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Abstract

Information in measurements of a nonlinear dynamical system can be transferred to a quantita-

tive model of the observed system to establish its fixed parameters and unobserved state variables.

After this learning period is complete, one may predict the model response to new forces and,

when successful, these predictions will match additional observations. This adjustment process

encounters problems when the model is nonlinear and chaotic because dynamical instability im-

pedes the transfer of information from the data to the model when the number of measurements

at each observation time is insufficient. We discuss the use of information in the waveform of the

data, realized through a time delayed collection of measurements, to provide additional stability

and accuracy to this search procedure. Several examples are explored including a few familiar

nonlinear dynamical systems and small networks of Colpitts oscillators.
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I. INTRODUCTION42

In constructing models of complex systems, the dynamical states and fixed parameters43

of the model are typically unknown and must therefore be inferred through data generated44

by observing the system. To test or validate a model requires an accurate estimate of its45

fixed parameters and its unobserved state variables, which then must be used to predict the46

outcome of new measurements when the same system is subjected to forces different from47

those that were used to construct the estimate. This enterprise of incorporating information48

from measured data into the properties of a predictive model is known as data assimilation49

in geophysical sciences and is practiced in a wide spectrum of scientific inquiries including:50

numerical weather prediction [1], systems biology [2, 3], biomedical engineering [4], chemical51

engineering [5], biochemistry [6], coastal and estuarine modeling [7, 8], cardiac dynamics [9],52

and nervous system networks [10, 11], among many others.53

We wish to emphasize throughout this paper that estimation alone is not enough when54

seen through the measured state variables only. One can, and often does, estimate the55

observations well, but this sheds little or no light on our knowledge of the unobserved states56

and unknown parameters, both of which must also be known in order to predict beyond the57

observation window. Prediction then is the metric one must adopt to assess the quality of58

a model’s consistency with given data.59

Previous work has shown that when the system under consideration yields chaotic tra-60

jectories the dynamical instability associated with sensitivity to initial conditions impedes61

the successful identification of the initial state and parameters of the system [12, 13]. In62

particular, it has been observed that many data assimilation techniques require a minimum63

number of measurements to succeed, even when the noise levels are low [12, 14–16].64

This paper expands on a method introduced in [17], which can function successfully even65

when the available measurements are fewer than what was previously shown to be necessary.66

This is possible because rather than comparing the estimate to the observations at individual67

points in time, we instead compare the waveforms of the data and model output over some68

period. The idea is that the waveform contains additional information, which can be used69

to improve the accuracy of the estimate for the unmeasured states and parameters.70
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The paper is organized as follows: Section II details the structure of a data assimilation71

problem and introduces some established approaches. We describe the problem in terms72

of the probability distribution of possible trajectories conditioned on the observations. We73

then illustrate the challenges posed by chaotic instability and present our solution to con-74

trolling these instabilities by using the information in the waveform of the observed data,75

via time delayed measurements. Section III describes the central numerical obstacle in our76

technique, inverting an ill-conditioned matrix, and discusses heuristics to improve its sta-77

bility. Section IV presents examples on a variety of models from nonlinear dynamics with78

different dimensions and degrees of instability. Section V discusses a method for directly79

estimating the critical number of measurements, and Section VI investigates the network80

properties of coupled oscillators. We summarize our results in Section VII.81

II. ASSIMILATING DATA INTO MODELS OF OBSERVED PROCESSES82

During an assimilation or measurement window [0, T ] data from an observed system83

are presented to a system model. Various methods are employed [12, 13] to estimate the84

fixed parameters and full state of the model (both observed and unobserved state variables)85

at the end of the assimilation window t = T . To validate the model and the estimates,86

predictions are compared with further observations in such a way that information about87

these subsequent observations is not utilized to further modify the estimates of the fixed88

model parameters.89

The model is stated in terms of differential equations for fields φk(r, t) or point objects90

qα(t), so one must estimate all of the φk(r, T ) or qα(T ) in order to predict the dynamical91

behavior for t > T . We reduce the continuous set of independent variables (r, t) to a92

finite grid in space and time arriving at a set of state variables xa(tn) = xa(n) where a =93

{1, 2, . . . , D} and n = {0, 1, . . . , N}. The resulting state x(n) = {x1(n), x2(n), . . . , xD(n)}94

follows the rule95

xa(n+ 1) = fa(x(n)), (1)

constituting our model. In this discrete time formulation we have treated the NP fixed96

parameters as state variables satisfying xj(n + 1) = xj(n) for j = {1, 2, . . . , NP}. For97

purposes of our discussion, we will often use the continuous time version of this discrete98
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time map in the form99

dxa(t)

dt
= Fa(x(t)), (2)

though all calculations are actually performed with Eqn. (1).100

The information we wish to transfer to this model resides in the L measurements101

y(n) = {y1(n), y2(n), . . . , yL(n)} made at each time tn within an observation window102

{t0, t1, . . . , tn, . . . , tm = T}. To connect the measurements yl(n) with the solution of the103

dynamical equations described by the model we must specify a ‘measurement function’,104

which realizes the data in terms of the model output x(n) as yl(n) = hl(x(n)). When105

yl(n) ≈ hl(x(n)) within the estimation window, the model is said to be consistent with the106

data, while validation of the model requires prediction of the observables hl(x(t)) for t > T .107

The method of estimating the states and parameters xa(n) relies on systematic adjustment108

from some initial state x
(0)
a (n) through an iterative process that produces a sequence of109

estimates110

x(0)a (n)→ x(1)a (n)→ x(2)a (n)→ . . .→ x(J)a (n)

to a final estimate x
(J)
a (n) using some numerical method deemed to converge as J →∞ to a111

‘correct’ answer: hl(x
J(n)) ≈ yl(n). The adjustments to the x(j)(n) are perturbations to the112

states and parameters to improve the relationship yl(n) ≈ hl(x
(j)(n)), taking the dynamical113

rules of the model into account.114

Our discussion will primarily focus on the case where the model developed for under-115

standing observational data is perfect. That is, the data has no model errors and provides116

a deterministic constraint on how estimations and predictions are carried out. In this limit117

where the model dynamics are known, a simple technique for the direct transfer of informa-118

tion from observations to the dynamical model involves adding a nonphysical control term119

associated with each measurement to perturb the state of the model system x(t) toward the120

observations y(t) as the model evolves in time. The equations for these ‘coupled dynamics’121

are given by122

dxl(t)

dt
= Fl(x(t)) +

L∑
l′=1

gl,l′(t) (yl′(t)− hl′(x(t)), (3)

for the l = {1, 2, . . . , L} measured states, and123

dxk(t)

dt
= Fk(x(t)),

5



for the k = {L + 1, L + 2, . . . , D} unmeasured states. The control term g(t) is positive124

definite and has a narrow peak centered at t = tn, so that it impacts the model trajectory125

only at times when an observation is made.126

This construction has been implemented in the meteorological literature for many years,127

where it is called ‘nudging’, Newtonian relaxation, or 4DDA, and is rooted in the theory of128

controls and dynamical systems [18, 19]. From a dynamical systems perspective, the control129

term g(t) transfers information from the measured data to the model state by coupling the130

estimated (model) system to the true (physical) system to promote the synchronization of131

the model with the data [20].132

This process is essentially a dynamical inverse, wherein the model state and parameters133

are deduced from the measured data. The model dynamics act as a filter that supplies134

additional information about the unobserved states of the model, which are required to135

construct an accurate estimate of the state of the true system. This idea of using the model136

as a filter is well-established and is the core idea behind algorithms like the Kalman-Bucy137

filter [21], as well as its various extensions. In those algorithms, the coupling term g(t) is138

dynamical and chosen to minimize an estimate of the error covariance [13].139

For our purposes however, we focus on the simple case where g(t) is constant and diagonal.140

Its value must be chosen judiciously, to synchronize the model output with the measured data141

without destabilizing the model. When this is accomplished, accurate prediction follows.142

A. The action A0(X) = − log[P (X|Y)]143

In practice, the model is almost never perfectly accurate. When model errors are present144

or when the dynamics of the model are stochastic, the iterative process taking x(j)(n) →145

x(j+1)(n) may be formulated as [12]:146

• A numerical optimization procedure to estimate an ‘optimal’ path of the states147

X = {x(0),x(1), . . . ,x(m)}.

• A Monte Carlo algorithm seeking to make an accurate estimate of a conditional prob-148

ability density function P (X|Y) for all states in the observation window, conditioned149

on the collection of observations150

Y = {y(0),y(1), . . . ,y(m)}.
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Prediction beyond the measurement window, t > T , requires all components of the state151

x(T ) and either the deterministic dynamical rule Eqn. (1) or a stochastic version of the152

model errors is present.153

Since the data is noisy and the model inevitably has errors, most applications require154

us to estimate P (X|Y). This distribution contains all information relevant to the data155

assimilation problem. It allows one to decide whether the best estimate for the state X is156

the mean, mode (i.e. the maximum a posteriori estimate), or some other measure of the157

distribution. Moreover, it allows us to quantify the uncertainty in our estimate by computing158

statistical quantities as functions G(X) of the path X with the form159

E[G(X)|Y] =

∫
dXP (X|Y)G(X)∫

dXP (X|Y)
,

=

∫
dX exp[−A0(X)]G(X)∫

dX exp[−A0(X)]
. (4)

The action A0(X) in Eqn. (4) is composed of:160

• Terms moving the model state from time tn to time tn+1 through the observation161

window.162

• Terms associated with the modification of the conditional probability distribution at163

times when measurements are made.164

The general formulation, which incorporates noisy measurements and model errors, is given165

by166

A0(X) = −
m∑
n=0

CMI(x(n),y(n)|Y(n− 1))

−
m−1∑
n=0

log[P (x(n+ 1)|x(n))]− log[P (x(0))].

The term P (x(0)) is the initial distribution of the states at the beginning of the assimilation167

window t0. If no prior information is available, this distribution is taken to be uniform168

and can be ignored as an additive constant. The term P (x(n + 1)|x(n)) is the transition169

probability for the state x(n) → x(n + 1). For deterministic models, this term is a delta170

function. The conditional mutual information term is171

CMI(x(n),y(n)|Y(n− 1)) = (5)

log

[
P (x(n),y(n)|Y(n− 1))

P (x(n)|Y(n− 1))P (y(n)|Y(n− 1))

]
,
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where Y(n) = {y(n),y(n − 1), . . . ,y(0)} is the collection of measurements up to time tn.172

This term contains the additional information transferred from the current measurement173

y(n) to the model x(n), conditioned on the past measurements in Y(n− 1).174

If the measurement noise and model errors are Gaussian distributed with respective175

inverse covariance matrices Rm and Rf , the action becomes [12]176

A0(X) =
m∑
n=0

L∑
l,l′=1

[
δml(n)

Rm
l,l′(n)

2
δml′(n)

]

+
m−1∑
n=0

D∑
a,a′=1

[
δfa(n)

Rf
a,a′

2
δfa′(n)

]
− log[P (x(0))],

(6)

where177

δf(n) := x(n+ 1)− x(n)−
tn+1∫
tn

f(x(t′))dt′

δm(n) := y(n)− h(x(n))

are deviations from the model and measurements, with Rf and Rm as their respective inverse178

covariances.179

There is much discussion in the data assimilation literature [13] focused on the develop-180

ment of numerical methods for evaluating the path integral in Eqn. (4). Since these integrals181

tend to be high dimensional, the methods can generally be divided into two categories:182

• Stationary path methods, which seek the paths where ∂A0(X)/∂X = 0 and assumes183

they are the dominant contribution to the integral184

• Monte Carlo methods, which directly sample the distribution exp[−A0(X)].185

The connection between the two approaches is given by the fact that P (X) = exp[−A0(X)]186

is the limiting distribution for a distribution P (X, s) of orbits X(s) satisfying the Langevin187

equation188

dXσ(s)

ds
= −∂A0(X(s))

∂Xσ(s)
+
√

2ησ(s),

where the parameter s denotes ‘algorithmic time’. Here, σ is the collection of indices of the189

path X, and ησ(s) is a Gaussian distributed random variable with mean zero, variance unity190

and independent at each ‘algorithmic time’ s. The distribution P (X, s) satisfies a Fokker-191

Planck equation whose distribution as s → ∞ is P (X) = exp[−A0(X)]. The Langevin192
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equation shows the connection between the minima of A0(X) where ∂A0(X)/∂Xσ = 0 and193

the distribution of fluctuations P (X) about those minima induced by ησ(s).194

Our attention in this paper is on the ability to succeed with these methods when multiple195

stationary paths or multiple local minima of the action are present. These local minima are196

due to chaotic instability in the dynamics and impede the identification of the ‘optimal’197

path or the Monte-Carlo calculation of P (X|Y) [14]. Thus, even in an ideal situation where198

the model is known exactly and the data has no noise, estimating the unobserved states and199

parameters of the model may still be difficult when the dynamics are chaotic.200

B. Chaotic instability as an impediment to success and the ‘critical’ number of201

measurements Lc202

When the system under consideration yields chaotic time series yl(n) and xa(n), there203

arises a serious impediment to many of the iterative processes used across multiple scientific204

fields to search for the set of states and parameters that most closely matches the observed205

data [14]. This impediment is common to all of the approaches discussed thus far, namely:206

• The dynamical synchronization (nudging) approach207

• Variational or optimization methods, which seek a minimum of A0(X,Y) = − log[P (X|Y)]208

• The Monte Carlo estimation framework, which directly samples P (X|Y).209

In both the variational and Monte Carlo frameworks, the problem is manifested as mul-210

tiple minima in the action A0(X,Y) = − log[P (X|Y)] caused by the instability associated211

with the sensitivity to initial conditions characteristic of chaotic motion. Since small per-212

turbations in the initial values of the path yield large deviations of the action, incoherence213

of chaotic flows for slightly differing initial states or parameters causes the search surface214

A0(X) to be riddled with local minima. The presence of these local minima significantly215

impedes the algorithmic search for the minimizers.216

In the synchronization approach, the impediment arises from instabilities on the L-217

dimensional synchronization manifold, where yl(n) = hl(x(n)) in the D-dimensional state218

space. Such behavior may be characterized quantitatively by the conditional Lyapunov ex-219

ponents (CLEs) for motion on the D − L submanifold governed by Eqn. (1). A necessary220
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condition to achieve synchronization of chaotic systems requires all Lyapunov exponents to221

be negative [22]. When any of the D − L CLEs are positive, the synchronization manifold222

is unstable and we observe multiple minima in X for A0(X).223

While there does not yet exist a rigorous mathematical framework establishing these224

observations, there exists substantial numerical evidence. For instance, the book by225

Evensen [13] shows (in Fig. 6.1) multiple minima generated by the Lorenz 1963 model [23]226

in the graph of the cost function associated with the strong variational method (strong227

4D-Var), in which the dynamical equations are used as nonlinear equality constraints, and228

only the initial conditions appear as control variables in the optimization. Though he does229

not connect this with the instability on the synchronization manifold, this connection is230

made in [24].231

Similarly, multiple local minima are also observed in the weak version of 4D-Var, in which232

model errors are incorporated into the cost function [15]. As the weak 4D-Var method233

is directly related to the Monte Carlo method through the Langevin equation Eqn. (7),234

dynamical instability impacts these techniques as well [15].235

For each approach, the impediments to the search for states (and parameters) are re-236

moved by increasing the number of measurements L to a value Lc ≤ D. This value Lc237

we call ‘critical’ number of measurements, above which the search surfaces become smooth238

in X. This smoothing of the action is analogous to a phase transition in the number of239

measurements L [14]. For instance, given a perfect dynamical model and perfect measured240

data (no noise), either L < Lc and the search space is riddled with numerous local minima,241

or L ≥ Lc and the space is smooth with a single, unique (global) minimum. In the latter242

case, we observe that predictions made using one of the aforementioned approaches succeed243

with high-probability, regardless of the choice of initial condition. Whereas when L < Lc,244

the process is likely to be unsuccessful unless additional knowledge about the initial state of245

the system is available.246

This transition is most evident in the context of synchronization. When L ≥ Lc the model247

output synchronizes with the data, otherwise it does not. To understand this quantitatively,248

recall how the coupling matrix g(t) modifies the Jacobian of the dynamics Eqn. (2)249

∂F(x(tn))

∂x
→ ∂F(x(tn))

∂x
− g(tn).
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With enough measurements L ≥ Lc, a judicious choice of coupling g(t) is capable of making250

all the positive CLEs negative, thereby establishing the conditions necessary to synchronize251

the model/data systems. Since only the rows of the Jacobian that correspond to measured252

state components are altered, the number of measurements is crucial to the success of this253

process.254

Consider a singular value decomposition (SVD) of the Jacobian ∂F(x(t))/∂x, and denote255

the unstable subspace as the space spanned by the singular vectors whose associated singular256

values are greater than one [43]. In this unstable subspace, perturbations from the true257

solution grow exponentially regardless of how close the model estimate is to the truth. The258

coupling term in Eqn. (3) uses information from the measurements to control this unstable259

subspace. Consequently, one needs enough measurements to span the unstable subspace260

so that a proper choice of coupling g(t) may remove the dynamical instability and thereby261

establish the conditions required to achieve synchronization.262

We speak a bit loosely in this paper about the ‘number of required measurements’ Lc.263

The precise statement must address: (i) the number of measurements, (ii) which states are264

measured, (iii) the measurement ‘function’ h(x(t)) as well as (iv) the temporal resolution265

of the time-series. For simplicity, we make the assumption that the measurements are266

projections hl(x(t)) = xl(t) and the time-series is dense or near-continuous, such that a267

measurement is available at every time-step ∆t of the numerical integration. Since not all268

measurements carry the same amount of information, we focus on finding a minimal subset269

Lc that provides enough information to stabilize the instabilities in the model. We shall270

see that focusing on Lc in this way provides a good sense of how many measurements are271

required to achieve reliable predictions.272

C. Using time delayed measurements to further stabilize the transfer of informa-273

tion274

This has been a somewhat general introduction to the problem facing many scientists275

when seeking to create quantitative models of complex systems. The main issue addressed276

in this paper arises in the typical situation where the set of measurements L remains smaller277

than Lc. One must estimate D state variables x(T ) at the end of the measurement window in278

order to predict. When L < Lc the estimation process is seriously hindered and predictions279
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for t > T will be unreliable.280

We are concerned in this paper with removing these impediments in a manner that places281

the smallest burden on the experiment. That is, we wish to develop techniques to reduce282

L as much as possible while maintaining the same successful prediction rate obtained when283

L > Lc and no prior knowledge of the state is known. Our goal is to extract as much284

information as possible from a given set of measurements, since in most applications the285

number of measurements is tightly constrained, perhaps by cost, time or other technological286

considerations.287

Our suggestion is to use information stored in the waveform of the measurements in288

addition to the values of these quantities at the measurement times to augment the number289

of observations and, more precisely, to pass more information about the observed system290

to the model. This idea was previously discussed in [17], but here we give a more detailed291

explanation of the method and provide additional numerical results.292

In particular, we use the measurements y(tn) as well as a collection of the time delayed293

versions of those measurements as our observations. For this task, we collect all of the294

measurements at time tn along with DM − 1 time delayed versions of y(tn) into a LDM -295

dimensional vector, which we call296

Y(tn) := {y(tn),y(tn + τ), . . . ,y(tn + (DM − 1)τ)}. (7)

In component form, it may be written as297

Yk:l(tn) = yl(tn + (k − 1) τ)

where l = {1, 2, . . . , L} and k = {1, 2, . . . , DM}.298

The use of time delays of observed data to provide a setting for representing information in299

nonlinear systems is quite mature and very well-tested in the analysis of chaotic behavior [25–300

31]. In phase space reconstruction, they provide a proxy state space for analyzing properties301

of the source of chaotic motions. Here the number of required delays is dictated by geometric302

considerations, provided the time delay τ yields components for the equivalent of Y(tn) that303

are independent in some, usually heuristic, sense.304

The usual practice is to use each measurement y(tn) independently of measurements at305

different times. Of course, these measurements are not totally independent of each other,306

as they come from a dynamical system that describes the physical processes underlying the307
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system’s time evolution. The dependence comes from the idea that proceeding from an308

observation y(t) (using L = 1 for illustration) to a time delayed observation y(t+ τ) utilizes309

some dynamical rule involving all of the degrees of freedom of the observed system, not just310

those that are observed. So if τ is long enough for the unobserved states of the system to311

have acted in sufficient magnitude to influence y(t+ τ), then y(t+ τ) possesses information312

about the overall dynamics not available in y(t) alone. The utility and mathematical value313

of the time delay construction we develop rests precisely on the information residing in those314

connections.315

Suppose we are able for some physical reason to observe only L = 1 variable, z0(t), in a316

K+1 dimensional dynamical system with other variables zk(t); k = {1, 2, . . . , K} satisfying317

the differential equations318

dz0(t)

dt
= G0(z0(t), z(t))

dzk(t)

dt
= Gk(z0(t), z(t)),

then319

z0(t+ τ) = z0(t) +

∫ t+τ

t

dt′G0(z0(t
′), z(t′)),

and additional information about the time course of the other variables z(t) for [t, t + τ ]320

resides in z0(t+ τ) while it is absent in z0(t).321

If τ is too short relative to the natural times of the z(t), effectively nothing new will322

be usable in z0(t + τ) about the z(t). Similarly, if τ is too long compared to the time323

scale of chaotic behavior, the values of z0(t) and z0(t + τ) will be incoherent with respect324

to each other. So a balanced choice of τ , perhaps as given by the first minimum of the325

average mutual information between them, is appropriate [29, 30, 32]. This line of reasoning326

regarding the selection of time delays applies here for the purposes of extracting additional327

information from our measurements.328

However, it is important to recognize that our use of time delays is quite distinct from329

its role in nonlinear dynamics, in which one seeks independent coordinates that construct330

a proxy phase space to the underlying physical space using the measured variables. By331

contrast, our goal here is to use the information in the time delayed observations to inform332

a model about the state of the physical system representing the processes yielding the333

observations.334

13



The argument regarding the number of components DM is different as well. For phase-335

space reconstruction, the sufficient number of time delays needed to reconstruct the entire336

phase space can be determined geometrically. By contrast, in our application the time delays337

are used to control the unstable subspace of the dynamics, so the number of required time338

delays is a dynamical quantity, which should be less than or equal to the number of delays339

required to reconstruct the entire phase space.340

Furthermore, our numerical examples will show that the number of required time delays341

is approximately equivalent to the dimension of the unstable subspace, averaged over a long342

trajectory. Next however, we propose an extension of the synchronization/nudging technique343

described in Eqn. (3) that incorporates information from time delayed measurements.344

D. Synchronization using information from time delayed measurements345

Following our definition of Y(tn) in Eqn. (7), we construct the corresponding time delayed346

model state347

S(x(t)) := {h(x(t)),h(x(t+ τ)), . . . ,h(x(t+ (DM − 1)τ))}.

Its components may be written as348

Sk:l(x(t)) = hl(x(t+ (k − 1) τ))

where l = {1, 2, . . . , L} and k = {1, 2, . . . , DM}. In the framework we have described,349

we want the model output S(x(t)) to be equal to the data vector Y(t) as an indicator of350

synchronization between the data and the model output.351

The time delay vector S(x(t)) is constructed from a map x(t) → S(x(t)), and thus352

satisfies the dynamical equation,353

dSk:l(x(t))

dt
=

D∑
a=1

∂Sk:l(x(t))

∂xa(t)
Fa(x(t).

Setting aside for now worries about the details of the inverse map S(x(t)) → x(t), this354

expression gives us a dynamical equation in S-space:355

dSk:l(x(t))

dt
= Fk:l(S(x(t))). (8)
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Following the idea in Eqn. (3), we introduce a control term in S-space whose role is to356

stabilize the chaotic motion using information expressed in S-space:357

dSk:l(x(t))

dt
= Fk:l(S(x(t))) (9)

+
L∑
l′=1

DM∑
k′=1

g′k:l,k′:l′(t)
(
Yk′:l′(t)− Sk′:l′(x(t))

)
where g′(t) is a coupling gain matrix defined in S space. Mapping back to the physical space358

x(t) we arrive at359

dxa(t)

dt
= Fa(x(t)) +

D∑
a′=1

ga,a′(t) δxa′(t) (10)

where, in matrix notation,360

δx(t) :=
∂x(t)

∂S(x(t))
· g′(t) ·

(
Y(t)− S(x(t))

)
and g(t) is an additional coupling matrix, defined in x-space. As before, these coupling361

terms g(t) and g′(t) are localized pulses so their contribution is only active at times when362

measurements occur.363

This equation displays the manner in which information from Y(t) is transferred to the364

model x(t) via the dynamical equations. This form of the dynamics is utilized throughout365

the measurement window to estimate the model output states and parameters x(t) required366

to match the data Y(t). When measurements are completed, we set the coupling matrices367

g(t),g′(t) = 0 to predict for t > T using the uncoupled dynamics Eqn. (1).368

The term ∂x/∂S(x) is a generalized inverse of the Jacobian ∂S(x)/∂x of the forward369

map to time delay space x(t) → S(x(t)). This Jacobian is constructed by integrating the370

variational equation [29] for the uncoupled dynamics Eqn. (1)371

dΦab(t
′, tn)

dt
=

D∑
c=1

∂Fa(x(t′))

∂xc(t′)
Φcb(t

′, tn)

372

Φab(t
′, tn) :=

∂xa(t
′)

∂xb(tn)
Φab(tn, tn) = δab

in the interval [tn, tn + (DM − 1)τ ]. This allows us to construct the Jacobian of the time373

delay model vector,374

∂Sk:l(x(tn))

∂xa(tn)
=
∂xl(tn + (k − 1)τ)

∂xa(tn)
= Φla(tn + (k − 1)τ, tn).
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Since ∂S(x)/∂x has dimension LDM × D, it is not uniquely invertible and a generalized375

inverse must be used. For this paper, we use the pseudoinverse of this matrix; the details of376

its calculation will be given in the next section.377

Also note that for notational simplicity here we have assumed that the measurements are378

projections of the state, yl(tn) = hl(x(tn)) = xl(tn). To derive the more general expression,379

one would simply have to include the Jacobian of the measurement function h(x) in the380

definition of ∂S(x)/∂x.381

ALGORITHM 1. Time delay synchronization

for n = {0, 1, . . . , N} do

1. Compute S(x(tn)) and ∂S(x(tn))/∂x(tn) via the uncoupled dynamics

2. Compute the coupling perturbation δx(tn)

∂S(x(tn))/∂x(tn) · δx(tn) = g′(tn) ·
(
Y(tn)− S(tn)

)
3. Take a small step via the coupled dynamics,

x(tn+1)← x(tn) + ∆t (F(x(tn)) + g(tn) · δx(tn))

end for

The algorithm for determining the state x(t) within the observation window 0 ≤ t ≤ T is382

outlined in Alg. (1). At each time step tn, we compute the model time delay vector S(x(tn))383

and the Jacobian ∂S(x(tn))/∂x(tn). The results are then used to evaluate the coupling384

perturbation δx(tn). The process is repeated in this way, mapping back and forth between385

the physical and time delay spaces until the end of the observation window is reached.386

Note that the integration time step ∆t can be chosen much smaller than τ or the typical387

size of tn+1 − tn over the assimilation window. This may be desirable to achieve stability388

of the numerical scheme used for advancing the dynamics from a measurement time to the389

next measurement time.390

It is also worth noting that in the limit DM = 1 the time delay formulation Eqn. (10)391

reduces to the standard nudging control Eqn. (3). Several important differences however are392

realized when DM > 1:393

• Information from the time delays of the observations is presented to the physical model394

equations.395
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• The framework is easily extended to incorporate nonlinear measurement functions396

h(x).397

• The impact of the coupling terms is not limited to measurement times when t = tn.398

All measurements within the current time delay window [t, t + (DM − 1)τ ] can be399

incorporated, regardless of the current time step.400

• All components of the model state x(t) are influenced by the control term, not just401

the observed components. Consequently, the fixed parameters of the model may be402

estimated as a natural result of the synchronization process by including them as403

additional state variables, satisfying Fa(x(t)) = 0.404

• The time delay technique allows one to extract additional information from existing405

measurements.406

The latter point is extremely important, as in many applications additional measurements407

may be prohibitively expensive, time-consuming, or not technologically feasible. The benefits408

of using time delays will be displayed in further detail in the context of the numerical409

examples presented later in the paper. For the moment however, we divert our attention410

to a technical matter that is of crucial importance. Namely, the calculation of control term411

∂x/∂S(x) as a regularized local inverse.412

III. COMPUTING THE PSEUDOINVERSE OF ∂S(x)/∂x413

We now discuss some of the details regarding the computation of the pseudoinverse414

∂x/∂S(x) := (∂S(x)/∂x)+. We wish to solve the linear system of equations for δx415

∂S(x)

∂x
· δx = δS(x) := g′ ·

(
Y − S(x)

)
(11)

where the explicit time dependence has been suppressed. We wish to determine the pertur-416

bation in physical space δx that produces the perturbation δS(x) in time delay space. This417

task may be formulated as an optimization problem that seeks to minimize a least squared418

objective function:419 [
∂S(x)

∂x
· δx− δS(x)

]2
.
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In general, ∂S(x)/∂x is a LDM × D rectangular matrix and therefore its inverse is not420

unique; the system may be underdetermined or overdetermined depending on the choice of421

DM .422

The common solution for such ill-posed problems such as this is to include a regularization423

term in the objective function [33, 34],424 [
∂S(x)

∂x
· δx− δS(x)

]2
+ [Γ · δx]2 . (12)

This process, known as Tikhonov regularization, allows us to choose Γ to give preference425

for particular solutions with desirable properties. Here we choose Γ = α I where I is a426

D×D dimensional identity matrix, which in the limit α→ 0 recovers the expression for the427

Moore-Penrose pseudoinverse. In addition to being arguably the simplest choice for Γ, this428

form selects for solutions to Eqn. (11) that minimizes the least squares norm of δx. The429

regularization in Eqn. (12) leads to the expression for δx430

δx =

[
Γ +

∂S(x)

∂x
· ∂S(x)

∂x

]−1
· ∂S(x)

∂x
· δS(x),

where only a square D×D matrix needs to be inverted. This choice agrees intuitively with431

the interpretation of δx as a perturbation control.432

We do not imply that this choice is optimal. Indeed, optimality must depend on the433

specific problem and, more specifically, on the form of noise in the measurement vector δS(x).434

For instance, it is known that certain choices of Γ(t) can implement low-pass filter properties435

which can be used to enforce smoothness of the solution. However, for the purposes of this436

paper and the numerical experiments herein, we focus on one approach: the pseudoinverse.437

A. Computing the pseudoinverse with singular value decomposition438

There are many numerical approaches available for constructing the pseudoinverse of an439

m× n matrix M. The simplest choice involves the direct inversion of the matrix product,440

M+ = (MT ·M)−1 MT . (13)

This technique is known to incur numerical stability problems, which become especially441

problematic when M is ill-conditioned. The reason is that if M has condition number κ then442
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the product MT ·M has condition number κ2, and will be considerably more ill-conditioned443

than M.444

An alternative approach that does not suffer from such instability involves an SVD of445

the matrix M [35]. A generalization of eigenvalue decomposition from square to non-square446

matrices, the SVD decomposes an n×m matrix M into a product of three matrices,447

M = U ·Σ ·V† (14)

where U and V are unitary matrices of size n × n and m ×m respectively, Σ is an m × n448

rectangular diagonal matrix of singular values σi, and V† denotes the conjugate transpose449

of the matrix V. The SVD is unique up to permutations and sign exchanges of the singular450

values. Most algorithms choose the singular values to be positive and ordered such that451

σ1 > σ2 . . . > σrmax where rmax = min(m,n).452

Once the SVD is known, the pseudoinverse can be constructed as,453

M+ = V ·Σ+ ·U†. (15)

where Σ+ is defined by taking the reciprocal of each non-zero element along the diagonal,454

leaving the zeros in place. In practice however, only elements larger than some small tol-455

erance are taken to be non-zero, while the others are replaced by zeros. This choice of456

tolerance determines the rank of the inverse, which we will show, plays a crucial role in the457

numerical stability of the algorithm and governs its overall performance. To this end, we458

now discuss methods for choosing the rank of the inverse.459

B. Rank considerations460

The default tolerance used in most linear algebra routines to compute the pseudoinverse,461

which is on the order of the machine precision, has proven to be insufficient for our purposes462

as evidenced by our numerical experiments. Choosing such a small tolerance will lead to463

the inversion of very small singular values, which in turn produces excessively large control464

perturbations δx and these will quickly push the model system into an unstable regime,465

resulting in numerical overflow.466

By significantly raising this tolerance (e.g. from O(10−16) to O(10−3)) the calculations467

can be stabilized but its performance is markedly degraded, presumably because information468
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about the unobserved states is being discarded. In practice, a smaller rank corresponds469

directly to a smaller control δx. The balance, therefore, is between a large enough δx to470

synchronize the model states with the data and a small enough δx to keep the numerical471

methods stable.472

We now explore some ideas for choosing the rank of the inverse. One option is to choose473

the inverse to have constant rank throughout the entire estimation process. This has several474

attractive features:475

• If the rank is chosen conservatively small, the calculations are numerically stable.476

• It provides insight into its role in stabilizing the synchronization manifold. The rank477

of the inverse appears to be roughly equivalent to the number of measurements needed478

to achieve synchronization in twin experiments.479

• The pseudoinverse, which in general is a discontinuous operation, can be made contin-480

uous by specifying a constant rank. This is important because it allows the derivative481

of the inverse to be properly defined. This is necessary, for instance, to calculate the482

Lyapunov exponents of the error propagation, which are often used to prove conver-483

gence of optimal control techniques [36].484

The main drawback with this choice is that it must be made conservatively enough to485

avoid numerical instability along the entire trajectory. While this global choice is not an486

issue in many circumstances, nonetheless, it discards useful information in areas of state487

space where numerical instability is less of a concern.488

Through numerical experiments we have observed that the ∂S(x)/∂x matrix is more well-489

conditioned in regions with higher local Lyapunov exponents. This makes some intuitive490

sense, as the degeneracy of ∂S(x)/∂x is due to the lack of independence among the various491

components of S(x), which in turn is related to the rate of information flow among the492

various state variables x(t). Larger local Lyapunov exponents indicate increased dynamical493

mixing among the physical states as well as improved conditioning of the ∂S(x)/∂x matrix.494

In other words, the ‘optimal’ rank of the inverse fluctuates along the trajectory and the SVD495

method actually appears to perform better in regions where the dynamics are more locally496

chaotic.497

We have considered algorithms for adaptively choosing the rank of the Jacobian to max-

imize the amount of information transferred by the control coupling, without causing nu-
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merical instabilities. One idea that has proved effective for this task imposes a continuity

constraint on the solution x(t) by ensuring that some measure of magnitude of the control

coupling δx is not too large relative to the corresponding magnitude of the unperturbed

vector field F(x). This can be implemented in several ways depending on the choice of

norm. For instance, selecting the L2 norm and choosing a tolerance ε we have,

||δx||2 ≤ ε ||F(x)||2 = ε

(
D∑
a=1

Fa(x)2

)1/2

.

Given positive singular values of ∂S(x)/∂x ordered as σ1 ≥ σ2 ≥ . . . ≥ σrmax , where rmax =498

min(DM L,D), the choice of rank r can be expressed via the inequality,499

||δx||2 =

∣∣∣∣∣
∣∣∣∣∣
(
∂S(x)

∂x

)−1
δS

∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣
∣∣∣∣∣
(
∂S(x)

∂x

)−1∣∣∣∣∣
∣∣∣∣∣
2

||δS||2

≤ ||δS||2
σr

.

In this case, select the largest r such that

||δS||2
σr

≤ ε ||F(x)||2,

to guarantee that ||δx||2 does not grow too large with respect to the magnitude of the vector500

field ||F(x(t))||2.501

Another useful choice involves the L∞ norm,502 ∣∣∣∣∣∣∣∣ δxF(x)

∣∣∣∣∣∣∣∣
∞

:= max
1≤a≤D

∣∣∣∣ δxaFa(x)

∣∣∣∣ ≤ ε, (16)

where the vector division is performed by component. This can be implemented by explicit

calculation of the inverse and the corresponding control coupling. Starting with the rank

r = 1, construct the control coupling using only the largest singular value σ1 and check

whether the expression in Eqn. (16) holds. If this condition is true, increase the rank by

one and perform the check again using the inverse constructed from the two largest singular

values. The process is then iterated until full rank is reached or the condition fails. In the

latter case, the result from the previous iteration is used. Thus, the choice for r can be

written compactly as follows,

r = argmax
1≤r≤rmax

[ ∣∣∣∣∣∣∣∣ δxrF(x)

∣∣∣∣∣∣∣∣
∞
≤ ε

]
,
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where δxr is the control coupling constructed from the inverse of ∂S(x)/∂x containing the503

r largest singular values.504

There are several advantages for choosing r based on the size of the perturbation relative505

to the dynamics. For instance, assuming the dynamics inherently stable it is reasonable to506

think that maintaining the modified derivatives on the same scale will keep the trajectory in507

a stable regime. Moreover, the L∞ approach normalizes the effective threshold to account508

for the different state variables. This is important because the choice of rank should not509

depend on the units in which the dynamical equations are expressed.510

We reiterate that these techniques are heuristic choices that, in the following numerical511

examples, have demonstrated improved performance over the constant rank approach. For512

these experiments, selecting ε ≈ 10 appeared to consistently stabilize the calculations, while513

selecting a high rank in regions of phase space where the time delay construction is better514

conditioned and its inverse is less unstable. We make no claims to the optimality of these515

suggestions.516

Certainly, other good choices are available. For instance, selecting a low-pass operator517

(e.g., a difference operator or a weighted Fourier operator) for the Tikhonov matrix in518

Eqn. (12) is known to enforce smoothness and may help combat the effects of measurement519

noise [34]. Another idea is to use L1 norm for the regularization term in Eqn. (12) so that,520

(
∂S(x)

∂x
· δx− δS

)2

+ ||Γ · δx||1.

This formulation may be useful when the ‘optimal’ control perturbation is sparse, as this521

choice of norm optimizes for sparsity and is related to recent developments in the theory of522

compressed sensing [37]. We have also yet to investigate using a non-uniform time delay.523

For instance, it may be possible to choose the delays adaptively to generate vectors via524

x→ S(x) that are in some way ‘optimally’ well-conditioned.525

Though interesting, these considerations are beyond the scope of this paper, which seeks526

to give a general introduction to the use of time delayed measurements in data assimilation.527

Thus, we turn now to some concrete numerical examples that illustrate the capability of the528

time delay synchronization technique.529
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IV. USING TIME DELAY INFORMATION IN EXAMPLES530

We now illustrate these ideas and developments with examples that address the applica-531

bility of the time delay technique for state and parameter estimation of chaotic dynamical532

systems. Along the way we will discover strengths and weaknesses, and we will try to point533

out both.534

We will examine four model dynamical systems as testbeds for our ideas. Three of these535

systems are small, well-investigated dynamical models: the Lorenz 1963, the Rössler 1979536

and the Lorenz 1996 models [23, 38, 39]. In addition, we extend the analysis to network537

models with chaotic Colpitts oscillators at the nodes [40]. For each example, we demonstrate538

that the time delay control scheme extracts enough information from a single measured539

variable (i.e., a scalar time series) to achieve accurate estimates and predictions for the540

unobserved states and parameters of the system. This is a significant improvement over the541

standard DM = 1 coupling procedure in Eqn. (3), for which it will be shown that a single542

measured state component is in fact insufficient for most of the examples presented here.543

To evaluate our technique we perform ‘twin’ experiments, in which the data xdata(t) are544

generated from the same model used to perform the state and parameter estimation. This545

allows us to directly compare our estimates and predictions for all state components, not546

just those that are observed. In this case, we are able to calculate the physical or x-space547

synchronization error,548

SE2
x(t) :=

1

D

D∑
a=1

(
xmodela (t)− xdataa (t)

)2
(17)

as a metric of the error between the model and data trajectories. Since our models are549

deterministic, as SEx(t) → 0, the model will exactly reproduce the unobserved as well as550

the observed data.551

In real experiments however, the unobserved states are unknown. In this situation, we552

instead use the synchronization error in S-space553

SE2
s(t) :=

1

DM L

L∑
l=1

DM∑
k=1

(
Yk:l(t)− Sk:l(x(t))

)2
, (18)

and we argue that—for large enough DM—it serves as a suitable indicator of convergence.554

To illustrate the general applicability of our technique we present these examples as a555

series of ‘real’ experiments by performing the assimilation as though the data had been556
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collected from a partially observable system. No information from the unobserved variables557

was used to produce the state estimates. We only supplement the predictions, when needed558

for comparison, with data from the unobserved variables. In this way, we hope to convey559

the capability of our method in the context of actual experiments.560

Before reporting the results of our numerical investigations, recall that we are solving561

the controlled or regularized model differential equations given in Eqn. (10). Parameters562

are estimated by treating them as state variables with trivial dynamics Fa(x(t)) = 0. All563

numerical integration was performed using an explicit fourth-order Runge-Kutta algorithm.564

During an the assimilation window, measurements are available at every time step ∆t.565

Unless otherwise specified, the coupling matrices g(t) and g′(t) are taken to be identity566

matrices when 0 ≤ t ≤ T . For t > T , we predict by removing the control or coupling terms,567

so g(t),g′(t)→ 0 and no additional information is utilized from the measurements.568

Since we are working with deterministic models, without model error, we do not require569

any of the probabilistic machinery discussed earlier. Although one may place the time570

delay method fully within the general path integral formulation [12], we do not do so here.571

Instead, we simply modify the dynamical equations with the control terms Eqn. (10). After572

long enough time evolution, the states in the model will match the states of system and we573

take these as our initial conditions for prediction.574

A. Lorenz 1963 model575

We begin with the Lorenz 1963 [23] model whose equations of motion are given by,576

dx1(t)

dt
= p1

(
x2(t)− x1(t)

)
dx2(t)

dt
= x1(t)

(
p2 − x3(t)

)
− x2(t)

dx3(t)

dt
= x1(t)x2(t)− p3 x3(t) (19)

where the parameters are chosen to be p1 = 10, p2 = 60, and p3 = 8/3.577

To produce the data, we integrate these equations with a time step ∆t = 0.01 for t = [0, T ]578

where T = 10 = 1000 ∆t and select a measurement function y(t) = h(x(t)) = x1(t); so579

L = 1. The initial conditions for both the physical system xdata(0) and the model system580

xmodel(0) are chosen at random from a uniform distribution that roughly spans the size of581
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the attractor. However, the initial condition for the observed component x1(0) was chosen582

to match the data.583

1. Estimating states only584

Fixing the parameters p1, p2, p3 at the values used to generate the data, we perform our585

calculations using a constant, uniform coupling g = 10 so that g∆t = 0.1. The matrix586

g′(t) is taken to be unity and the pseudoinverse is constructed using full rank r = rmax =587

min(DM , D). The time delay is chosen to be τ = 0.1 = 10 ∆t, which is consistent with the588

average mutual information criterion [29, 30, 32].589

The estimation proceeds by numerically integrating the coupled equations Eqn. (10)590

throughout the assimilation window t = [0, 10]. Then, setting g(t), g′(t)→ 0, we continue591

the integration to predict for t = [10, 20].592

The trajectory of the experimental synchronization error SEs(t) throughout the assimila-593

tion window is shown in the Top panel of Fig. 1 for DM = {1, 2, 3}. Note in particular how594

the DM = 1 coupling is insufficient to achieve synchronization. This result however, is not595

at odds with the work of Pecora and Carroll, whose synchronization scheme replaces x1(t)596

by y(t) in the dynamical equations, corresponding to the limit g → ∞ [22]. By increasing597

the coupling to g = 100 we provide enough control strength to synchronize the systems with598

no time delays, DM = 1.599

This result does however suggest that the addition of time delays provides stronger cou-600

pling with lower values of g. This can be seen by noting how choosing DM > 1 generates601

rapid convergence of the experimental synchronization error, and that the system converges602

to a synchronized state considerably faster with DM = 3 compared with DM = 2. Further-603

more, we have checked that selecting DM > 3 does not further improve the convergence604

rate, which we suspect is due to the fact that choosing DM > 3 does not increase the rank of605

the inverse. In this case, the system is observable enough so that DM = 3 provides a basis606

of measurements that spans the entire D = 3 state space. These results provide a simple607

demonstration of how effectively the time delays transfer additional information from the608

unobserved states to stabilize the synchronization manifold.609

The true test however, of any data assimilation scheme is its ability to predict the be-610

havior beyond the assimilation window. To this end, the Bottom panel of Fig. 1 shows the611

25



estimates and predictions for the observed state component x1(t) for each DM = {1,2,3}.612

As expected, the predictions for DM = 1 are poor whereas for DM = {2, 3} they are ex-613

ceptionally accurate throughout the entire prediction window. The fact that DM = {2, 3}614

produced excellent predictions but DM = 1 did not, supports use of the S-space synchro-615

nization error Eqn. (18) as an experimentally viable indicator of convergence. Since this is616

a twin experiment, we actually know all the ‘unobserved’ data time series, so we may verify617

the predictions of the unobserved state components directly. We have done this, and the618

results (not shown) confirm our comments.619

2. Estimating states and parameters620

Next, we estimate the parameters for this system by extending Eqn. (19) to include the pa-621

rameters as state variables. We now have six dynamical equations p(t) = {p1(t), p2(t), p3(t)} =622

{x4(t), x5(t), x6(t)} with dp(t)/dt = 0. Only the time delay control appears in the vector623

field of the pk. The initial values of the parameters are chosen to be 50% of their known624

values, and the coupling matrix is selected as g(t) = diag({10, 10, 10, 100, 100, 100}). That625

is, the parameters are subject to ten-fold larger coupling than the states. The assimilation626

proceeds as before, except over an extended observation window T = 100 = 104 ∆t. The627

coupling is then turned off to predict for [100, 110].628

Trajectories of SEs(t) are shown in the Top panel of Fig. 2 for DM = {1, 2, 3}. Syn-629

chronization proceeds more slowly than in the previous example where parameters are fixed.630

Notably however, for the extended system DM = 2 is no longer sufficient. This can be631

further established by examining the parameters at the end of the assimilation window (see632

Table I). As expected, for DM = 1 the parameters have not changed from their initial633

values, as DM = 1 coupling only perturbs the measured state components (here x1(t)) and634

is therefore unable to perform parameter estimation. For DM = 2, the parameter estimates635

are poor and for DM = 3 they are very accurate. In the latter case, the relative errors636

εreli := (pmodeli − pdatai )/pdatai , are all O(10−6) or smaller.637

Forecasts for the observed state variable x1(t) are shown in the Bottom panel of Fig. 2.638

The estimates and predictions for DM = 1 are not acceptable. Selecting DM = 2 on the639

other hand, generates a very reasonable ‘fit’ to the data during the assimilation window, but640

it results in poor prediction. This raises two important points.641
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• It illustrates our statement that the merit of any data assimilation scheme must be642

judged by its capability to predict, not just fit the data.643

• For the extended system (with parameters included), selecting DM = 2 is no longer644

sufficient to achieve synchronization. This suggests that promoting parameters into645

states with trivial dynamics can increase Lc.646

Thus, we have demonstrated the capability of our method to successfully estimate the647

state and parameters of a simple Lorenz 1963 system. These results notwithstanding, this648

system is not so interesting from the standpoint of demonstrating the true power of this649

technique, since we know one measured state component is sufficient to synchronize the650

systems using the DM = 1 coupling method, provided the coupling gain is chosen high651

enough. The rest of our examples do not share this property and are thus more suitable for652

investigating the problem of assimilating data with an insufficient number of measurements.653

B. Rössler hyperchaos654

We now investigate the four dimensional Rössler system described by [38]655

dx1(t)

dt
= −x2(t)− x3(t)

dx2(t)

dt
= x1(t) + p1 x2(t) + x4(t)

dx3(t)

dt
= p2 + x1(t)x3(t)

dx4(t)

dt
= p3 x3(t) + p4 x4(t).

We generate a time series xdata(t) using a time step of ∆t = 0.025 starting from the initial656

condition xdata(0) = {−20, 0, 0, 15} with a parameter set pdata = {0.25, 3.0,−0.5, 0.05},657

for an observation window T = 20 = 800 ∆t. As in the previous example, we choose a658

measurement function y(t) = h(x(t)) = x1(t), so L = 1.659

To initiate our time delay algorithm the three unobserved initial model conditions660

are selected randomly from a uniform distribution that spans the attractor, so that661

xmodel(0) = {−20,−18.6, 25.7, 122.4}.662

Parameters are estimated by treating them as four additional state variables p(t) =663

{x5(t), x6(t), x7(t), x8(t)} with dp(t)/dt = 0. The initial parameter estimates are selected to664

be pmodel(0) = {0.125, 1.5,−0.25, 0.025}, namely 50% of the known values.665
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We encountered some initial problems with numerical stability, which we attribute to the666

fact that the 4D Rössler attractor is rather inhomogeneous. That is, the x3(t) state spends667

most of its time near zero but is punctuated by short excursions to relatively large values. To668

increase the stability of the computations we used the L2 rank selection procedure described669

above, with ε = 10, and imposed constraints on all parameters to keep them within the670

window [-10,10].671

The calculations are carried out using τ = 4 ∆t and a uniform coupling g = 10 so672

g∆t = 0.25. As before, g′(t) is taken to be unity. At the end of the observation window, the673

model parameters are fixed at their estimated values and, we then predict for a subsequent674

200 = 8000 ∆t time units.675

In the Top panel of Fig. 3 we plot SEs(t) for DM = {6, 8, 13}. For DM = 6 synchroniza-676

tion does not occur whereas for DM = {8, 13} it does. The Middle panel displays SEs(t) for677

DM = 8 beyond the observation window. After the coupling is switched off the error grows678

at a rate that is roughly consistent with the maximum Lyapunov exponent of the system.679

The Bottom panel displays the estimate (red) and prediction (blue) of the observed x1(t)680

along with the known data. Excellent predictions indicate good estimates of the unobserved681

states and parameters. The eventual deviation of the predictions from the known data is682

due to the chaotic behavior of the system.683

Since this is a twin experiment, we may directly investigate the behavior of the unobserved684

states of the system. In the Top panel of Fig. 4 we display the unobserved state x4(t).685

As expected, the estimates and predictions are quite good. A similar comparison for the686

parameter estimates is shown in the Bottom panel. While the estimates may vary initially,687

they soon settle on the correct values. Numerical results for the parameter estimates are688

compiled in Table II. The values reported are the relative errors at the end of the observation689

window.690

C. Lorenz 1996 model691

We now turn to the example of the Lorenz 1996 model [39], which is studied widely in692

the geophysical literature [41]. The model describes a ring of D > 3 coupled oscillators,693

which obey the differential equations694

dxa(t)

dt
= xa−1(t)

(
xa+1(t)− xa−2(t)

)
− xa(t) + p1 (20)
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where a = {1, 2, . . . , D} and the indices are permuted cyclically i.e. x0(t) = xD(t), xD+1(t) =695

x1(t) and x−1(t) = xD−1(t).696

When the forcing parameter p1 is large enough this model exhibits extensive chaos so that697

the number of positive Lyapunov exponents scales with the number of spatial dimensions698

D [42]. Similarly, the number of measurements required to stabilize the synchronization699

manifold is also proportional to D. Previous work [14, 24] has shown that with a global700

forcing parameter p1 = 8.17, the standard coupling scheme Eqn. (3) involving one control701

term in the differential equations of each measured state requires approximately Lc ≈ 0.4D702

to achieve synchronization. Since the dimension D may be chosen freely, this makes the703

Lorenz 1996 system an excellent testing ground for investigating the behavior of data assim-704

ilation techniques in the context insufficient measurements. For our purposes, it will further705

demonstrate how the time delay dimensions serve as additional measurements.706

1. D = 20 with a single global forcing parameter707

First, we look at a system of size D = 20 and extend it to include the single global708

parameter p1 as a 21st state variable x21(t) with dynamics dx21/dt = 0. We observe only709

the first state component h(x(t)) = x1(t), so L = 1. Data is generated using a time-step710

of ∆t = 0.01. We select a constant coupling g = 10, so that g∆t = 0.1 and time delay711

τ = 0.1 = 10 ∆t. The inverse, ∂x/∂S(x) is taken to have full rank r = DM and the712

parameters are not subject to any constraints.713

This example also includes additive white noise in the measurement y(t)→ y1(t) + η(t).714

The noise is generated by choosing η(t) from a uniform distribution centered around zero715

U(−α, α). The amplitudes α = {0.0, 6.34 · 10−5, 0.0011, 0.020} (arbitrary units) are chosen716

so that the signal to noise ratios are respectively SNR = {∞, 100, 75, 50} dB, where for a717

uniform distribution718

SNR := 10 log10

(
〈y(t)2〉 − 〈y(t)〉2

|α|2/3

)
〈x〉 :=

1

T

T∑
n=1

x(tn).

The estimation is performed using the same data trajectory y(t) for each of the noise719

amplitudes. Trajectories of the experimental synchronization error SEs(t) are shown in the720

Top and Bottom panels of Fig. 5 for SNR =∞ and SNR = 100 dB respectively. Each plot721
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includes traces for DM = {1, 8, 9, 10, 12, 14}.722

When no noise is present, a clear transition to synchronization is evident between DM = 8723

and DM = 9 for the extended system with 21 degrees-of-freedom. This allows us to identify724

Lc ≈ 9, which is in agreement with previous work [24]. This rule also holds when the725

SNR = 100 dB. In this case, our results show the synchronization error quickly converges726

down to the approximate level of the noise. However, as the SNR is further decreased, this727

transition becomes less apparent. For SNR = {75, 50} (not shown), the fluctuations of the728

synchronization error are roughly the order of magnitude of the noise.729

Estimates and predictions for the observed variable x1(t) are shown in Fig. 6 for no730

added noise and Fig. 7 for SNR = 100 dB. Here again, we see a clear distinction between731

the accuracy of the predictions between DM = 8 and DM = 9 when the noise levels are low,732

SNR ≥ 100 dB. However, for higher noise levels SNR ≤ 75 dB (not shown), the estimates733

are good but the predictions are poor regardless of DM indicating poor parameter estimates.734

Since this is a twin experiment, we may check the parameter estimates directly. These735

results are shown in Table III. As expected the estimates for SNR ≥ 100 are accurate736

when DM ≥ 9. However, as noise levels are further increased however, the accuracy of the737

estimates deteriorates markedly. In this regime, increasing DM seems detrimental to the738

parameter estimates. This sensitivity may indicate instability in the pseudoinverse. Indeed,739

we have checked that further decreasing the SNR causes the calculations to become unstable740

with DM > 10.741

Reducing the rank of the inverse stabilizes the calculations, but does not improve the742

estimates in this case. However, we have seen evidence that results may be improved by743

choosing a larger DM while fixing the inverse rank at a lower value to ensure stable calcula-744

tions (e.g. r = 10). Increasing the time delay τ has also been observed to improve robustness745

to noise as the addition of time delay coordinates tends to act as a low pass filter. However,746

there is a trade-off with this tactic. As the length of the time delay vector gets long with747

respect to the Lyapunov time, the inverse of the largest Lyapunov exponent, the ∂S(x)/∂x748

matrix becomes more ill-conditioned and small errors in the data are amplified. Conse-749

quently, a good method for choosing the rank of the matrix is especially crucial when noise750

is involved and when the maximum time delay time DM τ is long. Furthermore, we expect751

the noise robustness to be further improved by adapting the coupling terms g(t), g′(t) in752

some ‘optimal’ manner that incorporates estimates for the error covariance, such as what is753
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done for the Kalman-Bucy filter.754

2. D = 10 with different forcing for each oscillator755

Our next example uses the Lorenz 1996 model Eqn. (20) with D = 10 and different values756

for the forcing parameters for each dimension (p1 → pi for i = {1, . . . , D}). The values of757

these parameters are given in Table IV and are selected in this way to break the symmetry758

of the original model. Proceeding as usual, we construct the extended system consisting of759

D + D = 20 states and parameters to perform the estimates. All other parameters remain760

the same as the previous example. Also, no additional measurement noise was included in761

this simulation so SNR =∞.762

Fig. 8 shows the temporal evolution of the synchronization error SEs(t) for different763

delay dimensions DM . While DM ≤ 5 is not sufficient for achieving synchronization, the764

simulation with DM = 6 shows a slow convergence to zero and DM = 10 exhibits a clear765

and fast transition to synchronization. This allows us to identify Lc ≈ 6 for the extended766

system. This is confirmed in Fig. 9 where in the top panel the predictions fail for DM = 1767

and DM = 5, but succeed for DM = 10 as shown in the bottom panel.768

V. DIRECT ESTIMATION OF Lc769

We have now examined several examples of chaotic oscillators in which the use of ad-770

ditional information from the waveform of the data permits estimation of parameters and771

states when only L = 1 measurement is made at each observation time. In particular, we772

have seen that the time delays act in some sense as additional measurements and are able to773

reduce the number of measurements L required to achieve accurate estimates and reliable774

predictions. For instance, previous work with the Lorenz 1996 system showed that success in775

this endeavor requires L ≥ Lc ≈ 0.4D measurements without time delays [14, 24]. However,776

the results here show that success can be achieved using only L = 1 measurement as long777

as roughly DM ≥ Lc time delays are used.778

The fact that the critical number of time delays is approximately the same as the Lc is779

no accident. As we mentioned above, Lc is related to the number of unstable dimensions of780

the dynamics. We now give a technique for directly estimating this critical value.781
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Consider a long trajectory x(tn) generated by Eqn. (2) and sampled at discrete times782

n = {0, 1, . . . , N}. At each point tn, evaluate ∂F(x(tn))/∂x and construct its SVD,783

∂F(x(tn))

∂x
= U(tn) · S(tn) ·V†(tn)

Let {σ1(tn), σ2(tn), . . . , σD(tn)} be the collection of singular values along the path. The784

local dimension of the unstable subspace is given by counting the number of singular values785

whose value is greater than unity. Consequently, a direct estimate for Lc can be obtained786

by averaging these values over the entire path. Specifically, the estimate is given by787

Lc ≈
1

m+ 1

m∑
n=0

D∑
a=1

Θ[ln(σa(tn))] (21)

where Θ[·] is the usual Heaviside theta function.788

When this numerical technique is applied to the noiseless Lorenz 1996 system with a789

fixed, global parameter p1 = 8.17 the Lc ≈ 0.4D scaling rule is reproduced. Applying this790

technique to the Lorenz 1996 system with D = 10 and 10 distinct parameters yields an791

estimate of Lc ≈ D. This estimate, while not at odds with the above results, is a bit high,792

as we have observed synchronization with as low as DM = 6. The transition with DM = 6793

however, takes much longer, as can be seen in Fig. 8.794

The reason for this, we argue, is related to the fact that incorporating parameters into795

the model modifies the spectrum of the Jacobian ∂F(x(t))/∂x to have singular values that796

are close to zero. These ‘slightly’ unstable dimensions tend to get ‘averaged out’ so to speak,797

when the assimilation window is long, allowing synchronization to occur with fewer than D798

measurements. Similar behavior was observed for the Lorenz 1963 and Rössler systems.799

These results further strengthen our argument that Lc closely related to the number of800

locally unstable directions in phase space, or more precisely, the ergodic average of this801

quantity. Also, the fact that the critical number of time delays is approximately equal to802

Lc supports the idea that to successfully synchronize the model with the observed data,803

one requires the set of measurements (either physical or time delayed) to span the unstable804

subspace of the dynamics.805

This idea of incorporating information from time delayed measurements to regularize the806

search for the correct model states and parameters is not new by any means. In particular, we807

have recently discovered that the method discussed here and in [17] (also proposed earlier808

in [43]) is fundamentally equivalent to a control theoretic construct known as a Newton809
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observer, which was first introduced by Moraal and Grizzle in [44, 45]. The idea is that by810

using time-delays in this way, the perturbation δx(t) is essentially the Newton step associated811

with the observability equation. We elaborate this point in more detail below.812

We begin with the standard definition of the nonlinear observability matrix ∂Φ(x)/∂x,813

in which814

Φ(x) :=


h(x)

LFh(x)
...

LD−1F h(x)

 , (22)

is the collection of repeated Lie derivatives LFh(x) = F(x) · ∇h(x) of the measurement815

function h(x) with respect to the vector field F [36, 46]. The system is said to be locally816

observable at a point x0 if and only if817

rank

[
∂Φ(x0)

∂x0

]
= D.

When the system is locally observable at a point x0, there exists a neighborhood Ω such818

that for every z ∈ Ω the point z 6= x0 is distinguishable from x0, in the sense that h(z) 6=819

h(x0). Intuitively, this means that at the point x0 there is enough information from the820

measurement and the dynamics to infer the entire state of the true, physical system.821

In principle one can perform this inversion locally, without having to use a dynamical822

process, by solving the following nonlinear system of equations for x,823

Y :=


y

y1

...

yD−1

 = Φ(x) (23)

where yi := diy/dti are higher order time derivatives of the measured data. This can be824

done for instance, with a Newton’s method approach, which involves a series of iterates xi825

xi+1 − xi =

(
∂Φ(xi)

∂xi

)−1
·
(
Y −Φ(xi)

)
.

For this process to succeed, the system must be locally observable so that the Jacobian826

∂Φ(x)/∂x has full rank [36, 46].827

The vector-valued functions Φ(x) and S(x) are similar in that they both contain infor-828

mation about the time-evolution of the states. In particular, S(x) can be considered a time829
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delayed version of Φ(x). While Φ(x) is easier to work with analytically, performing the830

inversion of Eqn. (23) is rarely useful in practice, as it requires one to measure high-order831

derivatives of the data or approximate them with finite differences. The latter approach is832

numerically unstable when measurement noise is present, as the finite difference approxima-833

tion acts as a high-pass filter [46].834

The time delay formulation on the other hand, does not have this problem since the835

derivatives on the left hand side of Eqn. (23) are replaced with time delayed values of836

the measurements. As Takens noted [27], time delays carry the same information as the837

derivatives but are far less sensitive to measurement noise. The same Newton’s method838

approach can be performed using time delays,839

xi+1 − xi =

(
∂S(xi)

∂xi

)−1
·
(
Y − S(xi)

)
. (24)

Note that this process is static. That is, it is carried out at a single time t. Compare this840

with the dynamic process in Eqn. (10), for which the control perturbation is essentially the841

right hand side of Eqn. (24). The immediate connection between the ‘observation space’842

Φ(x) and the time delay space S(x) suggests that the static process Eqn. (24) can only843

converge to the correct solution when ∂S(x)/∂x has full rank.844

In terms of the dynamical process Eqn. (10), the observability criterion ensures that one845

can modify all of the eigenvalues of the error system846

e(t) := xmodel(t)− xdata(t)

to converge at a desired rate [36, 46]. In our numerical experiments, we observe precipitous847

drops in the synchronization error in regions where ∂S(x)/∂x is well-conditioned enough to848

construct the full rank inverse. We consider this empirical evidence for the correspondence849

between our time delay approach and observability.850

In addition, the connection with observability provides a different perspective on the851

time delay approach. Namely, at each time step we are solving a time delayed version of the852

observability Eqn. (23) to estimate the error between the model and the data, which is then853

fed back into the model system after being modified by an appropriately chosen coupling854

(gain) g(t). When DM = 1 the estimate uses only information available at the current time855

and when the inverse ∂x/∂S(x) is full-rank the estimate provides full state feedback.856

When the observability condition is not satisfied the static process fails. There is however,857

a weaker condition known as ‘detectability’, which requires all of the unobservable modes of858
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the system to decay asymptotically [36, 46]. If this condition holds, the dynamical process859

will still succeed as we are able to control all of the locally unstable directions associated860

with error growth.861

This is essentially what we mean by the suggestion that the set of measurements must862

span the unstable dynamical subspace. In nonlinear systems however, the analysis is more863

difficult as this subspace changes dynamically in time, so that we may not always have a864

spanning set of measurements at each point along the trajectory. For our purposes, we865

are interested in an ergodic or ‘infinite horizon’ estimation process where, although we may866

not be able to control all of the instabilities at every point, we nonetheless have enough867

measurements to initiate the transition to synchronization given a ‘long enough’ time series868

of measurements i.e., T →∞.869

The purpose of this discussion has been to introduce a direct estimate Eqn. (21) for Lc870

in terms of the average number of unstable directions in the dynamics and to acknowledge871

the apparent connection with observability. These ideas have had some mention in the data872

assimilation literature. For instance, the unstable dynamical subspace has been used for873

selecting ensemble members in ensemble forecasts and for identifying sensitive regions to874

targeted for further observation [41]. Also, optimization-based approaches such as moving875

horizon estimation seek to incorporate a moving time window of observations [47, 48]. How-876

ever, the true value of the Newton observer (time-delay synchronization) technique lies in877

its ability to deal with poorly observable system in a systematic way [45]. It was with such878

systems in mind that we independently rediscovered the work of Moraal and Grizzle some879

two decades later, as these systems are altogether common in applications where the num-880

ber of degrees of freedom in the model far exceeds the number of observations. With that881

said, we now turn to our final example, which involves the estimation of a small network of882

chaotic oscillators.883

VI. NETWORKS OF CHAOTIC OSCILLATORS884

One particular goal for our time delay method is to provide a means to analyze networks885

of oscillators, such as those found in nervous systems. As in practical geophysical dynamics886

(for example, numerical weather prediction) sparse measurements of the network behavior887

under selected forcing is to be expected. One strategy [11] for understanding the underlying888
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physical properties of such problems is to analyze carefully the properties of the nodes,889

namely the specific oscillators such as the ones we have covered here, and then use the same890

approach to analyze the nature and strengths of the couplings among the oscillators at the891

nodes to complete a model for the network as a whole.892

In the case of nervous system networks, we have many neurons (nodes) connected by893

a variety of links (e.g., synaptic and gap junction). In practice, we cannot measure the894

detailed intracellular properties of more than one or a few of the nodes. If we, however, have895

determined the biophysics of each node from the analysis of isolated neurons, we require a896

tool to allow the estimation of the connectivity so the functional behavior of the network897

can be quantified.898

A. A small network of chaotic Colpitts oscillators899

Pursuing this goal, we examine a small network of well-studied chaotic oscillators. Each900

of the M = 3 nodes is a Colpitts oscillator that is forced by a voltage across a known circuit.901

A chaotic regime of behavior is reached from a fixed point for each oscillator through a902

bifurcation sequence including a limit cycle.903

In particular, we investigate a ring of oscillators with connected with unidirectional cou-904

pling. The state of each oscillator is given by xia(t), where i = {1, 2, 3} is the node index and905

a = {1, 2, 3} denotes three internal state variables for each node. The dynamical equations906

are given by907

dx
(i)
1 (t)

dt
= p

(i)
1 x

(i)
2 (t) + c(i+1,i)

(
x
(i+1)
1 (t)− x(i)1 (t)

)
dx

(i)
2 (t)

dt
= −p(i)2

(
x
(i)
1 (t) + x

(i)
3 (t)

)
− p(i)3 x

(i)
2 (t)

dx
(i)
3 (t)

dt
= p

(i)
4

(
x
(i)
2 (t) + 1− exp[−x(i)1 (t)]

)
(25)

where the indices are permuted cyclically so that x(M+1)(t) = x(1)(t). The parameters908

c(i+1,i) ≥ 0 are constant coupling constants that serve as connections among the individual909

oscillators.910

The Colpitts oscillator is comprised of standard R, L, C components together with a911

single bipolar transistor. The only nonlinearity is the exponential function exp(−x(i)1 (t))912

coming from the transistor dynamics. These equations are a rescaled representation of the913

physical equations of state. The derivation of these dynamical equations from Kirchoff’s laws914
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is given in [14, 49]. The states x1, x2, and x3 respectively correspond to the voltage between915

the transistor emitter and its base, the current through the inductor and the voltage at the916

transistor collector and its base.917

When p1 ≥ 3.5 or so, the oscillator expresses chaotic behavior. Following [14], we select918

p
(i)
1 = 5.0, p

(i)
2 = 0.0797, and p

(i)
4 = 0.6898 for all three oscillators. To break the ring sym-919

metry, we select p
(1)
3 = 3, p

(2)
3 = 3.5, p

(3)
3 = 4 as well as c(2,1) = 0.8, c(3,2) = 0.9, c(1,3) = 1.0.920

Direct integration of Eqn. (25) confirms that the individual oscillators do not synchronize921

with each other. This is important, as a synchronized network may require fewer measure-922

ments than an unsynchronized network. Indeed, synchronization of oscillators in a network923

may allow population behaviors by effectively reduce the degrees of freedom of the network924

in a functional manner.925

B. Estimating the states of the network926

To begin we fix all parameters and the couplings among oscillators to their known values,927

and use the time delay method to estimate the state of the network system given only the928

scalar time-series y(t) = h(x(t)) = x
(1)
1 (t), so L = 1. A constant time delay τ = 0.2 = 20 ∆t929

and coupling gain g∆t = 0.1 were selected. To improve numerical stability during the930

transient period, the L2 adaptive rank algorithm was used with a tolerance ε = 10. Initial931

conditions for the model were chosen at random from an arbitrary trajectory on the attractor.932

Results for the state estimation procedure are shown in the Top panel of Fig. 11. The933

experimental synchronization error is plotted as a function of time for DM = {1, 3, 5, 9}.934

DM = {1, 2} is insufficient; one needs DM = 3 to achieve synchronization. Our analysis935

of estimates and predictions for individual states verified that DM = 3 indeed produces936

excellent predictions, whereas DM = {1, 2} does not. This result gives an estimate of Lc ≈ 3937

for the case under consideration, where only the states are to be determined.938

Furthermore, the rate of convergence does not increase monotonically with the number939

of measurements. That is, DM = {4, 5} have a slower convergence rate than DM = 3, and940

DM = 6 does not appear to converge at all. This illustrates the importance of the proper941

choice of DM , as there is a trade-off between the rate of convergence and the stability of the942

procedure. Note that the adaptive rank algorithm did not impact this result because apart943

from about 100 time steps at the beginning of the assimilation window, full rank was used944
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i.e., r = min(D,DM).945

In addition, note that the fastest rate of convergence is achieved with DM = 9. This946

choice is a special case where DM = D and so the ∂S(x)/∂x matrix is square and may947

be inverted exactly. While theoretically, such an embedding allows the entire state to be948

reconstructed instantaneously at a single time t, in practice the matrix is often too ill-949

conditioned for this technique to be of use. The adaptive rank algorithm counteracts this950

numerical instability, by selecting the largest rank r that produces a stable perturbation.951

In this case however, we observe that as the estimated state approaches the true value, the952

adaptive rank algorithm selects a full rank inverse r = DM = D. This indicates that the953

time delay construction is well-conditioned enough so that the exact inverse can be used to954

generate a perturbation δx that is small relative to the dynamics. When this happens, the955

estimate converges remarkably quickly to the true result, as evidenced by the steep dive for956

the DM = 9 trace in the Top panel of Fig. 11.957

We argue that this accelerated convergence brought about by the full-rank inverse of958

∂S(x)/∂x is intrinsically related to the observability condition familiar from control theory.959

As we suggested earlier, the ∂S(x)/∂x can be considered a time delayed version of the960

observability matrix. When a well-conditioned, full-rank inverse exists, the error between961

the true and estimated states is well-approximated by δx and the estimate converges quickly962

to its true value. Thus, while DM = 3 time delays appears to be necessary to stabilize the963

chaotic subspace of the dynamics to provide asymptotically stable convergence, selecting964

DM = 9 provides rapid convergence that is less numerically stable.965

Furthermore, depending on the system being studied it appears that it is not always966

possible to construct such a well-conditioned full-rank time delay space. In particular when967

parameters are being estimated, different parameters only may be observable within dis-968

parate regions of phase space and thus our localized time delay vector will not be able to969

capture the behavior of all parameters at a given point on the attractor.970

C. Estimating the states and the couplings between nodes971

Next, we fix the parameters p(i) to their known values and include the internode couplings972

c(i+1,i) in the estimation procedure. This is directly relevant to analyses of neuron networks973

where we may have some knowledge of the cells individually, but we wish to explore the974
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connectivity which underlies the function of the network.975

We proceed as before, using the same time delay τ = 0.2 = 20 ∆t and coupling gain976

g∆t = 0.1 as well as the adaptive rank selection with ε = 10. The initial conditions for977

the ring coupling parameters are chosen to be one half of their correct values i.e. c(2,1) =978

0.4, c(3,2) = 0.45, c(1,3) = 0.5.979

In the Middle panel of Fig. 11, the experimental synchronization error is plotted as980

a function of time for DM = {4, 5, 9, 12}. Results show that DM = 5 time delays are981

required to achieve synchronization. The DM = 1 case was not computed here, as the ring982

coupling parameter estimates are guaranteed to be incorrect without the use of time delays.983

Trajectories with DM = 3 and DM = 6 were also computed, but not shown as the results984

proved to be numerically unstable. Also, here again we see that a full rank r = DM = D = 12985

inverse is available, as the DM = 12 trajectory synchronizes very rapidly.986

As in previous sections, we validate the results as if this were an actual experiment. In987

the Top and Bottom panels of Fig. 12 we plot the estimate and predicted trajectories of988

the observed x
(1)
1 (t) state component for DM = 4 and DM = 5 respectively. As expected,989

the prediction for DM = 4 is poor despite that its estimate looks quite accurate. This once990

again demonstrates the necessity of using predictions to validate the quality of a model’s991

consistency with experimental results. On the other hand, the DM = 5 estimate produces992

accurate predictions that do not diverge for a considerable time after the end of the assimila-993

tion window (largest LE is O(10−1)). Similar results are obtained for DM = 9 and DM = 12994

although these trajectories are not shown.995

Estimated values for the ring coupling parameters are shown in Table V. As expected,996

the estimates are accurate only when DM ≥ 5. This result demonstrates the potential of997

the time delay procedure for performing state and parameter estimation on a network of998

coupled chaotic oscillators. Specifically, it shows that the waveform of a scalar signal from999

a state of a single oscillator carries enough information to determine both the states of the1000

neighboring nodes in the network as well as the coupling parameters that determine the1001

interaction between the neighbors. This of course assumes that the network topology is1002

known. In the next subsection, we dispense with this assumption and investigate whether1003

the algorithm is capable of determining the functional connectivity of this simple network.1004
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D. Estimating the functional connectivity of the network1005

Until this point, our model has been constructed assuming that the connectivity of the1006

network is known, but the strength of the connections is not. In many practical applications1007

however, this information is not available. For instance, when modeling small neurobiological1008

networks, one often has some idea of the number of nodes in the network, and perhaps1009

even some notion of their physical connectivity. The functional connectivity of the network1010

however (i.e., the relative synaptic strengths) is generally unknown and therefore must be1011

determined from experimental data. We now investigate this prospect of network topology1012

estimation, within the context of our simple Colpitts network.1013

To this end, we expand our network model Eqn. (25) to include coupling in both directions1014

so that the dynamical equations for the x
(i)
1 states are now, with c(j,i) ≥ 0,1015

dx
(i)
1 (t)

dt
= p

(i)
1 x

(i)
2 (t) +

3∑
j=1

c(j,i)
(
x
(j)
1 (t)− x(i)1 (t)

)
.

The twin experiment data is generated as before, so that the true values of the additional1016

coupling parameters are c(1,2) = c(2,3) = c(3,1) = 0. The initial conditions for these couplings1017

are chosen to be symmetric, so that c(2,1) = c(1,2) = 0.4, c(3,2) = c(2,3) = 0.45, c(1,3) = c(3,1) =1018

0.5. All other parameters are the same as before.1019

Also, note that all self-couplings c(i,i) are implicitly zero. This however, is just a con-1020

sequence of how the network coupling model was defined; the procedure may be easily1021

generalized to estimate self-coupling parameters as well.1022

In the Bottom panel of Fig. 11, we display experimental synchronization error trajec-1023

tories for DM = {5, 6, 8, 10, 12, 15}. Results are similar to those shown in the previous sub-1024

section. Synchronization requires DM ≥ 8 time delays and the full rank r = DM = D = 151025

inverse synchronizes rapidly. Results with DM = 7 were numerically unstable and are not1026

shown. Known, estimated and predicted trajectories for the observed x
(1)
1 (t) are shown in1027

the Top and Bottom panels of Fig. 13 for DM = 6 and DM = 8 respectively. As anticipated1028

from the synchronization error results, the prediction for DM = 8 is quite accurate whereas1029

for DM = 6 it is not. The estimated coupling parameters shown in Table VI further confirm1030

this result. Only the estimates made with DM ≥ 8 time delays are accurate, allowing us1031

to identify Lc ≈ 8 for this extended model, in which the connectivity of the network is1032

unknown.1033
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The main point of this calculation was to demonstrate that the time delay method is1034

capable of determining the function connectivity of a network of chaotic oscillators, within1035

the assumption that the model is known: both for the internal dynamics within a node1036

and the coupling between nodes. In particular, we have shown that knowing x
(1)
1 (t) alone1037

is enough to determine the functional connectivity of this small network of three Colpitts1038

oscillators. That is, we are able to correctly estimate the values of both the forward and1039

backward couplings, the latter of which are zero. Furthermore, we have learned that ex-1040

panding the model in this way (i.e. to include coupling in both directions) increases the1041

number of required time delays from DM = 5 to DM = 8.1042

We remark however, that this case of M = 3 is exceedingly simple, requiring estimation1043

of only three additional parameters (the backwards couplings). For a general network, the1044

number of coupling terms to be estimated grows as M2 and thus we expect that at some M1045

a single, scalar measurement will not be enough.1046

Nonetheless, the twin experiment framework presented here, together with the time delay1047

algorithm, supplies crucial information about the observability of the system being studied.1048

It provides for instance, a lower bound estimate on the number of required measurements and1049

also offers a way to determine which nodes should be targeted for observation: since some1050

nodes may provide more data than others. Such information would be highly beneficial1051

for experimental design purposes, as it allows one to directly investigate the constraints1052

imposed by one’s limited measurement capability. In other words, our framework allows1053

one to determine, in principle, whether enough measurements are available to successfully1054

determine the connectivity of the network, and predict its subsequent behavior.1055

VII. DISCUSSION AND SUMMARY1056

The idea of using the waveform of measurements—that is, the measurement at time t1057

and its time delays—has been investigated in the context of synchronization-based state1058

and parameter estimation for chaotic dynamical systems as a means to transfer additional1059

information from observed data to a model. An algorithm has been presented that uses1060

this additional information to generate dynamical coupling between the data and model1061

systems and its capability has been demonstrated using the Lorenz 1963 and 1996 models,1062

the 4-dimensional ‘hyperchaotic’ Rössler model, as well as recurrent networks of chaotic1063
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oscillators.1064

These examples demonstrate that when only one state variable is observed, utilizing1065

DM ≥ Lc time delays stabilizes the synchronization manifold enough to enable accurate1066

estimation of unknown states and parameters, and permit accurate predictions beyond the1067

observation window. In this way, the time delays are capable of significantly reducing the1068

number of measurements required to achieve accurate estimates and reliable predictions.1069

In practice, the number of available measurements is often tightly constrained (e.g., by1070

cost or technological considerations) and are typically sparse compared with the number of1071

degrees of freedom of the model. For instance, in the analysis of a shallow water model of1072

geophysical flow, it was shown that Lc ≈ 0.7D [16], while in operational weather prediction1073

systems (such as the European Centre for Medium Range Weather Forecasts) only about1074

107 measurements are typical for models with 108 or 109 degrees of freedom [50].1075

When additional measurements are unavailable, time delays offer another means to fur-1076

ther stabilize the search space. Regarding the shallow water model for instance, recent work1077

has shown that by using time delays in this way, enough information is extracted from the1078

height field alone to permit synchronization between the data and the model [51]. These1079

results demonstrate a proof-of-concept that time delays may be used to effectively reduce1080

the total number of measurements required to achieve this goal.1081

The form of the time delayed coupling has some desirable properties as well. For instance,1082

in the case where DM = 1 it reduces to the classical form Eqn. (3). Also, when DM > 1, it1083

generates control perturbations on all state components and our results have shown that,1084

by including the parameters as state variables augmented with trivial dynamics dp/dt = 0,1085

parameter estimation occurs as a natural result of the synchronization process. This is1086

an improvement over the classical (i.e. DM = 1) form, which typically requires nonlinear1087

optimization techniques to estimate the parameters. Additionally, one could use this method1088

in conjunction with other nonlinear estimation procedures as means to improve the estimate1089

when L < Lc.1090

There also appears to be a direct correspondence between the sufficient number of mea-1091

surements Lc and the number of time delays required to stabilize the synchronization man-1092

ifold. This is interesting for a number of reasons. For one, although it is reasonable that in1093

each case there should exist such a sufficient condition, there is no reason to assume a priori1094

that they should be the same. The fact that they appear to be (roughly) equal indicates1095
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that this condition may be an invariant property of the dynamics. Indeed, we have observed1096

the same phenomenon using other approaches (e.g. variational optimization and Markov1097

Chain Monte Carlo [49, 52]), which suggests these other methods may also benefit from the1098

inclusion of time delays.1099

This result also highlights clearly the distinction between the use of time delays here,1100

for the purpose of state and parameter estimation, and its familiar application in nonlinear1101

dynamics for reconstructing the phase space of a partially observable dynamical system. For1102

instance, the Kaplan-Yorke dimension [53] for the D = 20 Lorenz 1996 system is DA ≈ 12, so1103

the sufficient dimension for phase space reconstruction is [28] 2DA ≈ 24, whereas the required1104

number of time delays is DM ≈ 9. The time delays stabilize the synchronization manifold1105

using a fraction of the sufficient number of delays needed for full attractor reconstruction.1106

We also wish to note that, in practice, there is a finite limit to the amount of information1107

available from the time delays of a single scalar time series. For instance, with the Lorenz1108

1996 system we observed that, regardless of the chosen dimension D, a threshold occurs1109

around DM ≈ 12. Continuing to increase DM beyond this threshold causes the ∂S(x)/∂x1110

matrix to become highly ill-conditioned, and therefore requires a lower choice of rank to1111

maintain stable computations. We suspect that restricting the rank in this way effectively1112

limits the number of stable dimensions transferred from the control coupling. In other words,1113

we have seen evidence that there exists a correspondence between the required number of1114

measured states Lc, the number of time delays DM and the rank r of the inverse. Given the1115

threshold DM ≈ 12 and the empirical scaling rule Lc ≈ 0.4D, this suggests that we should1116

not be able to synchronize a system with D > 25 using only a single measurement, which1117

is indeed the limit observed in our numerical experiments (although these results are not1118

shown here).1119

We further suggest that this threshold is due to a limited amount of information avail-1120

able in a time-series that is locally bounded by the characteristic time-scale of the chaos.1121

That is, holding τ fixed and increasing DM to extend the time delay vector far beyond the1122

Lyapunov time should not provide any additional information, as the later points are too1123

far decorrelated to be of any use. Likewise, increasing DM by decreasing τ and holding the1124

total length fixed should in principle provide enough information. However, in this case we1125

are restricted by the noise level of the system (or if no noise is present, by finite numerical1126

precision). Both cases are indicated by ill-conditioning of ∂S(x)/∂x, and the threshold on1127
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DM likely a manifestation of both effects.1128

Thus, it is crucial to the success of the algorithm that the parameters DM and τ are1129

chosen appropriately. They must be large enough to provide additional information about1130

the unobserved states, yet not so large as to induce numerical instability in the calculation1131

of the inverse. There exist many techniques for choosing τ that have been developed for1132

the purposes of attractor reconstruction, such as the first minimum of average mutual in-1133

formation between measurements. These methods are likely to be applicable here as well,1134

although for the examples shown here changing τ by a few dt did not noticeably impact the1135

results.1136

Also, whereas here we have only considered forward time delays, recent work [54, 55] has1137

shown that a mixture of forward and backward delays can further improve the conditioning1138

of ∂S(x)/∂x. Whether or not mixed delays provides superior results for synchronization is1139

currently under investigation.1140

Moreover, although these examples have been limited to the case where the number of1141

measurements L = 1, our formulation generalizes easily to the case where L > 1. In partic-1142

ular, given DMi
time delays available in each of i = {1, . . . , L} measurements, the number1143

of time delays required to stabilize the estimation should satisfy
∑L

i=1 DMi
> Lc. Note that1144

this is only a rough approximation because it is quite clear that the amount of information1145

contained in each state component is different in general, and not additive, in the sense that1146

measuring two mutually dependent variables may not provide as much information as each1147

variable contributes individually. We remark however, that the twin experiment framework1148

is a useful tool for determining the relative value of a given measurement. Such information1149

is essential for analyzing the costs and benefits of obtaining further measurements.1150

The inclusion of time-delays comes of course with an additional computational cost,1151

mainly associated with the integration steps required to construct the time delay vectors1152

and its Jacobian, as well as solving for the perturbation itself. The baseline for comparison1153

is the simple nudging algorithm Eqn. (3), which is recovered in the limit DM = 1. Certainly,1154

clever algorithmic improvements are required in order to reduce this overhead as much as1155

possible. For instance, one idea is to reduce the resolution of the model, initialize it with1156

existing measurements, run the assimilation and then interpolate, to recapture the desired1157

resolution for forward prediction. It may also be possible to update S(x) directly with1158

the perturbation, so that it does not need to be recomputed in its entirety at each time1159
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step. Other such ideas will surely emerge as well, while the technique is scaled up to larger1160

problems.1161

Finally, extension of this method to more complex models, or high-dimensional models1162

representing numerical approximations to partial differential equations appears possible. In1163

particular, applications of this approach for numerical weather prediction or the analysis of1164

biological neural networks are currently under investigation. These applications typically1165

permit too few measurements than are required to stabilize the estimation procedure and1166

the results presented here suggest that the incorporation of time delays will allow us to1167

extract more information from existing measurements to improve our state and parameter1168

estimates and generate more accurate predictions.1169
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DM Estimated p1 Estimated p2 Estimated p3

1 5.0000 30.0000 1.3333

2 33.8313 25.2357 3.4764

3 10.0000 59.9999 2.6667

TABLE I. Estimated parameter values for the (extended, parameters treated as state variables)

Lorenz 1963 model. The true values are p = {10.0, 60.0, 2.667}.

DM εrel1 εrel2 εrel3 εrel4

6 29.7088 0.4368 1.1004 46.0390

8 1.8877e-11 4.1588e-9 4.1174e-8 4.7842e-10

13 1.3742e-12 4.9737e-12 3.8792e-10 9.8734e-12

TABLE II. Relative error of the four parameter estimates for the Rössler system.

DM SNR =∞ SNR = 100 dB SNR = 75 dB SNR = 50 dB

1 8.9259 8.9259 8.9259 8.9259

8 4.6297 10.4429 9.4413 10.4346

9 8.1700 8.1702 2.1007 -8.7913

10 8.1700 8.1718 2.3666 5.4988

12 8.1700 8.1707 9.6669 2.2544

14 8.1700 8.1701 12.3476 684.1818

TABLE III. Parameter estimates for the Lorenz 1996 model with D = 20 and a single, global

parameter for various SNRs. The actual parameter value is p1 = 8.17.
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Actual Estimated Estimated Estimated Estimated

Value fa DM = 1 DM = 5 DM = 6 DM = 10

5.7 6.198 5.349 5.700 5.699

7.1 8.059 7.100 7.100 7.100

9.6 9.940 3.879 9.597 9.599

6.2 6.785 -2.439 6.204 6.200

7.5 7.723 4.569 7.495 7.499

8.4 9.151 13.463 8.403 8.400

5.3 5.555 -0.003 5.295 5.300

9.7 10.205 -0.261 9.702 9.699

8.5 9.199 -12.887 8.499 8.500

6.3 7.190 8.955 6.299 6.300

TABLE IV. Estimated and known values for ten forcing parameters fa in the Lorenz 1996 model

with D = 10 and DM = 1, 5, 6, 10.

Estimated Estimated Estimated

DM c(2,1) c(3,2) c(1,3)

4 4.7370 2.5639 1.4645

5 0.8000 0.9000 1.0000

9 0.8000 0.9000 1.0000

12 0.8000 0.9000 1.0000

TABLE V. Estimated ring coupling parameters for a network of three Colpitts oscillators with

known topology. True parameter values are c(2,1) = 0.8, c(3,2) = 0.9, c(1,3) = 1.0.
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Estimated Estimated Estimated

DM c(2,1) c(3,2) c(1,3)

5 7.3325 0.5190 2.3770

6 0.8968 3.0695 1.3499

8 0.8000 0.9000 1.0000

10 0.8000 0.9000 1.0000

12 0.8000 0.8999 1.0000

15 0.8000 0.9000 1.0000

Estimated Estimated Estimated

DM c(1,2) c(2,3) c(3,1)

5 2.3385 -2.8119e-1 3.6094

6 -1.9911 5.2784e-1 3.9568e-1

8 3.8706e-11 -3.3491e-11 2.1787e-12

10 -8.3628e-10 1.0565e-09 2.0178e-10

12 1.0308e-05 -9.8415e-06 -1.4026e-07

15 -3.5215e-10 3.0340e-10 2.9756e-12

TABLE VI. Estimated ring coupling parameters for a network of three Colpitts oscillators, in

which the network topology is unknown. True values are: c(2,1) = 0.8, c(3,2) = 0.9, c(1,3) = 1.0,

and c(1,2) = c(2,3) = c(3,1) = 0. Results show that with DM ≥ 8, the connectivity of the network is

successfully predicted because the backwards couplings are estimated to be zero.
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FIG. 1. (Color online) Top: Synchronization error SEs(t) for state estimation in the Lorenz

1963 system with DM = {1, 2, 3} and parameters fixed to their true values. One time delay does

not synchronize the systems because the coupling is too small. However, selecting DM = 2 or

3 generates rapid convergence to synchronization of the model output x1(t) to y(t). Bottom:

Data, estimates and predictions for the observed x1(t) component of the Lorenz 1963 model with

DM = {1, 2} (top sub-panel) and DM = 3 (bottom sub-panel). In agreement with the top panel the

estimates/predictions made with DM = 1 are poor whereas with DM = {2, 3} they are accurate.
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FIG. 2. (Color online) Top SEs(t) with DM = {1, 2, 3} for the extended Lorenz 1963 system where

the parameters are treated as additional states. Three time delays are needed to synchronize.

Including parameters can increase Lc. Bottom Data, estimates and predictions of the observed

x1(t) for DM = {1, 2, 3} when parameters are included as state variables. Predictions made with

DM = {1, 2} are poor, but accurate with DM = 3. Estimates for DM = 2 match the data well but

the predictions are not accurate, indicating the importance of using predictions (rather than ‘data

fits’) to validate the model.
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FIG. 3. (Color online) Top SEs(t) for DM = {6, 8, 13} for the Rössler system including parameters

as state variables. Middle Long SEs(t) trajectory for DM = 8. Trajectories begin to diverge

immediately after the coupling is removed at T = 20. The rate of error growth is consistent with

the largest Lyapunov exponent of the system. Bottom Known (black), estimated (red), and

predicted (blue) trajectories of the observed component x1(t). The prediction deviates from the

data around t ≈ 160 in agreement with the SEs(t) results.
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FIG. 4. (Color online) Top Known (black), estimated (red), and predicted (blue) time-series for

an unobserved state variable x4(t) of the Rössler system with DM = 8. The prediction fails near

t = 140 due to the chaotic behavior of this system. Only in a twin experiment are we able to

compare an unobserved state variable with known data. The initial condition for x4(0) in the

model, as noted in the text, was 122.5. This was reduced to about 17 after about 100 time steps

of ∆t = 0.025. In the figure we started the time axis at t = 2.5 so the display was not compressed

by the need to display the very large initial guess of x4. Bottom Estimates of the four unknown

parameters of the Rössler system within the observation window. All parameters are bounded with

a window [−10, 10] to improve numerical stability. All parameters converge to their known values.
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FIG. 5. (Color online) Top SEs(t) for the Lorenz 1996 system with D = 20, and augmented with a

single forcing parameter. No noise is added to the measured state x1(t) so that SNR =∞. Traces

are shown for various DM = {1, 8, 9, 10, 12, 14}. Synchronization is achieved with DM > 8 allowing

us to identify Lc = 9. Bottom SEs(t) for the Lorenz 1996 system with D = 20 and augmented

with a single forcing parameter. Uniformly distributed white noise is added to the measured state

x1(t) so that SNR = 100 dB. Selecting DM > 8 allows the systems to synchronize to within the

level of the noise.
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FIG. 6. (Color online) Estimates and predictions for the observed x1(t) for the Lorenz 1996 model

with no additive noise (SNR =∞). Traces are shown for DM = 8 (Top) and DM = 9 (Bottom).

Note that while DM = 8 generates excellent estimates, the predictions are poor, indicating that

unobserved states are not correctly determined. Selecting DM = 9 however, produces quality

predictions implying that the states and parameters are well-estimated.
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FIG. 7. (Color online) Estimates and predictions for the observed x1(t) for the Lorenz 1996 model

with additive noise (SNR = 100 dB). Traces are shown for DM = 8 (Top) and DM = 9 (Bottom).

As expected, selecting DM = 9 produces good predictions. Although not as good as the case with

no noise.
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FIG. 8. (Color online) Experimental synchronization error SEs(t) for the Lorenz 1996 model with

D = 10 and different forcing pa in each component, for DM = {1, 5, 6, 10}. This shows that, in

addition to the state variables, ten parameters may be estimated when DM = 10.
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FIG. 9. (Color online) Estimate (t < 100) and prediction (t > 100) for x1(t) of the Lorenz 1996

model with D = 10 and different forcing pa in each component during the synchronization shown

in Fig. (8). For DM = 1 and DM = 5 (Top) the estimation and the prediction is not good nor is

the model output synchronized to the data. For DM = 10 (Bottom), we have excellent estimation

and prediction.
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FIG. 10. Diagram of a unidirectionally coupled network of three Colpitts oscillators.
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FIG. 11. (Color online) Top SEs(t) for state estimates of a network of three Colpitts oscillators.

All model and coupling parameters are fixed to their true values and the network topology is

known. Middle SEs(t) for state and ring coupling parameter estimates. Model parameters are

not estimated and the network topology is known. Bottom SEs(t) for state and ring coupling

parameter estimates. The model has been expanded to include backwards couplings, so the network

topology is estimated as well.
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FIG. 12. (Color online) Ring of 3 Colpitts Oscillators Top Known (black), estimated (red) and

predicted (blue) trajectories for the observed x
(1)
1 (t) state component with DM = 4. Although

the estimate is quite good, poor predictions confirm that DM = 4 time delays do not provide

enough information to successfully estimate the state of the system as well as the ring coupling

parameters. Bottom Estimated and predicted trajectory for the observed x
(1)
1 (t) state component

with DM = 5. As anticipated from the synchronization error results, the estimates and predictions

are quite accurate, indication that the estimation procedure was successful.
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FIG. 13. (Color online) Top Estimated and predicted trajectory for the observed x
(1)
1 (t) state

component with DM = 6 using the expanded network model that includes backwards coupling

(unknown network topology). Although the estimate is quite good, poor predictions confirm that

DM = 6 time delays do not provide enough information to successfully estimate the state of the

system as well as the ring coupling parameters. Bottom Estimated and predicted trajectory for

the observed x
(1)
1 (t) state component with DM = 8. As anticipated from the synchronization error

results, the estimates and predictions are quite accurate, indication that the estimation procedure

was successful.
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