady-state properties P and U were fit to a

quadratic as a function of T for a grid of isochoric simulations; these fits in turn were used

to solve Eq. (2). High compression necessitates an interpolate as a function of density.

To push the shock Hugoniot to extreme pressures, we use OFMD to calculate our steady-

state properties. For materials and molecular liquids at low temperatures and ambient densi-

ties typically representative of the initial state in a Hugoniot experiment, the Thomas-Fermi

and Thomas-Fermi-Dirac density functional theories predict zero and negligible cohesive en-

ergy, respectively, in poor agreement with experimental observations. Although adequate

for plasmas, this severe underestimation of binding forces in molecules and solids is due to

an inadequacy of the effective electronic response properties of these functionals under these

conditions[28]. Therefore, we have no way of directly simulating U0 within the Thomas-

Fermi-Dirac framework using OF-DFT. To circumvent this issue, we choose to bootstrap

our OF shock Hugoniot from the KS shock Hugoniot where the quality of the two methods

have the highest overlap. In this overlap region, for a given V̄ point on the KS-Hugoniot,

the temperature of the OFMD calculation is adjusted to obtain a good pressure match be-

tween the OF and KS calculations. We then assume that this OFMD point is on the shock
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Hugoniot and using Eq. (2) are able to extract the U0 for the OFMD calculations. With

the initial state for OFMD known, the rest of the shock Hugoniot is calculated using the

same procedure as for the lower pressure KS points. Wang and Zhang were able to simulate

the Hugoniot for hydrogen using U0 from KS calculations because of a fortuitous match of

both U and P at high temperatures[14]. Our bootstrapping technique does not require a

common energy reference for KS and OF implementations thus making the method general.

C. Experimental measurements of 6LiD

The main body of experimental Hugoniot data available was compiled by Marsh[26].

In these experiments, high explosive was used to drive the shock; the shock velocity was

measured by a sweeping-image camera and a shock-impedance matching technique[29] was

used to extract particle speed using a 2024 Al standard. Shock velocities were measured

for pressed samples of 6LiD (ρ0=0.45 0.80 g/cm3) for pressures up to 50 GPa. The same

experiments were preformed on isotopic variants including: 7LiD, 7LiH, 6LiH, nLiH and nLiD,

where n indicates natural isotopic abundance (n=6.94amu). These experiments provided a

range of porous Hugoniot results, which helped constrain the EOS at low pressures. In

addition, there are also nuclear-explosive-driven shocks where impedance matching (NIM)

to a Mo standard was used to obtain the Hugoniot for nLiD[30] and nLiH[31]. In these

experiments nLiD was shocked to a pressure of 946 and 1038 GPa and nLiH to a pressure

of 1225 GPa.

D. Empirical EOS

One of our immediate purposes entails utilizing ab initio techniques (QMD) to calibrate

a wide range of EOS. The theoretical calculations serve as an analog to experimental data

over ranges not typically reached by experiment. However, just as with experiment, these ab

initio calculations do not directly correspond to parameters in our models used to calculate

EOS. Therefore, we need to understand the relationship of the models and thermodynamics

in order to utilize the results. The EOS modeling for LiD is based on a standard three-term

decomposition of a Helmholtz free energy,

A(ρ, T ) = Acc(ρ) + Aion(ρ, T ) + Aele(ρ, T ). (3)
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The three-term decomposition consists of a zero temperature cold curve, Acc, as well as ion

thermal, Aion and electron thermal, Aele, components. The cold curve is representative of the

nuclei in fixed equilibrium positions with electrons in their ground state. The ion thermal

part encompasses both the zero-point and the thermal motion of the nuclei and is given by a

Debye model at low temperature with a correction for the fluid component at temperatures

above melt. The electron thermal part accounts for the thermal excitation of the electrons

out of their ground state and is calculated using a Thomas-Fermi-Dirac average-atom model

for each element with the individual thermal components appropriately combined through

an additive volume mixture procedure to yield a result for the compound LiD.

Typical equation of state models require a variety of experimental data and theoretically-

derived calculations in order to constrain the various model parameters. The cold curve

model consists of a Rose-Vinet analytic expression, fit to match experiment at low pressure

(diamond anvil cell and Hugoniot), which extends into the Thomas-Fermi-Dirac average-

atom model at high pressure. The Debye model parameters are chosen to match the ther-

mal expansion, specific heat, and high pressure Hugoniot data. All too often the data and

calculations remain limited in range or accuracy, thereby only weakly constraining the mod-

els. Older Hugoniot data at extremely high pressure for LiD has large error bars and larger

scatter. This leaves the parameters controlling the high compression response of our models

unconstrained. The latest Z-pinch and laser-driven experiments provide only compression

but not thermal information.

To illustrate the effects of weak experimental constraints on the high temperature EOS,

we examine two older sesame[32] models for 6LiD: sesame, 7245 (1985) and sesame 7247

(2006). Sesame 7245 was constructed using only the principal Hugoniot data while 7247

was parameterized based on principal and porous Hugoniot data (Sec. IIC). Sesame 7247

utilizes a cold curve based on a Mie-Gruneisen approximation with a quadratic fit to the

shock and particle velocity, and the ion thermal contribution is based on a Debye model

with a correction for the liquid specific heat beyond the melt temperature with the Debye

temperature set to 1050K. The Thomas-Fermi-Dirac average-atom model is used to calcu-

late the thermal electronic component of each element and later combined using an additive

volume mixing procedure. Sesame 7245 was constructed in a similar way: the EOS was fit

via a Mie-Gruneisen approximation, a Debye model was used for the ion thermal contribu-

tion, and the electron thermal contribution was generated from an average atom inferno
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FIG. 1: (Color online) Porous Hugoniot, ρ0=0.71g/cm3, of 6LiD in compression space (η = ρ/ρ0).

Sesame 7245 shown in dashed black and sesame 7247 shown in dotted blue. Isotopicly scaled

NIM[30, 31] data shown as red crosses.

model[33, 34].

Fig. 1 shows NIM results compared to sesame[32] EOS models 7245 an 7247. The initial

and final densities for the NIM data was isotopically scaled to their corresponding 6LiD

densities so a direct comparison with 6LiD sesame EOS can be made. The isotopically

scaled ρ0 for both NIM shots is 0.71 g/cm3. The porous Hugoniot for sesame 7245 and

7247 exhibit identical behavior at low compression and pressures. The thermal electronic

part of sesame 7245 is incomplete and fails to converge to the proper ideal gas limit of ions

plus electrons. Sesame 7247 converges to the appropriate limit but is noticeably stiffer than

7245. Given the error bars in the NIM data, it could be subjectively argued that sesame

7245 is also too stiff. We will show that using KSMD and OFMD, the high temperature

EOS can be systematically constrained based on justifiable physics rather than fit within

huge error bars. A new 6LiD EOS sesame 7360 will be presented based on ab initio results

in conjunction with lower pressure experimental results.

III. RESULTS AND DISCUSSION

We show in Fig. 2 an illustration of the bootstrap technique, described in Sec. II B,

for constructing the composite 6LiD Hugoniot in compression space (η = ρ/ρ0) for a solid
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FIG. 2: (Color online) Bootstrap illustration for the 6LiD Hugoniot with initial density ρ0 = 0.80

g/cm3. KSMD results appear as solid blue diamonds. The line is drawn to guide the eye along

the KSMD points. The OFMD results represent the sensitivity to the compression at which the

matching procedure was applied, ranging from 3.0 to 4.0.

density 6LiD (ρ0 = 0.80 g/cm3). KSMD calculations, shown as solid blue diamonds, range

over compressions from 3.0 to 4.5, which correspond to temperatures between 0.6 eV to

28 eV. The continuation of the Hugoniot with OFMD is shown for matching compressions

of η = 3.0 (red crosses), 3.5 (green squares), 3.58 (open blue circles), and 4.0 (open black

diamonds). For the lowest three matching compressions, the OFMD predictions are robust

to choice of bootstrapped location, yielding a difference of OFMD U0 of ∼0.1 eV (0.07%),

and less than 3.5% (δP < 60GPa) in the pressure with the largest differences at the lowest

compressions. At η > 3.6, the Hugoniot from KSMD starts to soften due to the onset of

ionization of the Li 1s electrons. In the vicinity of the 1s ionization the OF-DFT, based

on Thomas-Fermi-Dirac, and KS-DFT, which has a true shell structure, are likely not well

matched making the region less that ideal for bootstrapping location. At a chosen bootstrap

compression of η=4.0, the high pressure results still agree well with those matched from

lower compressions; the comparison at low compressions suffers because P must balance

a 2.6 eV difference in U0 from Eq. (2). This same Hugoniot softening is seen when using

Purgatorio[34], a relativistic average atom code, for the electronic part of an EOS model

compared to using Thomas-Fermi-Dirac. To avoid influencing the predicted Hugoniot with
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this Li 1s ionization difference, and to maximize the OFMD/KSMD overlap region, we will

use the average value of U0 found from bootstrapping to the KSMD at three points (η=3.0,

3.5, and 3.58) on the full density Hugoniot used to solve Eq. (2).

We used this fully ab initio Hugoniot, built from KS and OF, to constrain a new EOS

for 6LiD. Sesame 7360 utilizes a cold curve based on a Mie-Gruneisen approximation with

a quadratic fit to the shock, us, and particle velocity, up, Hugoniot data (us = 6.3913 +

1.2041up − 0.011906up
2). The Gruneisen parameter (γ) was set to 1.108 based on porous

Hugoniot data[26] and was confirmed to match thermal expansion data[35]. The density

derivative (γ′ = dγ

dρ
) is set to a value of -1.45 to match porous OFMD results. The ion

thermal contribution is based on a Debye model with a correction for the liquid specific

heat beyond the melt temperature with the Debye temperature set to 1050K. The Thomas-

Fermi-Dirac model is used to calculate the thermal electronic component, Li and D, and

later combined using an additive volume mix procedure. OFMD results provide electron

thermal and ion thermal contributions beyond the quasi-harmonic approximation. Sesame

7360 and sesame 7247 use the exact same models but γ and γ′ have the correct behavior

in the formulation for Sesame 7360. Using smooth equations to fit the EOS as prescribed

in Sec. IID insures that no derivative discontinuities are introduced from the bootstrapping

procedure.

In Fig. 3, we compare the Hugoniots generated from the KSMD, the bootstrapped OFMD,

sesame models 7245 and 7360, and the LASL shock data[26]. By design, sesame 7360

agrees with the composite OFMD calculations across the full range of compressions. Staring

at 300 GPa sesame 7360 departs from the KS results for η > 4 where the ionization of

the Li 1s orbitals becomes important. The sesame 7360 EOS has just reached the ideal

gas limit of ions plus electrons [36] on the Hugoniot (η = 4 as T → ∞) in the upper right

hand corner of Fig. 3 (around P = 6× 105 GPa). As the pressure decreases from here, the

non-ideal contribution to the EOS slowly contributes consistent with the high temperature

behavior observed in the cusp-like constraints approximation [37] and path integral Monte

Carlo simulations [38] for the deuterium (D2) Hugoniot.

In Fig. 4 we compare temperatures at various Hugoniot points for several models. Note

that temperature agreement was not guaranteed by the bootstrapping procedure described in

Sec. II B. One might expect large differences in temperature between OFMD and KS results

because temperature was the free parameter used to ensure pressure matched at a given
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FIG. 3: (Color online) Hugoniot for 6LiD with initial density ρ0 = 0.80 g/cm3 as a function of

compression (η = ρ/ρ0). Black filled circles represent LASL data[26], blue diamonds the KSMD

calculations, and open circles the OFMD results fit to KSMD results at the average U0 for η = 3.0,

3.5, and 3.58. Dashed black and solid red solid lines are sesame EOS 7245 and 7360, respectively.
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FIG. 4: (Color online) Hugoniot, as a function of compression (η = ρ/ρ0) for 6LiD with initial

density ρ0 = 0.80 g/cm3. Blue diamonds the KSMD calculations, and open circles the OFMD

results bootstrapped to KSMD results. Dashed black and solid red lines are sesame EOS 7245

and 7360, respectively.
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density. The fact that temperatures match for KS and OF in the overlap region indicates

that both methods are adequate to describe the physics in this phase space. This overlap

region allows the smooth transition from one DFT into the next. The same arguments

can be made for temperature agreement between the OFMD and sesame 7360 to higher

pressures. Temperature serves as a good intrinsic check for the EOS among the models since

in some cases Hugoniot values can coincide but for different temperatures.

To calculate the OFMD Hugoniot of porous 6LiD samples requires a knowledge of U0.

For the purposes of this paper, U0 for a porous sample is assumed to equal to U0 of the

full density sample. This approximation translates to the physical assumption that the

porous sample has the same bond lengths as the full density sample with bubbles separating

sections of full density 6LiD. Furthermore, it assumes no contribution from the surfaces of

the bubbles. Using this approximation, the same average value of U0 from bootstrapping

at three compressions is also used for porous samples. The Hugoniots from sesame 7360

are calculated under the same approximation of constant U0. Initial densities for porous

calculations were chosen to match those for LASL experiments[26] (ρ0 = 0.45, 0.58, 0.66,

and 0.80 g/cm3). These experimental points are shown in the lower left hand corner of

Fig. 5 as solid points. These experiments are in good agreement with the porous sesame

Hugoniot calculations lending credibility to a constant U0 approximation. Comparison to

porous shock data is an important check for any EOS because the thermal electronic and

thermal ionic parts of Eq. 3 dominate where as in the principal Hugoniot the cold curve

strongly influences the pressure/density behavior.

Figure 5 also shows NIM experimental results[30, 31] described in Sec. IIC. NIM results

are shown as crosses in Fig. 5. Given the large error bars in compression for the NIM

experiments and the agreement between KS and OF DFT we feel confident that OFMD

results should be predominately used to inform the 6LiD EOS at extreme pressures.

IV. SUMMARY

The shock Hugoniot for Lithium 6 Deuteride was calculated v ia first principals to a

temperature of 1000 eV. This was achieved using a combination of KSMD and OFMD. A

new robust method was developed for bootstrapping the high temperature OFMD Hugoniot

to the Hugoniot calculated from KSMD. This bootstrapping procedure facilitates a smooth
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FIG. 5: (Color online) Hugoniot for porous 6LiD. Solid lines are sesame 7260, open circles

are OFMD results, solid circles are LASL data[26], and crosses are nuclear impedance match-

ing experiments[30, 31]. From left to right porous Hugoniot calculations in ascending order with

ρ0 = 0.45, 0.58, 0.66, 0.71, and 0.80 g/cm3.

transition along the Hugoniot between an orbital based quantum treatment of electrons and

Thomas-Femri-Dirac electronic treatment. This first principles Hugoniot is then used to

constrain a new EOS for 6LiD, sesame 7360. This new EOS agrees better with high pressure

experimental measurements than its recent predecessor, sesame 7247, while extending the

range of the table well above the legacy EOS, sesame 7245.

Appendix

The efficacy of the our choice of time steps for the molecular dynamics simulations is

demonstrated by examining the radial distribution functions (RDF) at a density of 3.152

g/cm3 and at our highest temperature of 100eV in Fig. 6. The usual convention for the

choice of an effective time step dictates a sufficient number of steps (10-20) to cover a mean

separation determined by the density for a mean velocity set by the temperature. Such a

choice assures the trajectory avoids aberrant close approach and unphysical forces. Fig. 6a

shows the RDFs over the usual range [0, L
2
]with a typical bin size of 0.05 bohr, where L

is the length of the periodic box. The functions rise smoothly from zero at the origin to

an asymptotic value of unity, exhibiting no signatures of structure (peaks), resembling the
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FIG. 6: (Color online) The radial distribution functions [g(r)] for LiH at a temperature of 100eV

and a density of 3.152 g/cm3. The Li-Li (green, dash), Li-H (red, dash-dot), and H-H (blue, solid)

functions displayed over the full range (a) with bins of 0.05 bohr and for short-range (b) with bins

of 0.001 bohr.

behavior of a simple liquid. In Fig. 6b, we investigate the region very near the origin to

ascertain the minimum approach of the various species. In order to reveal the behavior in

this regime, bins of very small extent (0.001 bohr) are required, which in turn produces

a noisy RDF. The results indicate, even for the lightest species H, that the atoms remain

at reasonable separations throughout the simulation and that the time step is adequate

to faithfully follow the collisional dynamics. The results at 12eV and 20eV show similar

behavior.
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