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Connections between the wall-normal turbulent velocity spectrum F.. (k) at wavenumber k and
the mean velocity profile (MVP) are explored in pressure driven flows confined within smooth walls
at moderate to high bulk Reynolds numbers (Re). These connections are derived via a co-spectral
budget for the longitudinal (u’) and wall-normal (w’) velocity fluctuations that includes a production
term due to mean shear interacting with E..(k), viscous effects, and a de-correlation between u
and w’ by pressure-strain effects (= m(k)). The m(k) is modeled using a conventional Rotta-like
return-to-isotropy closure but adjusted to include the effects of isotropization of the production
term. The resulting co-spectral budget yields a generalization of a previously proposed ’spectral
link’ between the MVP and the spectrum of turbulence. The newly proposed co-spectral budget is
also shown to reproduce the measured MVP across the pipe with changing Re including the MVP
shapes in the buffer and wake regions. Because of the links between Fu.(k) and the MVP, the
effects of intermittency corrections to inertial subrange scales and the so-called spectral bottleneck
reported as k approaches viscous dissipation eddy sizes () on the MVP shapes are investigated and
shown to be of minor importance. Inclusion of a local Reynolds number correction to a parameter
associated with the spectral exponential cutoff as kn — 1 appears to be more significant to the
MVP shape in the buffer region. While the bulk shape of the MVP is reasonably reproduced in
all regions of the pipe, the solution to the co-spectral budget systematically underestimates the

negative curvature of the MVP within the buffer layer.

I. INTRODUCTION

Pressure driven flows at high bulk Reynolds numbers
(Re) within smooth walls continue to receive significant
experimental [1-8] and theoretical [9-12] attention. A
recent phenomenological theory, labeled as the ’spec-
tral link’ [11], unfolded a number of features about the
shape of the mean velocity profile (MVP) in smooth pipes
from the shape of the turbulent kinetic energy spectrum
Eire(k), where k is a wavenumber or inverse eddy size.
In particular, the spectral link qualitatively showed that
curvatures in the MVP within the buffer layer are con-
nected to the exponential correction of Eu.(k) at large
k due to viscous effects, the logarithmic MVP within the
intermediate region is linked with the inertial subrange
scaling of Ej. (k) commonly described by Kolmogorov’s
theory [13, 14] in the absence of intermittency corrections
[9, 15], and the wake effects where the MVP ’overshoots’
the logarithmic shape appears to be attributed to the
so-called von Kérman spectrum describing E. (k) at k
commensurate with the inverse of the pipe radius 1/R.
The spectral link is based on the argument that the tur-
bulent stress 7; at a distance y from a wall is given by the
product of a mean velocity difference reflecting momen-
tum deficit across an eddy of radius s and its turnover
velocity given as [11]

T~ s [U(y +) = Uly — 9)], (1)

where, U(y) is the mean velocity at distance y from the
boundary, vy is a turnover velocity for an eddy of radius
s centered at some position x and height y whose order
of magnitude can be predicted from vy = flo/os Ege (k)dE,

Uly+s) — Uy —s) = (dU/dy)(2s) is the mean velocity

difference associated with this momentum transporting
eddy size. The proposed spectral link further assumes
that only eddies attached to the wall efficiently trans-
port momentum [11] thereby setting 2s = y. These ar-
guments have established a phenomenological framework
that links the turbulent momentum flux to the MVP
via Eye(k) thereby offering new vistas to explaining the
shape of the MVP from the shape of Eig.(k). How-
ever the spectral link between vs and Fyke(k) used by
Gioia and co-workers is somewhat confusing. In partic-
ular, since the velocity gradient is dictated by vertical
momentum transport (i.e. vs is a vertical velocity scale)
it is not clear why vs should be related to the TKE spec-
trum (i.e. Fike(k)) and not the vertical velocity spectrum
(i.e. Eyw(k)), which are notoriously different especially
in the energy containing range (i.e. for small k). Further-
more, linearizing U(y + s) — U(y — s) =~ (dU /dy)(2s) is
only reasonable for small s and it is not evident why only
eddies whose size 2s = y contribute to U(y+s)—U(y—s).
The assumption v, = flo/os Eire(k)dk is also questionable.
In fact, within a phenomenological context, the velocity
scale vg could or should be interpreted as the velocity
variation accross a distance 2s which can be predicted
from the second order velocity structure function com-
puted at a distance 2s, i.e.

v =[Aw(2s)2 = [w'(z +5) —w(z - s)2, (2)

where w' is the vertical velocity fluctuation and overbar
denotes time-averaging. As shown by [16], the structure
function and the spectrum of a velocity component are



related by the following relation:
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(3)
where the first term includes all the energy in eddies
of size s or smaller while the second term includes all
the enstrophy like terms in eddies of size s or larger (en-

strophy w? fo p?Eike(p)dp). The approximation em-

ployed by Gioia and co-workers [11] to link |[Aw’(s)|? to a
turbulent energy spectrum replaces E,,, (k) with Fige (k)
and ignores contributions from the enstrophy term.

An alternative formulation that maintains the analyti-
cal tractability of the spectral link between the MVP and
an energy spectrum but relaxes some of these restrictive
assumptions frames the scope of this work. This alter-
native formulation recovers many theoretical features of
the spectral link [11] but uses a co-spectral budget for the
longitudinal and wall-normal velocity fluctuations. It is
shown that the previously proposed spectral link of Gioia
and co-workers [11] naturally arises from the production
term in this co-spectral budget. This production term is
determined by dU /dy (instead of U(y+s)—U(y—s)) and
Eyw (k) instead of Eie(k), and eddies of all sizes are ac-
counted for in momentum transfer to the wall. The newly
proposed co-spectral budget is shown to (i) be consistent
with the onset of a —7/3 power-law scaling in the co-
spectrum between longitudinal and wall-normal velocity
fluctuations for eddies within the inertial subrange (not
discussed by the previously proposed spectral link in Goia
and co-workers [11]), and (ii) reproduces the MVP across
all regions in the pipe with changing Re as reported ex-
perimentally [5, 6].

II. THEORY
A. Definitions and general considerations

Consider the pressure driven flow in a smooth pipe
with radius R having a cross-sectional area A, = mR>
as shown in Figure 1. Let y = R — r be the normal
distance to the boundary, r the distance from the pipe
center, Ut = U(y)/u,. the dimensionless mean velocity
profile, u; = (7,/p)'/? the friction (or shear) velocity,
7, the total wall stress, p the fluid density, y™ = yu, /v
the dimensionless distance from the boundary, v the fluid
kinematic viscosity, RT = Ru, /v the von Kdrman num-
ber, Uy, be the bulk (or area-averaged) velocity defined

as Uy, = (1/4,) fo rYdAs, where dA; = 2mrdr, and
Re = UpD/v the bulk Reynolds number based on pipe
diameter D = 2R. For a stationary and longitudinally
homogeneous pipe flow driven by a constant mean pres-
sure gradient, the mean longitudinal momentum balance
reduces to
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FIG. 1. Schematic of the smooth-walled pipe flow configura-
tion showing the pipe length L, pipe radius R, distance from
the wall y = R — r, distance from the pipe center r, and the
resulting total stress distribution when the pressure gradient
(0P /0zx) is assumed constant.

where P is the mean pressure, x is the longitudinal dis-
tance along the pipe length, and 7 is the total shear
stress. Integrating with respect to r for a constant pres-
sure gradient results in

=1 (%) 5+ 6

where C} is determined so that at 7 = R (center of the

pipe), 7(R) = 0 due to symmetry thereby resulting in
1 /OP\r R [(OP Y
—— (=)= () (1-2).
7(r) p(ax) 2 2 <8x> ( R) (6)
Defining

ro= 2 @—J;) , (7)

and decomposing the 7 into a turbulent 7, and a viscous
T, contribution leads to

T(Y) =Tt + T = To (1—%), (8)
with 7., = pvI'(y), and T'(y) = dU/dy. The 7 is defined
as

T =—pu'w = —p/ Fyu (k) dk, (9)
0

where u’ is the turbulent longitudinal velocity compo-
nent, Fy,, (k) is the one dimensional co-spectrum between
u' and w’, and k is, as before, a wavenumber quantifying
an eddy of size 1/k. Hence, the mean momentum balance
reduces to

ur+/ Fuu (k (1—}—9. (10)

Close to the wall boundary (i.e. y* << 5), 7 << T
and I' = (7,/pv) (1 — y/R), which upon integration re-
sults in the well-known parabolic velocity profile given as



U(y) = (1o/pv)y (1 —y/D) in the viscous region of the
pipe. However, for y/D << 1, the mean velocity pro-
file reduces to its linear form given by U(y) =~ (7,/pv) y
This MVP is used to connect the wall-stress to U(y) u

toyt =

B. The co-spectral budget

Beyond this thin region adjacent to the smooth wall
surface (0 < yT < 1), pu/w’ is not negligible relative
to 7, and its effects must be explicitly accounted for.
Processes governing the wall-normal variations in w/w’
can be identified through the turbulent stress budget.
For a stationary pipe flow, the turbulent stress budget is
expressed as following [17]:

ou'w’
5 =PR+PS+DS+TD+PD+VD, (11)

where t is time, PR is the production term, PS is the pres-
sure strain, DS is dissipation, TD is turbulent diffusion,
PD is pressure diffusion, and VD is viscous diffusion. In
turbulent shear flows, the PR and PS terms are known
to provide the leading contributions to the stress bud-
get, while the other terms become non-negligible only in
the near wall region [17, 18]. In view of these observa-
tions and for retaining maximum simplicity, an abridged
stress budget with an interplay between production and
pressure strain terms is considered. However, the dissi-
pation term is also retained, which, as it will be shown
later, provides the means of establishing the co-spectral
link with the mean velocity profile in the buffer region.
Therefore, this approximated stress budget now reads

ov'w' 2 ou ow
5 =0= F+p<8y+ax>+DS (12)

where p’ is the turbulent pressure perturbation. The
first two terms on the right-hand side represent pro-
duction (PR) and pressure strain (PS), respectively (the
full mathematical formulation for the dissipation term is
omitted for brevity but can be found elsewhere[17]).

A co-spectral budget that reflects a balance among
these terms is given as [15, 19, 20]

3%?’@ + 2k Fy (k) = G(k), (13)

where G(k) = Py (k) +
production term where fo
is the energy spectrum (

7w(k), Py = I‘Eww(k) is the

wu(k)dk = —02T, Eyw(k)
w = f k) )? DS -
—3v [T K Fuu(k)dk is viscous d1s51pat1on of ww’, and
(k) is the velocity-pressure interaction term satisfying
the normalizing property

/OOO (k)dk = 2 (%Z + %7“;/>, (14)

and which acts to de-correlate v’ from w’ as discussed
elsewhere [18]. In conventional second-order closure
modeling, this term is closed via the so-called LRR-IP
formulation given as

/OOO m(k)dk = —CR% (Ww') + CropT(y),  (15)

where LRR stands for Launder-Reece-Rodi (LRR) and
IP stands for the isotropoziation of the production [21]
that was proposed as a correction to the Rotta [22] model
based on rapid distortion theory [18], T' = K/¢ is a re-
laxation time scale, K is the turbulent kinetic energy as
before, € is the mean dissipation rate of K, Cr =~ 1.8
is the Rotta constant, and C7 is a constant associated
with the isotropization of the production term correcting
the original Rotta model [18, 23]. Tts value C; = 3/5
was previously predicted from Rapid Distortion Theory
for isotropic turbulence [18; 21] as well as early numer-
ical simulations [24]. This closure formulation for the
pressure-velocity interaction term is employed here be-
cause of its ability to reproduce fooo 7(k)dk for homoge-
neous shear flows [18]. When inhomogeneous flows in
the axial direction are encountered, issues with this clo-
sure scheme have been studied for rapid axisymmetric
expansion or contraction. In these types of axisymmetric
flows, cigar-shaped versus pan-cake shaped component-
wise energy ellipsoids relax to isotropy at different rates
[23], and these rates were shown not to be much faster
than 7. Other simulation studies [24] suggest that the
Rotta closure is valid as long as the time scale of the
mean flow is much larger than 0.2;/[(2K)'/?], where I,
is the integral time scale of the flow, and the quantity
0.21;/[(2K)/?] represents a characteristic time scale of
the triple moments [24]. Not withstanding these issues,
and noting that the LRR-IP model proved accurate for
many wall-bounded flows where the return to isotropy
was sufficiently fast compared to T' [18, 24, 25], then

Fuu (k)
7(k)

where 7(k) = ¢~ /3k~2/3 is a wavenumber dependent re-
laxation time scale that varies with k and e consistent
with Kolmogorov’s theory (or K41) in the inertial sub-
range [13, 14]. This wave-number dependent relaxation
time scale, attributed to Onsager [26] by Corrsin [27],
has been extensively used in many turbulence theories
[19, 24, 28-34]. Employing this conventional approxima-
tion for m(k) and 7(k), the co-spectral budget reduces
to

w(k) = —-Cgr

+ CIPwu(k)a (16)

Fuu(k)
7(k)

2wk Fuu(k) = (1 — C1)T(y) Eyw(k) — Cr . (17)
The relative importance of the Rotta component and the
viscous term 2vk?F,, (k) in the co-spectral budget can

be estimated from
Wk*Fuu(k) 2 (1/3k4
CrFuu(k)/T(k) Cgr

€

1/3
) ~ ()3, (18)



where 1 = (v3/ 6)1/4 is the Kolmogorov micro-scale [35].
For kn << 1, de-correlation between «' and w’ due to
molecular effects can be ignored relative to the Rotta
term. However, as kn — 1, these two de-correlation
terms become comparable in magnitude as may occur
in the lower portion of the buffer region.

C. The intermediate region

This region has been the subject of a recent investi-
gation using the co-spectral budget [15], and only the
salient features are reviewed. Consider the region where
y*™ >> 10 but y/R << 1 so that 7, ~ 7,. Assum-
ing stationary conditions and upon further ignoring the
pressure, turbulent and viscous diffusion terms, the co-
spectral budget reduces to a balance between production
and pressure strain terms leading to

Fuulk) = S0P B, (K20, (19)

where A = Cr/(1 — Cy) = 1.8/[1 — (3/5)] ~ 4.5. As
far as the intermediate region is concerned, neglecting
diffusion terms in the stress budget equation is an ap-
proximation that is well supported by a large body of
literature (see e.g.[36, 37]) and hence ignoring their ef-
fects in the co-spectral budget may be viewed as plausi-
ble. When E,., (k) is given by its K41 phenomenologi-
cal form [13] By (k) = Clhe?/3k5/3 generally valid for
n << k™! <<y, then

!

The Fyuu(k) expression agrees with Fy,(k) =
Cuwle'/3k=7/3 first derived by Lumley from di-
mensional considerations [38]. This co-spectral scaling
rule is now supported by measurements in high
Reynolds number pipe, boundary layer and atmospheric
flows [18, 34, 39]. The value of C% = (24/55)Ck,
where Cx =~ 1.5 is the Kolmogorov constant asso-
ciated with 3-dimensional wavenumbers and leads
to a Cypw = CkJA =~ 065/45 = 0.15. This
Cuw estimate is sufficiently close to the accepted
Cuw = 0.15 — 0.16[15, 18, 40] directly estimated from
measured Fy,, (k) (in 1-dimension) and I'(y).

To recover a 'spectral link’ between ., (k) and U(y)
analogous (but not identical) to the one previously pro-
posed one by Gioia and co-workers [11], the mean mo-
mentum balance [~ Fuw (k)dk ~ 7,/p is considered
again within the intermediate region. The F,, (k) re-
quires description of Ey,(k) across all k. An idealized
E.w (k) that is constant for k < k, and abruptly switches
to inertial subrange scaling for k > k, is assumed and is
shown in Figure 2. Exponential corrections (or a variant
of them known as the Pao correction [18, 39]) as kn — 1
and low-wavenumber modulations as kR — 1 are mo-
mentarily ignored in the assumed FE, (k) shape. The

two regions delineating the idealized shape of Fy,, (k) in
Figure 2 are supported by a large corpus of data collected
across many field and laboratory experiments [18]. This
idealized spectral shape for ., (k) with its 'break-point’
at k,y = 1 is also consistent with Townsend’s attached
eddy hypothesis [3, 41, 42]. With this description for
Euww(k), [§ Fuou(k)dk is given as

ko o

To/p = u2 = Cyuple/? </ k,T/3dk +/ k7/3dk> :
0 ko

(21)

resulting in
9 1Cuy

U_. =

2 Trel/%a*‘*/?’. (22)

In the intermediate region, € = T'u? and k, = y~! so that
the above expression for u2 can be re-arranged to yield

4 3/4 U
= -, 23
<7Cuw> Yy (23)

which upon integration with respect to y yields the log-
law

3/4
W (o) me+B, e

where B, is an integration constant that varies with sur-
face properties. The constant [(4/7)Cp.}] 97 s
close to the expected values of 1/k observed in the liter-
ature (i.e. 2.3 <1/k < 2.6, see [18]), where & is the Von
Karman constant. This provides confidence in the LRR-
IP formulation and its associated constants adopted here.

D. The entire pipe region: A spectral integration

In general, 7; and 7, are both significant forn <r < R
depending on the pipe-region and Re. From the approxi-
mated co-spectral budget with an imposed Fy,q, (k) given
in Figure 2, the co-spectrum is expressed as

(1= CTEyw(k)

C
[2uk2 n Tg)}

Fyu (K) = (25)

The exponential cutoff as kn — 1 and low wavenum-
ber modulations ¢, (k) as kR — 1 are now included in
Ew(k) as shown in Figure 2. Hence,

Ekol () [exp (—Bank)] ,
Epou(ka) [exp (—Banka)]

(26)
where k, = (1/y) as before and 4 is the coefficient of
the exponential correction to Fyq, (k) in the viscous range

Eyuw(K) = ¢p(ER)min {



~ "
*. | ——Idealized, yp:8/3
---ISR
10% b - ISR with exponential Corrections||
\\
A
N
.
— -
& .
S N
w N
.

o 10°
)

z

H
w

107}
10 1072 10° 10°
kik,

FIG. 2. The idealized vertical velocity spectrum Fu. (k) as-
sumed in the calculations of Fyu (k). Much of the energy in
the vertical velocity variance (o2) is contained in two regimes,
a near constant regime for k < kq and inertial subrange scal-
ing for k > k, given by K41 scaling. The exponential cor-
rections exp(—pB4nk) shown here for 84 = 5.2 become signif-
icant near the viscous subrange as kn — 1, while very low-
wavenumber modulations reduce Euyw(kq) from its constant
value to ¢, (kR) as kR — 1. Here, ¢p(kR) = (14 (Rk)™2)7 >
for the case v, = 8/3 is shown. The idealized two-regime
spectrum (constant and inertial) used in the analysis of the
intermediate region is for 84 = 0 and 7, = 0.

[39]. When combining several studies together, S, ap-
pears to vary with the Taylor microscale Reynolds num-
ber Re)y given by

Now 15 1/2
Rey = 270N = (—VU?U> ; (27)
v

€

where X is the Taylor microscale and o, can be deter-
mined by integrating E,,., (k) across all k as earlier noted.
Upon fitting a power-dependence of 55 on Re) using sim-
ulation runs reported in previous studies [39, 43, 44|, a
Ba ~ 9.1Re;0'1 captures this dependence as shown in
Figure 3.

Because there is little experimental information about
the behavior of E,(k) for kR < 1, and to ensure
that as k& — 0, Euw(0) = 0, we assumed ¢,(kR) =
(1 + (Rk)=%)77», where 7, > 0. This adjustment leads
to a decline in E,,, (k) with increasing eddy sizes when
eddies become much larger than R. When ~, = 0,
¢p(kR) = 1 and no low-wavenumber modulations to the
constant FE.,(k,) are allowed. On the other hand, if
a von Kdrmdn like spectrum approximating Fig.(k) at
low k is employed as in the original spectral link [11],
vp = 17/6. As discussed elsewhere [11], it is the ¢,(kR)
that dictates the shape of the wake region in U(y). A
~p = 8/3 is selected to reflect some modulations at low k.
This choice is an intermediate between what was used by
Gioia and co-workers [11], proposed elsewhere [44] based
on high resolution DNS, and what was experimentally
reported from the Superpipe experiments [45] about a
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FIG. 3. Variations of 5 with Re) reported across several
simulation studies. Circles and squares are taken from [43],
pluses are taken from high resolution Direct Numerical Simu-
lations in [44], and diamond is from a wind-tunnel experiment
[39]. The line B4 =~ 9.1Re; ™! is also shown and used in the
co-spectral calculations of the MVP.

near-constant Fy,, (k) in the vicinity of kR ~ 1 —10. For
this prescribed FE, (k) shape, the resulting mean mo-
mentum balance is given by:

(1 -CNrEyw(k)
/O ! dk = {To (1 - 2) - ur} (28)

[2vk? + Sx ] R

necessitating an iterative procedure for computing I'(y)
at each y given that € and 7 in the exponential corrections
to Eyw (k) both vary with I

Upon vertically integrating the computed I'(y) with
respect to y, U(y) can be determined and shown in Fig-
ures 4 and 6 for various Re. Agreement between mea-
sured and modeled U™ is encouraging. Despite its sim-
plicity, the proposed model is able to reproduce all the
complex features of U(y). These features include a buffer
layer, an intermediate-log layer and a wake region charac-
terized by the typical overshoot in velocities, commonly
referred to as the Cole’s wake effect. There are two re-
gions where the model deviates from the measured U (y).
The first is in the buffer region (see Figure 5), where the
negative curvature in the MVP appears slightly under-
estimated and the second region is near the centerline.
Possible explanations can be offered as a mix of different
effects and are now discussed. First of all, within the
buffer region the diffusion terms in the Reynolds stress
(and hence co-spectral) budget, although small, are not
entirely negligible and this can have an effect on deter-
mining the shape of the mean velocity profile. As evi-
dent from Equation 26, intermittency corrections to K41
[14, 46-48] and bottle-neck effects [44, 49-52] have been
ignored in the formulation of Fy, (k). These adjustments
have been added to the idealized E,,., (k) using simplified
expressions [44] and their joint contribution was shown to
be of secondary importance to the negative curvature in
U(y) (not shown). Another assumption employed here is
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FIG. 4. Comparison between measured (symbols) and mod-
eled (solid line) profiles of U" as a function of wall distance
yT (left) using equation 28 across selected Re = 7.43 x 107,
Re = 1.45 x 10°, Re = 1.80 x 10°, and Re = 3.57 x 10".
Measurements are from the Superpipe experiment [5, 6].
The parabolic (dots) and logarithmic (dashed) profiles with
k = 0.44 as reported by [5, 6] are shown for reference.
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FIG. 5. Same as Figure 4 but zooming in on the buffer region.
Since no measurements are reported in the buffer region for
Re = 3.57 x 107, it is not included in the zoom-in.

the constant Cr = 1.8, but its Reynolds number depen-
dence may be significant [53, 54]. Analysis reported else-
where [54] suggests increasing C'r with increasing turbu-
lent Reynolds number (connected to but not identical to
Rey) until a saturation value of 2.6 is reached (occurring
at infinite Reynolds number). A sensitivity analysis con-
ducted here suggest that the negative curvature in U(y)
within the buffer region can be indeed amplified but for

+

o
N
ftt

0 0.5 1 15 2

FIG. 6. Left panel: Same as Figure 4 but for all profiles
reported in the Superpipe experiment [5, 6]. Right panel:
measure o, = 0., /u, (plus symbol) for the highest and lowest
Re and modeled o, for all the reported profiles [5, 6] are also

shown. The arrow direction indicates increasing Re.

a Cr decreasing with increasing Rey. The assumption
€ = I'y, which is known not to hold in the buffer or the
wake regions, can be more restrictive. This assumption
is difficult to relax using an equilibrated TKE budget as
assumed here and as done earlier by Gioia and co-workers
in their derivation of the spectral link [11]. Another re-
gion where the model appears to not reproduce well the
measurements is in the immediate vicinity of the pipe
centerline. This is not surprising, because I' = 0 (by
symmetry) at the pipe centerline, modeled ¢ = 0 when
using an equilibrium TKE budget resulting in an unreal-
istic 0,=0 as shown in Figure 6. Near the centerline and
in the buffer region, the turbulent kinetic energy budget
is known not to be in equilibrium (i.e. € # I'rz) and must
include its own turbulent flux-transport terms [18] that
need not to be identical to those in the co-spectral bud-
get. These TKE flux transport terms are dissipated in
the buffer region previously discussed because production
of turbulent kinetic energy generally exceeds the local
dissipation rate (by as much as a factor of 2 depending
on the Reynolds number), they become negligible in the
intermediate region, but then they function as a source
term balancing e near the centerline region. Not with-
standing these issues, the modeled o = oy, /u, profiles
appear to exhibit patterns that do not deviate apprecia-
bly from measurements (i.e. within 10%) except near the
centerline and in the buffer region. Also, both measured
and modeled o} reveal comparably weak Re dependence
(Re varied by more than 3 decades in the ¢, comparisons
in Figure 6).



III. DISCUSSION AND CONCLUSION

Previous analytical models for pressure driven pipe
flows at high Re included, at minimum, three empiri-
cal (but Re independent) constants that were a priori
fitted to data [55]. The proposed co-spectral budget has
also well defined constants - the Rotta similarity constant
Cr = 1.8 and the exponential spectral correction param-
eter [y that varies with Rey, both constrained and can
be inferred independent of the co-spectral model. In fact,
it was shown here that C'r can be derived from the Von
Karman and Kolmogorov constants. However, at the low
wavenumber end, a third constant 7, that describes the
decay of energy for kR — 1 remains empirically specified,
though its value appears to be close to the one predicted
from the Von Kéarman spectrum at low wavenumbers.

As already discussed, another class of analytical mod-
els link the mean velocity profile to the spectrum of tur-
bulence [11] using two strong assumptions: (i) momen-
tum transporting eddies cannot be larger than y; (ii) the
kinetic energy spectrum of turbulence is responsible for
turbulent shear stress production. The co-spectral ap-
proach proposed here relaxes the first assumption and
entirely departs from the second. In the proposed model,
all wavenumbers contribute to F, (k) at any given y/R.

Furthermore, the co-spectral budget reveals that the ver-
tical velocity spectrum, not the turbulent kinetic energy
spectrum, is responsible for the production of w/w’. This
point is significant given that the turbulent kinetic en-
ergy spectrum is known to exhibit different scaling laws
at low wavenumbers when compared to its Ey., (k) coun-
terpart. Some of these differences are also attributed to
inactive eddy contributions to the longitudinal velocity
spectrum F,, (k) that are absent in Ey,, (k). For exam-
ple, studies on individual velocity component spectra in
the vicinity of ky = 1 suggest that E,,, (k) (the main con-
tributor to the turbulent kinetic energy) approximately
scales as k~1 while E,, (k) approximately scales as k" as
discussed elsewhere [56, 57].
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