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Abstract.  We study a nanosecond electro-optic response of a nematic liquid crystal in a 

geometry where an applied electric field Ε  modifies the tensor order parameter but does not 

change the orientation of the optic axis (director N̂ ).  We use a nematic with negative dielectric 

anisotropy with the electric field applied perpendicularly to N̂ .  The field changes the dielectric 

tensor at optical frequencies (optic tensor) due to the following mechanisms: (a) nanosecond 

creation of the biaxial orientational order; (b) uniaxial modification of the orientational order that 

occurs over timescales of tens of nanoseconds, and (c) the quenching of director fluctuations 

with a wide range of characteristic times up to milliseconds.  We develop a model to describe the 

dynamics of all three mechanisms.  We design the experimental conditions to selectively 

suppress the contributions from the quenching of director fluctuations (c) and from the biaxial 

order effect (a) and thus separate the contributions of the three mechanisms in the electro-optic 

response.  As a result, the experimental data can be well fitted with the model parameters. The 

analysis provides a rather detailed physical picture of how the liquid crystal responds to a strong 

electric field on a timescale of nanoseconds.  The work provides a useful guidance in the current 

search of the biaxial nematic phase. Namely, the temperature dependence of the biaxial 

susceptibility allows one to estimate the temperature of the potential uniaxial-to-biaxial phase 

transition.  An analysis of the quenching of director fluctuations indicates that on a timescale of 

nanoseconds the classic model with constant viscoelastic material parameters might reach its 

limit of validity.  The effect of nanosecond electric modification of the order parameter (NEMOP) 

can be used in applications in which one needs to achieve ultrafast (nanosecond) changes of 

optical characteristics such as birefringence. 
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I. INTRODUCTION 

The uniqueness of nematic liquid crystal (NLC) materials is defined by the long-range 

orientational order of their constituent molecules, which have anisometric shape, permanent and 

induced dipoles [1].  The average orientation of NLC molecules in a certain point in space, 

described by the radius-vector r , is called the director ( )N̂ r , which coincides with its optic axis.  

Director orientation can vary from point to point in space or fluctuate in time. 

Anisotropic optic and dielectric properties of NLCs, namely, birefringence e on nnΔ = − , 

where en  and on  are the extraordinary and ordinary refractive indices, respectively, and 

dielectric anisotropy ||ε ε ε ⊥Δ = − , with ||ε  measured along and ε⊥  perpendicular to the optic 

axis, enabled wide range of electro-optic applications.  Traditional electro-optic applications of 

NLCs are based on field-induced reorientation of N̂ , known as the Frederiks effect.  For 0εΔ > , 

the director realigns parallel to an applied electric field Ε , while for 0εΔ < , it realigns 

perpendicularly to the field.  The characteristic switch-on time is 2
1 0

F
on Eτ γ ε ε= Δ , where 1γ  

is the rotational viscosity, and 0ε  is the electric constant.  The switch-off time 2 2
1

F
off d Kτ γ π=  

is typically slower, in the range of milliseconds, being determined by the elastic constant K  of 

the NLC (typically 10 pN ) and the cell thickness d  (typically 5 μm ). 

An electro-optic response of the LC, however, can be triggered without director 

realignment, as it suffices to modify the tensorial order parameter (OP) without altering its 

orientation [2-12].  An important feature of this approach is that the OP modifications of both 

uniaxial and biaxial nature take place at the molecular scale and thus are very fast (nanoseconds 

and tens of nanoseconds [12, 13]) for both field-on and field-off driving.  For this reason, it is 

convenient to call the pure OPs-related phenomenon a “nanosecond electric modification of the 

order parameters” effect, or the NEMOP effect.  In addition to the modification of the OPs, the 

applied field also quenches the director fluctuations [1, 11, 14-25].  The later effect, being of 

macroscopic origin, is typically much slower, as determined by the length scale of fluctuative 

director distortions.  Both the fundamental understanding and practical applications of NEMOP 

require one to separate the fast effects of NEMOP and the slow effects of director fluctuations.  

This problem and its solution represent one of the main focuses of the presented work. 
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In this work, we demonstrate how to separate the NEMOP effect and the dynamics of 

director fluctuations by choosing a particular geometry of light propagation through a cell filled 

with a planar NLC of a negative dielectric anisotropy.  The electric field is applied 

perpendicularly to N̂ .   Section II presents a theoretical model of the dynamics of the uniaxial 

and biaxial modifications of the OP and the dynamics of director fluctuations in the electric field.  

It is shown that the contributions originating in the OP changes and in director fluctuations can 

be separated from each other by testing the cell under different angles of light incidence.  Section 

III describes the experimental set-up to measure the field-induced optic response, which occurs 

at short timescales down to nanoseconds.  Our approach allows one to separate the field-induced 

birefringence from parasitic effects, such as light scattering.  Section IV describes the fitting of 

the experimental results with the proposed models.  Section V discusses the physical 

mechanisms involved in the ultrafast electro-optic response of an NLC and utilization of the data 

in evaluating the likelihood of the appearance of a biaxial nematic phase in a field-free state. 

 

II. THEORY 

Electro-optic processes could be considered using the free energy functional describing 

the NLC in the presence of an external electric field: 

 ( )miso e
V

dF f f f f dV= + + +∫ , (1) 

where isof  is the free energy density of the isotropic phase for E = 0, ( )m m jkf f R=  is the 

phenomenological microscopic free energy density written in the Landau formalism that depends 

on the scalar order parameters (OPs) jkR , ef  is the elastic free energy density due to distortions 

of N̂ , and 0
1
2df ε= − EεE  is the anisotropic dielectric coupling energy density.  The dielectric 

tensor ε  depends on the OPs jkR  and director fluctuations and can be represented as 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )0
0

0
0 0, , , ,ˆ ˆ ˆ ˆm fl

jk jkjk jkR R R Rδ δ= + +ε ε ε εN N N N , where ( ) ( )( )0 0
0

ˆ,jkRε N  is the field-

independent tensor defined for a static and uniform (no fluctuations) director 0N̂ , ( )mδε  is the 

field-induced modifications associated with the OPs, and ( )flδε  is the modification of the tensor 
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caused by the director fluctuations ( ) ( ) 0
ˆ ˆ ˆδ = −N r N r N , which depend on the applied electric 

field.  We neglect higher order terms, such as coupling between the director fluctuations and 

field-induced changes in OPs.  The terms containing ( )mδε  in the dielectric energy density df  

define the effect of electrically-modified OPs.  The term containing ( )flδε  in df  influences the 

spectrum of director fluctuations.    

 

A. Dynamics of NEMOP effect 

The orientational OPs can be described by the averaged Wigner D-functions  L
jkD   [26-

29], because ( )L
jkD Ω  form a complete set of orthogonal functions of the Euler angles 

{ }1 2 3, ,ω ω ωΩ =  [30]; Ω  defines the molecular orientation through rotation →L M
Ω

 from the 

laboratory frame L  to the molecular frame M .  A set of OPs L
jkD , obtained by averaging 

with the single molecule orientational distribution function ( )f Ω , is complete and equivalent to 

( ) ( )L L
jk jkD D f= ∫ dΩ Ω Ω .     (2) 

The nematic phases are described by the OPs with 2L = : L
jk jkR D= .  Consider the molecules 

that possess symmetry 2vC  or 2hD .  The Schönflies symbol 2vC  is assigned to the point group 

with symmetry operations of identity, rotation around two-fold symmetry axis C2, and two 

planes of mirror symmetry containing C2 axis.  The symbol 2hD  refers to the point group in 

which besides the symmetries above, there are two more C2 rotation axes, inversion, and the 

planes of mirror symmetry perpendicular to C2 axes.  For these molecules, we introduce the 

molecular frame M  with the axes ˆ im  parallel and perpendicular to the symmetry axis and 

symmetry plane.  The nematic phase formed by these molecules features four independent OPs: 

two uniaxial OPs, denoted 00R , 02 0 2R R −= , and two biaxial OPs, denoted 20 20R R−= , 22 2 2R R± ±= , 

in the laboratory frame Oxyz=L  defined by the directors [27-29], with 0
ˆ (0, 0,1)=N .  The OPs 

00R  and 20R  describe, respectively, the uniaxial and biaxial orientational order of the long 

molecular axes ˆ 3m  and determine the diagonal form 
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( ) ( ){ }00 20 00 20 006 3, 6 3, 2 3R R R R R− − − +  of the traceless tensor OP ˆ ˆ 3−3 3Q m m I= ⊗  

[1, 14] in the laboratory frame along the directors.  The uniaxial OP 00R  is nothing else but the 

standard nematic OP S , 00R S= . The OPs 02R  and 22R  describe, respectively, the uniaxial and 

biaxial orderings of the short axes ,ˆ 1 2m  and are equivalent to the tensor 

ˆ ˆ ˆ ˆ1 1 2 2B m m m m= ⊗ − ⊗  [31], which has the diagonal form 

( ) ( ){ }02 22 02 22 022 2 3 3, 2 2 3 3, 2 2 3R R R R R− − − +  in the laboratory frame along the 

directors.  Without the electric field, the NLC under consideration is uniaxial with the 

equilibrium uniaxial OPs (0 )
00R  and (0 )

02R , while the biaxial OPs are zero, (0) (0)
20 22 0R R= = .  The 

electric field E  changes the OPs (0)
jk jk jkR R Rδ = −  through ( )mδε .  When jkRδ  is small and the 

field is applied along one of the laboratory axes, the diagonal elements { }, ,x y zδε δε δε  of the 

dielectric tensor ( )mδε  are 

,
, 0,2

, , ,i i jk jk
j k

R i x y zδε ε δ
=

= =∑ ,    (3) 

where ( ),i jk i jkRε ε δ= ∂ ∂ (0)ε=ε
.  Rotation of L  by 2π  around Oz  changes the sign of the 

biaxial OPs 2kRδ but does not affect the uniaxial OPs 0kRδ .  This results in the following 

properties: (a) ,2 0z kε =  and, therefore, zδε  contains only the uniaxial OPs 0kRδ , (b) the relation 

2
, ,( 1) j

y jk x jkε ε= −  stands, (c) the quadratic expansion of microscopic mf  near the zero-field 

equilibrium value (0)
mf  with (0)

jk jkR R=  does not contain cross-terms of the uniaxial and biaxial 

OPs: 

(0)
, ' '

, , '

1
2m m jk jk jk jk

j k k
f f M R Rδ δ= + ∑ ,    (4) 

where ( ) (0 )

2
, ' '

jk jk
jk jk m jk jk R R

M f R R
=

= ∂ ∂ ∂  are the Taylor coefficients that can be determined from 

the Landau expansion of the free energy for uniaxial and biaxial nematics [32], indices j , k , and 

k ′  run through two values 0 and 2.  Because we consider processes with characteristic times less 

than a microsecond, the heat transfer is negligible [33], and, therefore, , 'jk jkM  corresponds to the 
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expansion under adiabatic conditions. 

 We model the dynamics of the OPs jkRδ using the standard Landau-Khalatnikov 

approach [34]: 

( ) ( )
( ) ( )2

, ' '
'

jk d m
jk jk jk jk jk

kjk

d R f f
G E t M R

dt R

δ
γ δ

δ
∂ +

= − = −
∂ ∑ ,   (5) 

where 20
,2jk i jk i

i
G eε ε= ∑ , ê  is the direction of the applied electric field ( )tE , and jkγ  is the 

rotational viscosity for the OP jkRδ . We neglect the effects of the director reorientation and 

associated flows on the OPs, discussed in [35, 36], because we consider the geometries when the 

applied electric field stabilizes the director 0N̂ . Four equations (5) are two independent pairs of 

linear inhomogeneous ordinary differential equations with constant coefficients for the uniaxial 

0kRδ  and biaxial 2kRδ  OPs, and could be written in a vector form: 

( )
( ) ( ) ( ) ( )

( )
( )1 2

( )
j j j j

jj j
d E t
dt

−= −ξ R ξ G M ξ R ,     (6) 

where ( ) 0

2

j j

j

R
R
δ
δ
⎛ ⎞
= ⎜ ⎟
⎝ ⎠

R , ( ) 0

2

jj

j

G
G
⎛ ⎞
= ⎜ ⎟
⎝ ⎠

G , ( )

1 2
0

1 2
2

0
0
j

j
j

γ
γ

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

ξ , and ( )jM  is the 2 2×  symmetric matrix 

with elements ( ) 1 2 1 2
,

j
kk jk jk jk jkMM γ γ− −
′ ′ ′= .  Solution of Eq. (6) ( ) ( )j tR  can be expressed through the 

vector of decoupled relaxation modes ( ) ( ) ( )
( )

( )
0

( )
2

j

j
j r t

t
r t

⎛ ⎞
= ⎜ ⎟
⎜ ⎟
⎝ ⎠

r : 

( ) ( ) ( ) ( ) ( )1
( )

j j j
jt t−=R ξ V r ,      (7) 

where ( )jV  is the matrix of eigenvectors of ( )jM that obeys the equation ( ) ( ) ( ) ( )jj jj =M V V Λ ; 

here ( )
( )
0

( )
2

0
0

j
j

j

λ
λ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

Λ  is a diagonal matrix of the eigenvalues ( )
0,2

jλ . Since ( )jM  is a symmetric 

positively defined matrix, ( ) cos sin
sin cos

j

j j

j jφ φ
φ φ

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

V  is an orthogonal matrix and is determined by 

the eigenvector angle jφ , which satisfies the equation 
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( )( ) ( ) ( )
02 00 22tan 2 2 j j

j
jM M Mφ = − .      (8) 

It is also convenient to use jφ  in expression for ( )( ) ( ) ( ) ( ) ( )
0,2 00 22 00 22

1 cos 2
2

j j j j j
jM M M Mλ φ⎡ ⎤= + ± −⎣ ⎦ , 

because selection 4jφ π<  as the range of solutions of Eq.(8) ensures that the dynamics of the 

uniaxial OPs jkRδ  are mainly controlled by ( )( )j
kr t  with the corresponding relaxation time 

( ) ( )1j j
k kτ λ= : 

( ) ( ) ( )( ) ( ) 2 (

0

)expj j j
k k

t

kt t t t dr g tE τ′ ′ ′⎡ ⎤= −⎣ ⎦∫ ,    (9) 

where ( )j
kg are the components of the vector ( ) ( )( ) ( )1 1

( )
j j j

j

− −=g V ξ G .  

 To describe the optic manifestation of the NEMOP effect, we use the OPs-related 

deviation ( )mδε%  of the dielectric tensor at optical frequency (optic tensor) from its zero-field 

value (0 )ε% .  Here and in what follows, tildes represent a reference to the material parameters at 

the optical frequencies.  In the laboratory frame Oxyz along the directors, the tensor ( )mδε%  has 

the diagonal form { }, ,x y zδε δε δε% % %  and can be split into an isotropic isoδε% , uniaxial uδε% , and 

biaxial bδε%  contributions 

1 ,
3 2
1 ,
3 2
2 .
3

1

1

δε δε

δε δε

δε

δε δ

δε

ε

δε δε

δε

= − +

= − −

= +

% %

%

% %

% % %

%% %

x iso u b

y iso u b

z iso u
 

(10) 

Since ( )mδε  and ( )mδε%  are the same tensor at different frequencies, the deviations 

,
, 0,2

i i jk jk
j k

Rε δδε
=

= ∑ %%  should be also linear in jkRδ , where ( ),i jk i jkRε ε δ= ∂ ∂ (0)ε=ε% %
% %  have the same 

symmetry properties as ,i jkε .  Then, the dynamics of isoδε%  and uδε%  are controlled by the uniaxial 

OPs 0kRδ  and, therefore, by the vector of uniaxial modes ( ) ( )0 tr , whereas bδε%  is controlled by 

the biaxial OPs 2kRδ  and by ( ) ( )2 tr : 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1
(0)

1
(0)

1
(

0 0

0

2)

0

2 2

,

,

,

δε

δε

δε

−

−

−

=

=

=

%

%

%

%

%

%

iso

u

is

b

o

u

b

t t

t t

t t

h ξ V r

h ξ V r

h ξ V r

     (11) 

where ( )isoh% , ( )uh%  and ( )bh%  are vectors with components, respectively,

( )( )
,0 ,0 ,0

1
3

iso
k x k y k z kh ε ε ε= + +% % % % , ( )( )

,0 ,0 ,0 2u
k z k x k y kh ε ε ε= − +% % % % , and (b)

,2 ,2k x k y kh ε ε= −% % % .  

The dynamics of the NEMOP effect is described by two uniaxial and two biaxial 

relaxation modes, Eqs. (9) and (11).  When E  is perpendicular to the Oz  axis (chosen parallel 

to the director) and 0εΔ < , all four modes should contribute to the optic response. However, as 

we will show below our experimental data for dielectrically negative material CCN-47 are fitted 

well by the simplified version of the model with one uniaxial mode and one biaxial mode. We 

explain this fact by the assumption that the NEMOP effect is controlled by the following two 

modes: (i)  ( )(0)
0r t , associated mainly with the uniaxial OP 00 =R S  of the long molecular axes, 

and (ii) ( )(2)
2r t , associated mainly with the biaxial OP 22R  of the short molecular axes.  These 

two OPs are predicted to be dominant in the spontaneous (field-free) uniaxial and biaxial NLC 

[32, 37].  The same OPs are expected to play the major role in NEMOP experiments, since 00Rδ  

causes strong changes in optic anisotropy (large ( )
0

uh% ), and 22Rδ  is strongly affected by the 

interactions between the transverse molecular dipoles and the electric field (large 22G ).  In this 

two-mode assumption, the isotropic isoδε% , uniaxial uδε% , and biaxial bδε%  contributions, Eq. (11), 

are simplified:  

( ) ( ) ( )2

0
exp

tj
j j

j

t E t dtt t
α

δε τ
τ

⎡ ⎤′ −⎣ ⎦′ ′= ∫% .     (12) 

where j  reads iso , u , or b  depending on the nature of contribution, ( )
0 00 00,00
u

u iso Mτ τ τ γ= ≈=  

and ( )
2 22 22,22
b

b Mτ γτ ≈=  are the uniaxial and biaxial relaxation times, ( )
0 00 00,00

u
u h G Mα ≈ %  and 

( )
2 22 22,22
b

b h G Mα ≈ %  are the effective uniaxial and biaxial susceptibilities, respectively.  One can 

expect that uτ , determined by reorientation of the long axes, is substantially larger than bτ , 

determined by rotation of the short axes, because the former process is associated with the larger 
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moment of inertia and requires stronger readjustment of the neighboring molecules.  For the 

electric field parallel to the Ox  axis, ( )ˆ 1,0,0=e , one can estimate  

0 ,00 ,00 00,00

0 ,22 ,22 22,22

2 ,
.

α ε
ε εα
ε ε
ε
≈
≈

%

%

x x

x x

u

b

M
M

     (13) 

The uniaxial uδε%  and biaxial bδε%  terms provide the main contributions to NEMOP.  The 

dynamics of the isotropic term isoδε%  is similar to that of uδε% , but its contribution is relatively 

small: 0isoδε =%  under the assumption that ε%  is an orientational average of the molecular 

polarizability tensor, because Tr i
i

constε= =∑ε %%  in this case [32],  and the only non-zero 

contribution to isoδε%  stems from the dipole-dipole resonance and dispersion intermolecular 

interactions [38].  Moreover, isoδε%  does not contribute to the response caused by changes of 

birefringence.  

 

B. Dynamics of director fluctuations in electric field 

Besides the NEMOP effect, the electric field provides an additional electro-optic 

response, which is of macroscopic nature.  In NLCs with a negative dielectric anisotropy, the 

electric field ( ), 0, 0E=E  does not reorient the average 0
ˆ (0, 0,1)=N  but modifies the director 

fluctuations 0
ˆ ˆδ = −N N N .  We analyze this effect using the macroscopic part of free energy 

( )e
V

dF f f dV= +∫ , where = × ×y zV d L L  is the active volume of the cell, covered by the 

electrodes of the area ×y zL L , and d  is the thickness of the NLC layer.  The elastic energy 

density ef  is  

2 2 2
1 2 3

1 ˆ ˆ ˆ ˆ ˆ(div ) ( curl ) ( curl )
2ef K K K⎡ ⎤= + ⋅ + ×⎣ ⎦N N N N N , (14) 

where 1K , 2K , and 3K  are the Frank elasticity constants for splay, twist, and bend respectively.  

The dielectric energy density associated with the director distortions 0
1
2df ε= − E εE  is 

determined by the corresponding part of the dielectric tensor 
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( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )0 0 0
0 ||

0 0 0, ,ˆ ˆ ˆ ˆfl
jk jkR Rδ ε ε ε⊥ ⊥= + = + ⊗−ε ε εN N I N N , where I  is the unit tensor, ( )0ε⊥  and 

( )0
||ε  are the dielectric constants, perpendicular and parallel to 0N̂ , and ⊗  denotes the outer 

product. 

We assume that the director fluctuations ( )( ), ( ),0x yN Nδ =N r r  are small, periodic in the 

Oyz  area of V , and obey the strong anchoring boundary conditions at the substrates.  Thus we 

expand δ N  
in Fourier series, similar to [39]: 

( ) ( ) ( ) ( )sin expx y zq x i q y q zδ ⎡ ⎤= +⎣ ⎦∑
q

N r N q ,    (15) 

where ( ) 2 2, , , ,x y z
y z

q q q k l m
d L L
π π π⎛ ⎞

= = ⎜ ⎟⎜ ⎟
⎝ ⎠

q  are discrete wavevectors with 0k > , l , and m  

being integers. 

Using Eq. (15) and integrating over V , we obtain F  associated with the director 

fluctuations in the Gaussian approximation,  

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

02 2 2 2 2 2 2
1 3 0 1 3

1

2 2
2 2

* *

, '
2 2 2

'2 ' '
'

4

,

x y z x x y x z y

y xz x y
k

VF K q K q K q E N K q

lkL K K N N N N
k

K K q N

i
k

qε ε

π

⎡ ⎤= + + −

⎡ ⎤− +⎣

Δ + +

⎦ −

+ +⎣ ⎦

+

∑

∑
q

q

q

q q

q q q q
 (16) 

where the latter sum contains the cross-terms of ( )xN q  and ( )'yN q , with ( )'k k−  being an odd 

number, 'l l= , and 'm m= . 

To describe the dynamics of fluctuations, we start with the Langevin equation by 

including the random force ( ),tαζ q  in the viscous relaxation equation for ( ),N tα q , ,x yα =  [1, 

16, 25], and use the splay-twist one-constant approximation 1 2K K K= = , which diagonalizes 

the free energy, Eq. (16), with respect to ( )xN q  and ( )yN q ,  

( ) ( ) ( ) ( ),
(ˆ , ) , ,

t
f t

dN
N

d
t t

t
α

α α α αη ζ+= −
q

q qq q ,   (17) 

where ( ) ( )2 2 2
3( , ) Ky x zyf K q q K qf t = + +=q q , ( ) ( ) ( , )K Exf t f tf= +q q , ( ) ( )2

0E tf Et ε ε= Δ , and 

( ) ( )1ˆ ˆα αη γ η= −Δq q  is the effective director viscosity; here 1γ  is the director rotational viscosity 
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and ( )ˆαηΔ q  is the backflow effect’s correction, which, in the hydrodynamic limit of small q , 

depends on ˆ =q q q  [1, 16, 25]. The random force ( ),tαζ q  has the standard ‘white noise’ 

properties with the noise strength ( ),tαΖ q  

( ), 0tαζ =q ,   ( ) ( ) ( ) ( )* ,, , ,α α α ααζ ζ δ δ δ′ ′′=′ Ζ′ ′−t t t t t qqq q q   (18) 

where the brackets ...〈 〉  denote an ensemble average. The solution of Eq.(17) 

( ) ( ) ( ) ( )( , ,) ( )1

0

, 0, ,ˆ
t

S t S tN e N et dttα α
α α α αη ζ′− −⎡ ⎤

′ ⎥
⎣

′= +⎢
⎦

∫q qqq q q ,   (19) 

where ( )1

0

, ,( )
t

S t f t dtα α αη − ′= ′∫q q , allows us to derive the equation that controls the dynamics of 

ensemble averaged fluctuations ( )2 ,N tα q   

( )
( ) ( )

( ) ( ) ( )
2

2
, ,

ˆ2
,

,
,

d

dt

t
t N t

t

N t
f

α
αα

α α

ατ
η
Ζ

= −
q q

q
q

q
q ,  (20) 

where ( ) ( ) ( )ˆ ,, 2 tt fα α ατ η= qq q  is the characteristic relaxation time. For the stationary electric 

field E , the averaged fluctuations ( )2 ,N tα q  can be calculated using the Equipartition 

Theorem and the free energy, Eq. (16), ( )2 2,
( , )
B

E

k T
Vf

N t
t qα

α =q , thus ( ) ( )2 ˆ, Bk T
V

tα αηΖ =q q .  

The fluctuations along the y axis are not affected by the applied field, 

( ) ( )2 2, 0,y yN t N=q q , and only the dynamics of ( )2 ,xN t q  affects the optic response. 

Introducing the field-induced quenching of fluctuations ( ) ( ) ( )2 2, 0, ,x xt N N t= −q q qN , 

which satisfies the initial condition ( )0, 0=qN ,  we obtain the solution of Eq. (20) as 

( ) ( ) ( ) ( ) ( )0

., p4
ˆ

ex
t t

B
E

x K xt

k T dtt f t dt
V fη τ′

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣

′′= −
⎦

′ ′∫ ∫q q
q

q
N     (21) 

For a strong applied field, the electro-optic response is caused by the quenching of director 

fluctuations with a broad range of q .  Thus, we neglect the hydrodynamic effects and use an 
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approximation of the constant effective rotational viscosity γ eff   for the director fluctuations in 

the entire range of q .  In this case the solution, Eq. (21), is simplified to 

 ( ) ( )
( ) ( ) ( )( ) ( )

0

e p, x2 t
S t S tKB

E
eff K eff

f t tk Tt e f t e dt
V fγ γ

′− ⎡ ⎤
⎢ ⎥
⎢ ⎥

′

⎣

−
′

⎦
′= −∫

q
q

q
N , (22) 

where ( ) ( )
0

1 t

E
eff

S t f t dt
γ

′ ′= ∫  and 1 2effγ γ≈ . 

Because the electric field affects only the director fluctuations along the x axis,  

( )2 ,xN t r , the associated modifications of the optic tensor are  

( ) ( ) ( ) ( )( )( )( ) ( ) 22 2 2, , , 0,fl f
x o

l
x ez xt t t nN nNδε δε= − = − − −r r r r% % ,  (23) 

where on  and en  are the ordinary and extraordinary refractive indices, respectively, measured in 

the field-free state, 0E = .   

In our experiments, we use a probing laser beam of half millimeter diameter and measure 

the phase retardation which is an integral along the cell thickness; thus, the fluctuations’ 

contribution is determined by Eq. (23) averaged over the active volume of the cell  

( ) ( ) ( ) ( )1 ( )
2 2

, ,
2

fl
f

e
z

o

V

t V d t
n n

tδε δε−
−

= = ∑∫
q

r r q% % N .   (24) 

The applied electric field affects the fluctuations, for which 2
0cq q E KεεΔ< = , as 

follows from the inequality ( )K Ef f<q .  For the strong electric field ( 8~10 V mE ), the number 

of these fluctuations is very large, as the maximum values of the integer indices are: 310maxk >  

and 5, 10max maxl m >  .  Thus, we neglect the discrete nature of q  and transform the sum, Eq. (24), 

into an integral, where we stretch zq , ( )3, ,x y zq q K K q→ =q q .  This transformation makes 

the elastic term ( ) 2
Kf Kq=q  isotropic and, therefore, ( ),qtN  also becomes isotropic: 

( ) ( ) ( )2
3

2

3

,
8

δε
π

−= ∫% e of
V

V Kt t dn q
K

n
q

qN ,    (25) 

where the integration volume Vq  is defined by conditions xq dπ≥  and π< =c cq q a .  Here the 

former condition stems from the strong anchoring at the substrates and ca  is the characteristic 
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distance that corresponds to the breakdown of continuum theory.  Integrating (25) using (22), we 

obtain the contribution of the field-quenched director fluctuations to modification of the optic 

tensor: 

( )
( ) ( )

1
0

1
( ) erf erf E E

t S tS t
E

f
c d d d ceff

f t ee t t t t t t t t t tt A dt
t t

δε
πγ τ τ τ τ τ

′− ′ ′ ′ ′⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪= − − −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣

′ ′− − −

⎦⎩ ⎭

− − ′
′−∫% ,  (26) 

where ( )2

3

2
3 22e

B
o

k T
K

n
K

A n
π

= − , 2

2
eff F

d offK
d
π

γ
τ τ= ≈ , 

3
2

γ
τ = eff

c
cK q

, and ( )1E
t

t

et dt
t

∞ ′−

′=
′∫   ( )0t >  is 

the exponential integral, see, e.g., chapter 5 of Ref.[40]. 

 

C. Analysis and optimization of experimental geometries 

We describe optical properties using the normalized wavevectors 
2
λ
π

= kk%  of the optical 

modes, where λ  is the wavelength of a probing beam in vacuum.  The tangential components yk%  

and zk%  are preserved at interfaces between different layers: glass, ITO, polymer, nematic, etc., 

and are the same for all optical modes.  The optical retardance between the two forward modes 

propagating through the field-induced (effectively biaxial) states of an NLC, effn dΓ = Δ , is 

determined by the NLC thickness d  and the effective birefringence ( ) ( )1 2
eff x xn k kΔ = −% % , where ( )1

xk%  

and ( )2
xk%  are solutions of the Fresnel equation for two forward propagating modes, 0xk >%  in the 

biaxial medium:  

 4 2
2 0 0x xxk Q k Qε − + =% %% , (27) 

where ( ) ( ) ( )2 2
2 z y yy x xz zxQ k kε ε ε ε ε ε ε= + − + − +% %% % % % % % %  and ( )( )2 2 2 2

0 y z x yy z y z zQ k k k kε ε ε ε ε= − − − −% % % %% % % % % . 

In the field-free uniaxial state, modes 1 and 2 are the extraordinary ( ) 2 2
2

1
2

1 z
e y

o
x xe

kk k kn
n

⎛ ⎞
− −⎜ ⎟

⎠
=

⎝
=

%
% %  

and ordinary ( ) 2 2 22
ox xo y zk k k kn −= −=% % %  waves, respectively.  An applied electric field causes a 

change of the effective birefringence ( )( ) ( )( )1 2
eff x xe x xon k k k kδ = − − −% % , calculated from Eq. (27) 
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( ) ( ) ( )
( )

2 2 2

2

22

22

2 2 2 2 2

2
x o y o zxe z xe xo y y z xo xe xo z xo

eff
xe xo o o z

on n n

n

k k k k k k k k k k k k
n

k k kn

δε δε
δ

δε− + − + −
=

−

% % % % % % % % % %% %

%

%

% %

% %
.      (28) 

The optic tensor modifications xδε% , yδε% , and zδε%  contain the uniaxial uδε%  and isotropic 

isoδε%  contributions associated with the field-enhanced uniaxial order, the term stemmed from the 

field-induced biaxial order bδε% , and the contribution fδε%  caused by the quenching of director 

fluctuations along the x  axis.  In real samples, there is also an additional ‘pretilt’ term, because 

the surface alignment direction at the bounding plates is practically never strictly parallel to the 

plate due to the small ‘pretilt’ angle β  induced by rubbing of the aligning layer.  Nonzero β  

implies that the zero-field director and the field are not strictly orthogonal, and that there is a 

nonzero dielectric torque on the director.  The corresponding change in the effective 

birefringence is proportional to ( )0β β− , where β  and 0β  are the averaged angles between the 

director and the substrate plane with and without the applied electric field, respectively.  One can 

show that 0β  is the arithmetic mean of the pretilt angles at the top and bottom plates.  

Using Eqs. (10) and (23) for the discussed contributions, we obtain from Eq. (28) 

( )0
3 3
2 2bu u b uf u feffn βδ σ σ δδε ε σ β βδε δε⎛ ⎞ ⎛ ⎞+ + + +⎜ ⎟ ⎜ ⎟

⎝ ⎝ ⎠
−

⎠
= %% % % ,   (29) 

where ( )
2 2

2
2

2
2 2

1
6

y y
bu xe o xo

x
z

xz e oo o

k k
k nk k

kn kn k
σ

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦−

% %
% % %

% %%
, 

( )
2 22 22

2 2 2

1
3

o xo xeo
uf

o xe x

y zz

zo o

k knn
n n

k kk
k k k

σ
⎡ ⎤−−⎢ ⎥= +
⎢ ⎥⎣ − ⎦

% % % %%

% % %
, 

and 
2 2

2
e o

o
z

n n
n

kβσ
−= %  are the weighting coefficients dependent on an experimental geometry.  Note 

that isoδε%  does not contribute to effnδ  and therefore cannot be extracted from the phase 

retardance measurements.  We also cannot completely separate uδε% , bδε% , and fδε%  by staging 

three different experimental geometries, because these terms appear in Eq. (29) in two 

combinations.  However, as we shall show below, there is a possibility to determine uδε% , bδε% , 

and fδε%  independently utilizing their distinct dynamics. 

 We perform experiments for the following three geometries that provide the simplest 

interpretation:  
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(a)   “Biaxial-uniaxial” (BU) geometry, in which the contribution of director fluctuations 
is eliminated, 0ufσ = , and only the biaxial and uniaxial OPs contribute to the optic response.  

(b) “Uniaxial-fluctuations” (UF) geometry: only the uniaxial OPs and director 

fluctuations contribute to the optic response, while the biaxial contribution does not, 0buσ = .  

(c) “Normal” (N) geometry, with the perpendicular incidence of a probing beam, in 

which case all the three mechanisms (uniaxial, biaxial, and fluctuation-quenching) contribute to 

the measured signal, but the experimental setting and weighting coefficients in Eq. (29) are 

simple.  

1. Biaxial-Uniaxial geometry 

The simplest of the BU geometries, that satisfies the condition 0ufσ = , is the one in 

which the incidence plane of a probing beam contains the director, 0yk =% , and the incidence 

angle obeys the condition 
2

2 2z

e o

ok
n n

n=
+

% , Fig. 1(a).  The field-induced change BUnδ  for this BU 

geometry is 

 ( )
2 0

2 2

2 2 2

3
26

1o e e o e o
u bB

o

U

e o e

n n n n n n
n n n n

n δε δεδ β β⎛ ⎞= −⎜ ⎟
⎝ ⎠

+ + −+ +
+ +

% % .   (30) 

The last term is a potential contribution of the finite pretilt angle at the boundaries.  

Because of the finite pretilt, the applied field can realign the director, 

( ) 0 exp on
on off F

on

t tt t tβ β
τ

⎛ ⎞−≤ ≤ = −⎜ ⎟
⎝ ⎠

,     (31) 

where 0β  is the arithmetic mean of the pretilt angles at the top and bottom plates when there is 

no field.  After the field is switched off, the director relaxes back to the initial state, 

( ) ( )0 0 expoff off F
off

offt t
t t

tβ β β β
τ

⎛ ⎞−
⎡ ⎤= −⎜ ⎟⎣ ⎦ ⎜

⎝
> −

⎠
− ⎟ .    (32) 

At a timescale (1-1000) ns of interest, Eq. (32) yields a practically constant value of ( )offt tβ > . 
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FIG. 1. (Color online) Three experimental schemes for testing an electro-optic response 

of a nematic cell with the laser beam (horizontal red line).  (a) BU geometry probing biaxial and 

uniaxial contributions to the optic response.  (b) UF geometry probing uniaxial and fluctuations 

quenching modifications. (c) N geometry, all three mechanisms contribute to the optic response. 

 

2. Uniaxial-Fluctuative geometry 

Among the UF geometries, determined by the condition 0buσ =  in Eq. (29),  we choose 

the one with the incidence plane of a probing beam perpendicular to the director, 0zk =% , and the 

incidence angle obeying the condition 2y ok n=% , Fig. 1(b).  The corresponding field-induced 

birefringence UFnδ  is  

  
2 2

1 2 3
223 2

1
UF

o
u f

e on n
n

n
δ δε δε

⎛ ⎞
⎜ ⎟= +
⎜ ⎟

⎛ ⎞+ ⎟
⎠
⎜
⎝ ⎠−⎝
% % .

   
  (33) 

If the refractive indices of NLC en  and on  are close to the refractive index of the glass 

substrate gn , then the incident angles in BU and UF geometries are close to 45 degrees. 

3. Normal geometry 

In N geometry the probing light is perpendicular to the cell, 0y zk k= =% % , and Eq. (29) 

reduces to 

1 3 1 3
6 2 3 2u b u

e
fN

o

n
n n
δε δε δε δδ ε⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟
⎝ ⎠

=
⎝ ⎠

% % % % .    (34) 
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III. EXPERIMENTAL METHODS 

We used commercially available NLC 4'-butyl-4-heptyl-bicyclohexyl-4-carbonitrile 

(CCN-47) (Nematel GmbH).  The material parameters measured at 40 CT = °  are as following: 

dielectric constants || 3.9ε = , 9.0ε⊥ = , dielectric anisotropy 5.1εΔ = − , all determined within the 

field frequency range 1-50 kHz; birefringence 0.029nΔ =  at 633 nmλ = .  The transverse dipole 

of CCN-47 molecules is large, ( )3012.3 10  C m 3.7 DebyeDμ
−= × , as calculated using 

ChemOffice™ software.  The structural formula of CCN-47 is shown in Fig. 2(a). 

The cells were constructed from two parallel glass plates separated by spacers.  The inner 

surfaces of these plates contain indium tin oxide (ITO) electrodes and unidirectionally rubbed 

polyimide layers PI-2555 (HD MicroSystems), which is separated by a gap d  in the range 

( )3.5 8 m.2 μ− .  When a voltage pulse ( )U t  is applied, an electric field ( )E t  inside the liquid 

crystal is controlled by the RC-circuit, Fig. 2(b), formed by the resistance R of the electrodes and 

the equivalent capacitance ( )NLC P NLC PC C C C C= +  created by the capacitances of the NLC NLCC  

and the polymer films PC .  Most of the experiments were performed with an NLC cell of the 

thickness  and the RC-time .  In order to reduce the RC-time, we 

used the electrodes of low resistivity ( )10 sqΩ  and a small area, , Fig. 2(c).  The 

dielectric constant of the polyimide PI-2555 is 3.5Pε =  [41].  The effective thickness for the 

capacitor formed by the two polymer films is μ2 m0.Pd = .  The rubbing directions at the plates 

are parallel to each other in order to minimize the effects of nonzero pretilt. The typical pretilt 

angle at the used substrates was about 0.7 degrees.  To satisfy the conditions of the BU and UF 

geometries, Fig. 1, the NLC cell is sandwiched between two right angle glass prisms with the 

refractive index 1.52gn = , which is close to 1.50en =  and 1.47on =  measured at T = 40°C and 

633 nmλ = .  The temperature of the cells was controlled with accuracy 0.1°C by LTS350 

hotstage (Linkam Scientific Instruments) and Linkam TMS94 controller. 

The cells were tested with a He-Ne laser beam (λ = 632.8 nm), linearly polarized along 

the direction that makes an angle 45° with the incidence plane.  The beam passes through the cell, 

the Soleil-Babinet compensator, and two crossed polarizers, Fig. 2(d).  The transmitted light 

μm4.2d = 7 nsRC RCτ = =

23 3mmeA = ×
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intensity was measured using a photodetector TIA-525 (Terahertz Technologies, response 

time < 1 ns).  

 
FIG. 2. (Color online) (a) Molecular structure of CCN-47.  (b) Schematic RC-circuit.  (c) 

Design of cell electrodes.  (d) Electro-optic setup for geometries BU and UF. 

 

The change in light intensity caused by the applied field can be presented as  

( ) ( ) ( ) ( ) ( )2
max min minsin

2
π δ φ

λ

⎧ ⎫⎡ ⎤+Δ⎪ ⎪⎣ ⎦⎡ ⎤= − + +⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

ef SBfn t n d
I t I t I t I t ,    (35) 

where SBφ  is the variable phase retardance controlled by the Soleil-Babinet compensator, minI  

and maxI  are the minimum and maximum values of light intensity, respectively.  The values of 

minI  and maxI  are different from 0 and the ideal maximum because of parasitic effects such as 

light reflection at interfaces, light scattering, and absorption.  These parasitic effects might be 

sensitive to the applied field, which is why both maxI  and minI  are shown as time dependent in 

Eq. (35).  The role of the variable Soleil-Babinet phase difference SBφ  is to eliminate the 

contribution of these parasitic effects from the effects affecting the birefringence, i.e., the OPs 

modifications and quenching of the director fluctuations, as explained below. 
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FIG. 3. (Color online) (a) Two settings of the Soleil-Babinet compensator, A and B, 

which correspond to the maximum sensitivity of light intensity to changes in optical retardance.  

The two settings also allow one to separate the field-induced retardance changes from parasitic 

effects.  (b) The optic response to 0 626 VU = pulse measured at T = 43°C, μm4.2d =  for the 

two settings of the compensator, SB Aφ φ= and SB Bφ φ= .  (c) Half-difference ( )−ΔI t , and half-

sum ( )+ΔI t  of the two optic response curves shown in Fig. 3(b). 

 

The measurements are performed with two different values of the Soleil-Babinet phase 

retardation, 
4

2
A effn dπ λφ

λ
⎛= −Δ ⎞
⎜ ⎟
⎝ ⎠

 and 
4

2 3
B effn dπ λφ

λ
⎛= −Δ ⎞
⎜ ⎟
⎝ ⎠

.  At these values, the transmitted 

light intensity in the field-free state is ( ) ( ) ( )max min0 0 0 2⎡ ⎤= = +⎣ ⎦I t I I , Fig. 3(a), which means 

that the sensitivity of light intensity to the changes of optical properties is maximized.   

(a) 

(b) (c) 
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Furthermore, extraction of the useful contribution from the parasitic effects is achieved by 

evaluating the half-difference ( ) ( ) ( ) ( ) ( ) ( )1
max min2 0 0

π δ
λ− ⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦Δ Δ ΔA Bt t t I I
n t d

I I I  and 

the half-sum ( ) ( ) ( ) ( ) ( )1 1
max min2 2+ ⎡ ⎤ ⎡ ⎤= + = Δ +ΔΔ ⎣ ⎦ ⎣ ⎦Δ ΔA Bt t t I t I tI I I  of the optical measurements 

recorded for Aφ  and Bφ , Fig. 3(a) and 3(c).  As seen in Fig. 3(c), the half-difference ( )−ΔI t  

signal is significantly larger than the half-sum ( )+ΔI t  signal, which indicates the prevalence of 

the field-induced birefringence ( )δn t  effect over the parasitic factors. 

Voltage pulses of amplitude 0U  up to 1 kV, with nanoseconds’ rise and fall fronts, were 

produced by a pulse generator HV 1000 (Direct Energy Inc).  The profiles of voltage pulses 

( )U t  and optic responses ( )I t  were experimentally determined with an oscilloscope Tektronix 

TDS 2014 (sampling rate 1GSample/s). 

 

IV. OPTIC RESPONSE DYNAMICS AND EXPERIMENTAL DATA FITTING 

Short voltage pulses of duration 394 ns applied to the NLC cell, Fig. 4(a), produce the 

optic responses shown in Figs. 4(b,c,d) for geometries BU, UF, and N, respectively. 
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FIG. 4. (Color online) Dynamics of field-induced birefringence in geometries BU (b), 

UF (c), and N (d) in response to  the applied voltage pulses (a); temperature T = 49°C.  The 

curves in (a)-(d) from top to bottom correspond to voltage pulses with U0 = 626 V, 484 V, 344 V, 

and 197 V, respectively. 

 

In order to evaluate the dynamics of an optic response and to separate different 

contributions, one needs to know the profile of the voltage pulse.  The latter can be presented as 

a sum of the exponential functions: 

( )
( ) ( ) ( )( )
( ) ( ) ( )

0

0

,

,

,on a on on

off off

on

t t t t
on off

t t
off off

U t t

U t t t U e e

U t t U t e

τ τ

τ

− − − −

− −

< =

≤ ≤ = −

> =

    (36) 

where ont  and offt  are the moments of time when the voltage is switched on and off, respectively; 

0U  is the characteristic amplitude of the pulse applied to the electrodes of the cells, onτ  is the 

characteristic rise time of the front edge of the pulse, offτ  is the characteristic decay time of the 
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rear edge of the pulse, and aτ  is the characteristic time of the slowly decaying amplitude of the 

pulse.  The parameters 0U , aτ , onτ , and offτ  are obtained by fitting the experimental profile,  

Fig. 5(a).  It is convenient to represent the voltage pulse as a sum of the exponential functions, 

because it allows us to solve the Kirchhoff equation for an RC-circuit with characteristic time 

RCτ , which is 7 ns for the cell of thickness 4.2 μm.  Thus, the electric field inside the NLC 

( ) 0,onE t t< =  ( )ON
on offE t t t≤ ≤ , and ( )o

OFF
ffE t t>  is  

( ) ( )

( ) ( ) ( )

0 ,

,

ν

μ −

− −

−

≤ ≤ =

> =

∑

∑

i on

j off

t tON
on off i

OFF ON
off off

t

j
j

i

t

E a

E E t b

t t t E e

t t e
      (37) 

where ( )0 0 P P PU d dE ε ε ε⊥= + .  In our experiment for the switching-on dynamics, ≤ ≤on offt t t , 

the summation index i runs through the values 1, 2, and 3; ia  and iν  are presented in Table I.  

And for the switching-off dynamics, > offt t , the summation index j runs through the values 

1 and 2; jb  and jμ  are presented in Table II. 

The exponential form representation of ( )E t  streamlines the fitting procedure, because it 

allows one to evaluate Eq. (12) in an analytic form for the uniaxial ( )u tδε%  and biaxial ( )b tδε%  

OPs dynamics as well as Eq. (26) for the quenching of director fluctuations ( )f tδε% . 

 

TABLE I.  Coefficients ia  and iν   for exponential expansion of ( )ONE t . 

i  1 2 3 

ia  
C

a

Ra

τ
τ τ−

 
on

on

RC

τ
τ τ−
－  ( )

( )( )
a RC

a

on

RC RC on

τ τ τ
τ τ τ τ

−
− −

－

iν  aτ１  onτ１  RCτ１  
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TABLE II.  Coefficients jb  and jμ for exponential expansion of switching-off dynamics

( )OFFE t . 

j  1 2 

jb  ( )
( ) ( )1 P off off

ON
off RCP P off

t

E td d

Uε τ
τ τε ε⊥

−
−+

( )
( ) ( )

P off off
ON

off RCP P offtd d

U t

E
τ

τ τ
ε

ε ε⊥ −+

jμ  1 RCτ  1 offτ  

 

 

 FIG. 5. (Color online) (a) Experimentally measured voltage profile fitted by Eq. (36) 

(solid red line) with 0 626 VU = , 18 s5μ.aτ = , 3.2 nsonτ = , 3.2 nsoffτ = , 93 nsont =  , and 

487 nsofft = .  (b) Optic response in BU geometry at T = 46°C (gray dots) fitted with Eqs. (12), 

(30), (31), and (32) for one uniaxial and one biaxial mode, 1.95 ns,bτ =  29 ns,uτ =  

20 2 25.4 10 m V ,bα
−= ×  20 2 28.9 10 m Vuα

−= × , 0 0.06β = ° , and 85 nsF
onτ =  (solid black line).  

The blue dashed line is the biaxial contribution. 

 

A. Biaxial-Uniaxial geometry fitting 

The typical response of CCN-47 to the applied voltage pulse of a duration of 394 ns, re-

calculated in terms of the field-induced birefringence change nδ , is fitted according to Eq. (30), 

Fig. 5(b).  The last term in Eq. (30) is the contribution due to the non-zero averaged pretilt angle 

( )tβ , which is described by Eqs. (31) and (32).  We extract this contribution, using F
onτ  and 
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considering that ( ) ( )offt tβ β=  is responsible for remaining a constant bias when in the range of 

500-1000 ns, and Eq. (32) yields a practically constant value of 0.1β = ° .  Two main 

contributions are the field-induced uniaxial ( )u tδε%  and biaxial ( )b tδε%  contributions of the 

NEMOP effect.  Experimental data in the middle of the nematic phase fit well with the 

simplified model with two OPs, Eq. (12), and the fitting clearly reveals two processes with 

substantially different relaxation times: ‘slow’ in the range of tens of nanoseconds and ‘fast’ in 

the range of nanoseconds.  We assign the ‘slow’ process, with relaxation time 28 nsuτ = , to the 

uniaxial OP of long axes 00Rδ   and the ‘fast’ process, with 1.95 nsbτ = , to the biaxial OP of 

short axes 22Rδ .  This assignment is assigned by the experimental results for UF geometry, 

discussed in the next section.  Although the experimental data should be generally discussed with 

four OPs, the data analysis shows that it suffices to use just two different OPs, and that the 

introduction of the third and fourth OPs does not improve the fitting.  

The experimental data, fitted with four parameters , ,,b u bα α τ  and uτ , clearly 

demonstrate that bτ   is the shortest timescale of the dynamic processes, being on the order of a 

few nanoseconds or even shorter.  For all temperatures, the fitted values of bτ  are always shorter 

than 2.4 ns.  More accurate determination is not possible as bτ  is at the edge of the experimental 

accuracy of setting and monitoring the voltage pulses.  Importantly, the three other fitting 

parameters ,,b uα α and uτ  show very little changes with different values of bτ , as described in 

Appendix A.  In what follows, we set 1 nsbτ =  and fit the experimental data with Eq. (30) using 

only three fitting parameters: uτ , uα , and bα .  

 

B. Uniaxial-Fluctuative geometry fitting 

The response of CCN-47 in UF geometry shown in Fig. 6(a) is obtained at the same 

voltage and temperature as the response in BU geometry, Fig. 5(b).  The optic response has two 

contributions in Eq. (33): the modification of the uniaxial OP and the quenching of director 

fluctuations.  The contribution of the director fluctuations described by Eq. (26) can be 

simplified for our fitting procedure, because 60 msdτ ≈  for the cell thickness 4.2 µm, and 
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10 nsτ <c  for -11nmcq ≈ .  Therefore, the term inside the curly brackets in Eq. (26) is close to 

unity and 

( )
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( )
( )
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where A and effγ  are the fitting parameters.  Substituting Eq. (37) into Eq. (38), we represent 

( )δε% f t  by two analytical expressions: switching-on dynamics ( )δε ≤ ≤%ON
f on offt t t , and the 

switching-off dynamics ( )δε >%OFF
f offt t  (see Appendix B for details).  The switching-on 

fluctuations dynamics is 
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where 
3

, ' 1i i =
′Σ  is the sum with the term ' 1i i= =  being excluded; 2

0 0 0f Eε ε= Δ ; 

2
1' 'ii i i faλ ν ν τ= + − ; 0f eff fτ γ= ; ( )1 2

11 1 12f f faτ τ τλ ν−= = −  is the characteristic time for 

the dynamics of fluctuations’ quenching; and ( ) 2 2

0
D

zz te e dtz −= ∫  is Dawson’s integral; see 

chapter 7 in [40].

 
In Eq. (39), the first term, with the error function, provides the main contribution, while 

the terms with Dawson’s integrals describe small corrections caused by the non-square shape of 

the electric pulse in the NLC.  In the case of an ideal square electric pulse, aτ →∞, 0onτ → , and 

0RCτ → , the terms with Dawson’s integrals disappear and τ τ=f f . 

The switching-off dynamics is 
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 Fitting the experimental data with the corresponding Eqs. (12), (39) and (40) reveals that 

the characteristic time of the fastest process is about 30 ns, and there is no process with the 

characteristic time on the order of 1 ns, which we observe in BU geometry, Fig. 5(b).  Therefore, 

the UF experiment proves our earlier assignment that the relatively slow (30 ns) process in BU 

geometry is related to the modification of the uniaxial OP, and the fast nanosecond process is 

caused by the induced biaxial OP.  

 

FIG. 6. (Color online) Optic response measured in UF geometry at 46°C.  Uniaxial 

component ( )u tδε%  parameters uα  and uτ  obtained from BU geometry at fitting voltage U0 were 

used to fit UF geometry data and to obtain A and effγ .  (a) 20 2 29.5 10 m Vuα
−= ×  and 

28 nsuτ =  for the applied voltage pulse 0 626 VU =  yield parameters ( )1 21.7 μs m kgA =  and 

25 mPa seffγ = .  (b) 20 2 29.6 10 m Vuα
−= ×  and 30 nsuτ =  for 0 197 VU =  pulse yield 

( )1 21.7 μs m kgA =  and 15 mPa seffγ = .  The experimental points are fitted with our model 
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(solid red line), and the dashed line is the uniaxial contribution, ( )u tδε% , obtained from BU 

geometry. 

 

The reliable fitting of the uniaxial and fluctuations contributions with Eqs. (12), (39), and 

(40) might be challenging, especially for higher electric fields, when the characteristic times τ f  

and τu  are of the same order.  On the other hand, τb  and τu  are more than one order of 

magnitude different, and fitting BU geometry allows us to obtain the biaxial and uniaxial 

contributions with high accuracy.  Therefore, we separate the uniaxial contribution from the 

experimental data in UF geometry using the corresponding fitting parameters αu  and τu  

obtained from BU geometry for the same temperature and voltage pulse.  Then we fit the 

remaining part corresponding to the director fluctuations with Eqs. (39) and (40).  Although we 

use only two fitting parameters A and effγ , the experimental data fit for UF geometry is 

encouraging, both for higher electric fields when the optic response is faster, Fig. 6(a), and for 

lower fields when the response is slower, Fig. 6(b).  

 

C. Normal geometry 

Using an arbitrary direction of the probing beam propagation in our experimental system, 

one can obtain a linear combination of two independent experimental sets of data, Eq. (29).  

More specifically, the optic response in N geometry can be presented as the linear combination 

of respective responses in BU and UF geometries.  In order to validate the two experimental sets 

of data taken in BU and UF geometries, we perform an experiment in N geometry.  

  With a probing beam impinging normal on the substrates, N geometry contains the 

contributions of all three processes, Eq. (34): the field-enhanced uniaxial OP, field-induced 

biaxial OP, and the quenching of director fluctuations.  Equations (30), (33), and (34) show that 

the linear combination of the optic responses in BU, UF, and N geometries, expressed as 
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should be zero.  This quantity can be used as an estimate of the experimental error.  In all our 

experiments, the field-induced phase difference, ( )0n tδ , described in Eq. (41), deviates from 

zero by no more than 41.4 10−×  (except at the moments of time corresponding to the front and 

rear edges of the voltage pulse), Fig.7. 

 
FIG. 7. (Color online) Optic responses measured in geometries BU, UF, and N at 

(a) 36°C and (b) 53°C.  The lowest black curve corresponds to ( )0n tδ  defined in Eq. (41). 

Applied voltage pulse 0 626 VU = . 

 

V. DISCUSSION 

A. Biaxial-Uniaxial geometry 

The experimental data follow our model fairly well, Figs. 5(b) and 13(a).  In particular, at 

the temperatures, T = 31°C, 46°C, and 49°C, Fig. 8, that are far from the nematic-to-isotropic 

(TNI = 56.5°C) phase transition, the fitting parameters, namely, the biaxial bα  and uniaxial uα  

susceptibilities and the characteristic uniaxial time uτ , do not depend on the electric field, as 

expected, see Eq. (12).  Close to NIT , at T = 54°C, uα  and uτ  decrease, while bα  increases with 

the electric field.  Such a behavior in the pretransitional region might be attributed to the 

following factors.  First, we restrict our model by the second-order term of the free energy 

density expansion, Eq. (4).  One can expect that near the TNI, the higher-order terms should be 

taken into account.  Second, while our model describes the NEMOP effect through four OPs, 

Eq. (11), we fit experimental data with the assumption of only two OPs being significant ( 00R  

and 22R ), Eq. (12).  
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The temperature dependences of uα  and uτ , shown on Fig. 9, are obtained for 

0 μm74 VE = .  Such a field is not very strong, yet the induced optic response is sufficiently 

large to provide reasonable accuracy. 

 
FIG. 8. (Color online) Electric field dependence of (a) biaxial bα , (b) uniaxial uα  

susceptibilities, and (c) uniaxial time uτ  at different temperatures: 31°C ( ), 46°C ( ), 49°C ( ), 

and 54°C (∆). 

  
FIG. 9. Temperature dependences of (a) uniaxial susceptibility uα ( ), and uniaxial 

characteristic time uτ ( ) measured at 0 μm74 VE = ; and (b) their reciprocal values 1
uα
−  and 

1
uτ
−  fitted with straight lines. 
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When the temperature approaches NIT , both the uniaxial susceptibility uα  and relaxation 

time uτ  increase, Fig. 9(a).  In the theory, both quantities are inversely proportional to 

2
'm jk jkf R R∂ ∂ ∂ , see Eq. (4), i.e.,  00,001α ∝u M  and 00,001τ ∝u M .  The experimentally observed 

increase of uα  and uτ  is, thus, explained by the flattening of the free energy density profile as a 

function of 00R  near the phase transition temperature.  Therefore, the experimental behavior of 

uα  and uτ  is consistent with the Landau-Khalatnikov description close to the phase 

transition [34].  

The reciprocal quantities 1 αu  and 1 τu  demonstrate a quasi-linear behavior at both low 

and high temperatures of the nematic range, Fig 9(b).  Close to NIT , this behavior could be 

explained by the Landau-de Gennes theory for the nematic phase, where 00,00M  has a quasi-linear 

temperature dependence, and adopts a zero value at the absolute temperature limit **T  of 

overheating of the nematic phase, Fig. 9(b). 

At the lower temperature limit of the nematic phase, the value of uα  slightly increases, 

Fig. 9(b), which could be attributed to the formation of fluctuative smectic clusters near the 

nematic-to-smectic phase transition, which is enhanced by the electric field.  Clusters might also 

explain the increase of the response time uτ  at the low temperatures.  

The biaxial susceptibility bα  shows a well-pronounced increase as the temperature is 

lowered, Fig. 10(a), which can be explained in the following way.  In our model, bα  is 

proportional to 1
22,22
−M , Eq. (13).  According to the Landau theory, the biaxial second-order 

coefficient 22,22M  in the uniaxial phase, Eq. (4), has to go to zero at the temperature ubT  of the 

uniaxial-biaxial nematic phase transition, and this dependence is linear ( )22,22 ubM T T∝ − .  

Therefore, one can expect that ( )1
ubb T Tα− ∝ −  and the experimental data show such a linear 

dependence for temperatures far below NIT , Fig. 10(b).  The slope of the linear temperature 

dependence of 1
bα
−  shows that the hypothetical uniaxial-to-biaxial nematic phase transition 

temperature is ub 5 CT = ° , Fig. 10(b).  This temperature is well below the uniaxial-to-smectic A 

transition temperature 30 CNAT = °  observed for CCN-47.  Thus, the molecular structure of 
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CCN-47 is not conducive for the search of a biaxial nematic phase.  On a general note, the 

temperature dependence of bα  can serve as an indicator of how close a uniaxial nematic material 

might be to forming a biaxial nematic phase in absence of the external electric field. 

   
FIG. 10. (Color online) Temperature dependences of (a) biaxial susceptibility bα  ( ) 

and (b) its reciprocal 1
bα
−  fitted with a straight line. 

 

B. Uniaxial-Fluctuative geometry 

This geometry offers a convenient way for analyzing the nanosecond dynamics of the 

quenching of director fluctuations, because the biaxial contribution is absent and the uniaxial 

contribution in Eq. (33) can be separated from the fluctuative contribution since the vaues of uα  

and uτ are already known from the fit of the experimental data in BU geometry.  The electric-

field dependences of the fitting parameters A and effγ  for several temperatures are shown in 

Fig. 11.  As expected, the amplitude coefficient A, describing the changes in the optic tensor 

caused by the quenching of director fluctuations, Eq. (26), remains almost field-independent and 

increases with temperature, Fig. 11(a) and Fig. 12.  However, the value of A is about two times 

bigger than the value expected from its definition in Eq. (26), calculated with the known elastic 

constants [42] and the measured 1.50en =  and 1.47on = .  
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FIG. 11. Fitting parameters (a) A and (b) effγ  obtained from experimental data at 31°C 

( ), 46°C ( ), 49°C ( ), and 54°C (∆).  

 
FIG. 12.  Temperature dependence of A ( ) and effγ  ( ) at 0 μm74 VE = . 

 

The obtained effective viscosity effγ  demonstrates a weak monotonous increase with 

electric field, Fig. 11(b) and is slightly smaller than the macroscopic viscosities of CCN-47 

homologue  compounds and their mixtures [43].  As expected, in the nematic phase, effγ  
increases with a decrease in temperature, Fig. 12.  The increase is especially pronounced near the 

transition to smectic A phase.  The latter can be attributed to the pre-transitional phenomena such 

as fluctuative cybotactic smectic clusters. 
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VI. CONCLUSION 

In this work, we explored both theoretically and experimentally the electro-optic response 

of an NLC cell in which the electric field does not cause director reorientation.  We 

demonstrated three mechanisms contributing to the field-induced change of optical birefringence: 

nanosecond electric modification of (a) biaxial and (b) uniaxial OPs and (c) quenching of the 

director fluctuations.  Our observations reveal that these mechanisms have different 

characteristic times.  For CCN-47 these times are (a) less than 2 nanoseconds for the biaxial 

NEMOP, (b) tens of nanoseconds for the uniaxial NEMOP, and (c) a wide range of characteristic 

times from tens of nanoseconds to milliseconds for the quenching of director fluctuations. 

We developed a model of the NEMOP effect using two uniaxial and two biaxial nematic 

OPs.  Their dynamics are described by two uniaxial and two biaxial modes, Eq. (5).  We used a 

simplified two-mode version of the model to fit our experimental data for CCN-47; the uniaxial 

OP of the long molecular axes and the biaxial OP of the short molecular axes appear to be the 

dominant OPs for this material.  

We describe the dynamics of director fluctuations using the macroscopic viscoelastic 

approach, Eq. (20), with Frank-Oseen elastic energy in splay-twist one-constant approximation, 

1 2K K= , and with a constant effective viscosity.  Within these approximations, we derived the 

contribution for the quenching of director fluctuations to the field-induced modifications of the 

optic tensor, Eq. (26).  

Experimentally, we determine the field-induced changes of the effective birefringence 

δ effn , which contains the uniaxial uδε% , biaxial bδε% , and fluctuational fδε%  contributions, Eq. (29).  

In order to separate these contributions, we used the so-called biaxial-uniaxial (BU) and uniaxial-

fluctuative (UF) geometries, in which one of the three contributions is nullified.  We also 

independently validated the separation of different mechanisms by measuring the optic response 

in normal incidence (N) geometry, Fig. 7. 

In BU geometry, with no contribution from the fluctuations quenching, the dynamics of 

electro-optic response develops over timescales of nanoseconds and is well described by two 

different characteristic times uτ  (tens of nanoseconds), and bτ  (about two nanoseconds or less). 

We associate these characteristic times with the uniaxial and biaxial modifications of the optic 

tensor, respectively, see Eqs. (30) and (12). The assignment of the fastest relaxation time bτ  to 
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the biaxial modification is justified by the measurements in UF geometry, in which the 

nanosecond relaxation is absent.  The biaxial susceptibility shows a strong temperature 

dependence at low temperatures, ( )ub
1

b T Tα −∝ − , which indicates a possible phase transition 

from  the uniaxial to the biaxial nematic phase in a field-free state, at some temperature ubT .  The 

extrapolated value is ub 5 CT = ° , much lower than the temperature 30°C of the actual phase 

transition from the uniaxial nematic to the smectic A phase.  Therefore, in the explored material 

CCN-47, the hypothetical biaxial nematic state is suppressed by the occurrence of the smectic A 

phase.  A similar test can be used to find ubT  in other materials, in order to facilitate the search 

for potential biaxial nematics. 

UF geometry provides interesting information about the behavior of director fluctuations 

on nanoseconds’ timescales.  In this geometry, the biaxial modifications in the optic tensor bδε%  

are eliminated and the uniaxial changes can be evaluated by employing the values of parameters 

αu  and τu  obtained from the ‘slow’ component of the BU response.  The remaining changes 

fδε%  in the optic tensor can be attributed to the quenching of director fluctuations.  The director 

fluctuations model provides a good fit to the experimental optic response, Fig. 6.  As expected, 

the amplitude of director fluctuations grows with temperature, while the effective viscosity 

decreases with temperature, Fig. 12.  The amplitude coefficient A does not depend on the electric 

field but is bigger than theoretically expected, Fig. 11(a), what can be attributed to the 

simplifying assumptions of the theory.   The most intriguing feature is that the effective viscosity 

increases with the field, Fig. 11(b), thus, possibly indicating that the classic viscoelastic theory 

with constant material parameters might approach its limit of validity when applied to the 

nanoseconds dynamics in strong electric fields. 

The presented NEMOP effect should be distinguished from the classic Kerr effect.  The 

Kerr effect consists in field-induced birefringence emerging in the otherwise isotropic fluid.  It is 

an essentially uniaxial effect, with the induced optic axis being always parallel to the applied 

field.  The Kerr effect can be observed in non-mesogenic fluids [44-46] and in the isotropic 

phase of mesogenic compounds [47-52].  In the first case, the effect is practically temperature 

independent, while in the second case, it shows a strong enhancement near the isotropic-to-

nematic phase transition [50, 52].  In comparison, the NEMOP response of CCN-47 with a 



35 
 

negative dielectric anisotropy features both uniaxial and biaxial optical changes.  The biaxial 

changes are faster than the uniaxial changes at the same temperature and in the same electric 

field, as discussed above.  Similarly to the case of electro-optic effects in uniaxial and biaxial 

nematics [53], one could expect that the biaxial part of NEMOP would be generally faster than 

the uniaxial part.   It is also expected that the relative contributions of the biaxial and uniaxial 

changes, the amplitude and relaxation times of these changes would be strongly dependent on the 

molecular structure, as the NEMOP effect is essentially a molecular-scale phenomenon.   Indeed, 

our recent results [13] demonstrate that different mesogenic materials show very different 

amplitudes of the field-induced NEMOP birefringence that exceed the data presented for 

CCN-47 by at least one order of magnitude.   

From the fundamental point of view, NEMOP represents an opportunity to analyze the 

complex uniaxial-biaxial response of the orientationally ordered medium to the applied electric 

field at the scale of nanoseconds.  In this work, we explored only one material.  Further studies 

should expand to materials with different molecular structures and material parameters.  For 

instance, the NEMOP effect can be observed not only in materials with a negative dielectric 

anisotropy, as is the case of CCN-47, but also in materials with positive dielectric anisotropy.  It 

would be of interest to compare the parameters of NEMOP effect to the parameters of the Kerr 

effect in the isotropic phase of the same compound.  These studies would shed some light on 

which mode of optic response would be the most beneficial for the nanosecond electro-optic 

applications. 
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APPENDIX A: FITTING PROCEDURE FOR BIAXIAL-UNIAXIAL GEOMETRY 

In this Appendix, we explain the procedure to fit the experimental data obtained in BU 

geometry.  There are three processes that are relevant in the dynamics of optic response in this 

geometry, namely, director reorientation associated with the finite pretilt, biaxial and uniaxial 

changes of the OPs.   

The slowest one is the dynamics of the pretilt angle ( )tβ , described by Eqs. (31) and 

(32).  When the field is switched on, the characteristic time ( )2
1 0/F

on Eτ γ ε ε≈ Δ  of the pretilt 

dynamics with 1 0.1 Pa sγ ≈  being the rotational viscosity and 82 10 V mE ≈ ×  being the 

typical electric field, is about 100 ns, which is longer than the rate of uniaxial and biaxial 

changes, ~ 30 nsτu  and 2 nsτ <b .  When the electric field is switched off at offt t= , the 

relaxation time of the pretilt angle becomes even longer, ( )2 2
1 1 ~ 10 msF

off d Kτ γ π≈ .  At the 

scale of nanoseconds relevant to our experiments, this extremely slow relaxation yields a 

practically time-independent contribution to the overall optical signal that reveals itself in 

Fig. 13(a) as a negative-valued ‘tail’ in the time dependence of nδ  (see also Figs. 3c, 5b).  Since 

the uniaxial and biaxial modifications relax much faster than the pretilt angle, we use the optic 

signal measured at 500 nsofft t> +  to determine the value of ( )offt tβ > ; the value of 0β  follows 

from Eq. (31).  Note that the overall effect of ( )tβ  is small, contributing less than 5% to the 

optic response.   

After the exclusion of the pretilt angle contribution, the remaining dynamics is associated 

with the uniaxial and biaxial changes of the OPs that occur on short timescales, (1-100) ns.  We 

fit the experimental data with Eq. (30) in which ( )tβ  is defined as explained above.  The fitting 

is performed through minimization of the residuals function  

( ) ( )
1

2
,1var , , ,

4

N

i iBU u b u b
i

n t n t
N

δ δ α α τ τ
=

⎡ ⎤= −⎣ ⎦− ∑ ,   (A1) 

where N  is the number of experimental data points ( ){ , }i it n tδ  and BUnδ  is the fitting function 

as defined in Eq. (30).   

 The fitting clearly reveals two different relaxation processes with substantially different 

relaxation times: uτ  in the range of tens of nanoseconds and bτ  in the range of nanoseconds.  For 
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example, the optic response to the voltage 0 626 VU = , yields 1.8 nsbτ =  and uτ  = 31 ns, 

Fig. 13(a).  As long as bτ  is less than 2ns, the fitting produces practically the same values of the 

three other parameters, ,u bα α , and uτ ,  Fig. 13(b),(c),(d).  

 
FIG. 13.  (Color online) (a) Optic response at T = 43°C (gray dots) fitted with Eq. (30) 

for one uniaxial and one biaxial mode, 1.76 ns,bτ =  31 ns,uτ =  20 2 25.8 10 m V ,bα
−= × and 

20 2 28.0 10 m Vuα
−= ×  (solid black line).  The blue dotted line is the biaxial contribution.  

(b) Dependence of the residuals function on the preselected value of bτ  , obtained from the 

fitting of the optic response at T = 43°C, 0 626 VU =  with Eq. (30).  Dependence of the fitted 

values of ,u bα α  (c) and uτ  (d) on the preselected value of bτ .  The big marker on the plots 

corresponds to 1.76 nsbτ = , obtained as a free fitting parameter. 
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APPENDIX B: ANALYTIC DESCRIPTION OF THE DYNAMICS OF DIRECTOR 

FLUCTUATIONS QUENCHING 

In this Appendix, we derive an expression for the dynamics of the fluctuative 

contribution described by Eq. (38).  To simplify derivation we set 0ont = .  The function 

( ) ( )2
0E tf Et ε ε= Δ  reads from Eq. (37) as 

( ) ( )
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where 2
0 0 0f Eε ε= Δ , ( )0 0 P P PU d dE ε ε ε⊥= +  is the characteristic amplitude of the electric 

field inside the NLC, Eq. (37), i = 1, 2, 3, see Table I of the main text, and j = 1, 2, see Table II. 

For the switching-on process, offt t≤ , ( ) ( )
0

1 ' 'off
ef

t
ON ON

E
f

S t f t dt t
γ

≤ = ∫ , therefore, 

( )exp ONS t⎡ ⎤⎣ ⎦ in Eq. (38) can be presented in a form ( ) ( )
3

, ' 1
'exp ON

i i
iit P tS
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⎡ ⎤ =⎣ ⎦ ∏ , where 
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 and 0f eff fτ γ= .  One can see from Table I, that ~ 1ia  

and iν  satisfy the conditions 1 1fν τ <<  and 1fiν τ >>  for 2,3i = . Thus, the exponential term in 

parentheses can be expanded for ( ) ( )111
2exp fP t a t τ=  and neglected for all other terms 

( )
'

'
'

exp i i
ii

f i i

a aP
τ ν ν
⎡ ⎤

= ⎢ ⎥+⎢ ⎥⎣ ⎦
.  Therefore, Eq. (38) can be presented as  
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where 
2
1

' 'ii i i
f

aλ ν ν
τ

= + −  and ( )
0

0, ,
tt

t

dt
t
eI t

t
t

λ

λ
′−

′
′−

= ∫ .  The integral ( )0, ,I t tλ yields either the 

error function, or Dawson’s integral function, see, e.g., chapters 5 and 7 of Ref. [40]: 
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One can see from Table I, that 11 0λ <  and ' 0iiλ >  for all other cases; thus, Eq. (38) for the 

switch-on dynamics, offt t≤ , becomes 

( ) ( )
2
1 11 3
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where 
3

, ' 1i i =
′Σ  is the sum with the term ' 1i i= =  being excluded. Equation (B4) is presented as 

Eq. (39) in the main text. 

For the switching-off process, offt t> , we can split ( )offS t t>  into two parts 

( ) ( ) ( )off off
ON OFF

offS t t St tS t> = + > , where 
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Thus, Eq. (38) is also divided into two parts: 
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During the switching-off process, 1j fμ τ >> , thus we can neglect the exponential term in 

Eq. (B5), so that ( ) ( ) 2
'

, ' 1 '

exp exp 1
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E of j jOFF

j j j j
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Representing the integrals in the first sum of Eq. (B7) as 
0 0

off

off

t t t

t

dt dt dt′ ′ ′= −∫ ∫ ∫  and using 

Eq. (B3), we obtain Eq. (40). 
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