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Geometric control of failure behavior in perforated sheets

Michelle M. Driscoll
The James Franck Institute and Department of Physics, The University of Chicago

Adding perforations to a continuum sheet allows new modes of deformation, and thus modifies
its elastic behavior. The failure behavior of such a perforated sheet is explored, using a model
experimental system: a material containing a one-dimensional array of rectangular holes. In this
model system, a transition in failure mode occurs as the spacing and aspect ratio of the holes
are varied: rapid failure via a running crack is completely replaced by quasi-static failure which
proceeds via the breaking of struts at random positions in the array of holes. I demonstrate that
this transition can be connected to the loss of stress enhancement which occurs as the material

geometry is modified.

PACS numbers: 46.50.+a, 62.20.mm,62.20.mt

I. INTRODUCTION

Material failure occurs in many ways: from plastic de-
formation [1, 2], to slowly creeping fatigue damage [3, 4],
to a sudden and catastrophic (brittle) failure of an entire
structure [5, 6]. This variety of failure modes hints that
individual material properties must determine a struc-
ture’s fate. Fracture mechanics has made much progress
in predicting when a structure will start to fail, for ex-
ample by giving analytic solutions for stress and strain
fields created by cracks in simple geometries [7, 8]. How-
ever, there are still many open questions. For example,
fracture mechanics makes no prediction about what path
a running crack will follow; this is an input parameter
to the theory [9]. Furthermore, fracture mechanics is a
continuum theory and it is not necessarily clear how the
predictions it makes map to structures with complex ge-
ometries.

One such geometry is a perforated structure, created
by introducing holes into a continuum solid. Introducing
these holes creates a new meta-material that can deform
in very different ways, ways that are too energetically
costly in a continuum solid. Thus, these meta-materials
will have different material properties, which will depend
the perforation spacing and on the geometry of the holes
[10-13].

In this work, I study the failure of perforated meta-
materials. A material with a one-dimensional array of
holes is used as a model system to study how geometry
modifies failure behavior. I find that the failure behavior
of this one-dimensional system can be characterized in
terms of hole spacing and geometry, and a distinct tran-
sition in failure mode occurs as the material geometry is
modified. This transition is characterized by a change in
failure dynamics as the perforation geometry is altered:
failure via a running crack state is replaced by failure via
quasi-static, random breaking. Figure 1 illustrates this
transition; in the propagating crack regime, failure oc-
curs very rapidly and in an ordered manner, while in the
random-breaking regime, failure occurs in a non-ordered
manner, and at a timescale set by the displacement rate
of the material, i.e. quasi-statically. Furthermore, I show
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FIG. 1: (Color online) When the geometry of the 1D meta-
material is changed, the failure mode transitions from a run-
ning crack to random breaking; the strut breaking order as
well as the total failure time, 7 (time interval between first and
last break) changes markedly. Numbering and color both indi-
cate strut breaking order; colormap runs from red to blue. (a)
When the struts composing the material are small and spaced
relatively closely, failure proceeds via a propagating crack:
defined as ordered breaking of struts, which occurs at speeds
comparable to material sound speeds. Here, 7 = 149.3us. (b)
A transition in failure mode occurs when the struts become
long and narrow, or spaced far apart from each other. In
this regime, failure occurs via the breaking of struts in a non-
ordered fashion, and the breaking rate is set by the pulling
rate, i.e., failure is quasi-static. Here, 7 = 1.58 s.

that this transition can be connected with a loss of stress
enhancement in the material as geometry is altered.

Note that in these studies of perforated materials
the individual bonds all have nearly identical strengths.
There is no disorder in the system. This is distinct from
other models that have been studied such as the fiber
bundle model [32-34] where the amount of disorder is
varied and produces changes in the way in which the ma-
terial fails. The present experiments focus specifically on
the role of geometry (while keeping the amount of disor-
der fixed) on the failure mode of the material.



Looking at material failure through the lens of geome-
try provides a new insight into how a material fails, and
provides a direct relationship between a meta-material’s
microstructure and its overall failure behavior. Further-
more, these results allow for the possibility of a tunable
failure mode — by simply changing geometry, the same
base material can be used to construct a suite of meta-
materials with very different failure behaviors.

In the next section, I give a brief overview of the pre-
vious work that has been done on fracture in perforated
sheets. Section IIT outlines the details of the experimen-
tal work, as well as the finite element calculations that
were done. Section IV discusses in detail the transition
in dynamics that occurs, and how it is controlled by ma-
terial geometry. In the running crack regime, geometry
acts to additionally control the velocity of the crack; this
is presented in Section V.

II. BACKGROUND ON FRACTURE OF
PERFORATED SHEETS

The fracture of perforated solids has been the subject
of extensive study, often in the context of measuring ma-
terial properties such as failure stresses and strains [14—
17]. For example, perforated geometries have been used
as a model system for ductile failure, which is thought to
occur via the growth of small voids which then coalesce
into a larger defect. Several experimental and numerical
studies have been conducted in perforated metal sheets
[18-20]; the focus of this work has been on measuring
or predicting failure strains and stresses as a function of
void fraction or void arrangement in order to gain insight
about ductile failure in a continuum material. Another
recent study examined the failure of an array of perfo-
rations in a thin plastic sheet [21], finding a transition
in failure from localized inter-hole failure to large-scale
plastic deformation. This work only examined quasi-
static plastic failure, and those results do not generalize
to brittle solids.

A propagating crack in a continuum sheet moves at a
velocity comparable to material sound speeds; an advanc-
ing crack should accelerates as it grows, until it travels at
the material’s Rayleigh velocity, cg (the speed of surface
waves)[22]. However, in practice, it is often found that
cracks only accelerate up to a velocity ~ 0.5¢g before ex-
hibiting branching [23, 24] or other dynamic instabilities
[25-27]. However, if these instabilities are suppressed,
cracks are observed to move at speeds very near to the
Rayleigh velocity [25] in continuum sheets.

In comparison to the large body of work done in con-
tinuum solids, very few studies have measured crack dy-
namics in a perforated material. The velocity of a run-
ning crack in a perforated material has been measured
in least one study [28], but this work focused on examin-
ing the behavior of fracture at weak interfaces. A line of
perforations was used as a model for a weak interface, in
order to compare the results in the perforated geometry

with results obtained in materials with a weak plane. A
dependance of crack velocity on hole area fraction was
found, but as the perforated geometry was not the main
focus of this work, only a very small set of hole geome-
tries was tested, and only one material was used. Here,
I show that in a perforated material, geometry acts a
control parameter for the crack velocity, independent of
material properties.

III. METHODS

Two approaches were used to study failure in a perfo-
rated material. The bulk of the work was experimental;
samples were put under tension until failure, and the re-
sulting failure behavior was analyzed in terms of the ma-
terial geometry. To complement the experimental work,
finite-element calculations were done to measure elastic
properties, as well as to gain insight into how stress fields
are modified by geometry.

A. Experiments

The experimental samples were fabricated from thin
(0.75 mm - 1.5 mm thick) sheets of plastic. Thin sheets
were used to approximate a two-dimensional solid geom-
etry. The bulk of the work was conducted using 1.5 mm
thick cast acrylic sheets purchased from McMaster-Carr,
which had Young’s modulus, Y = 3.7 GPa, Poisson’s ra-
tio, v = 0.35, and density, p = 1157 kg/m3. A small
selection of control tests were performed using two ad-
ditional plastics, 0.75 mm thick Delrin 150 sheets (Y =
3.1 GPa, p = 1394 kg/m3, v=0.4) and 0.75 mm thick
impact-modified acrylic sheets (Y = 1.76 GPa, p = 1115
kg/m3, v=0.4).

The samples were fabricated in a ladder geometry, con-
sisting of a 1D array of struts of width d and length [,
separated by a spacing of s, as illustrated in Fig. 2a.
Thus, a family of 1D geometries could be constructed by
varying the ratio s/d from 0.4 - 50 and the ratio [ /d from
0.2 - 79.5. Additionally, a set of control experiments was
run where the absolute value of d was varied from 0.6
mm - 4.7 mm. The holes in the laser cut samples are not
perfectly rectangular due to the finite resolution of the
laser cutter (~ 50 pm - 100 pum); the corners are slightly
rounded with a radius of curvature ~ 140 pm. However,
it is not believed that this small amount of rounding influ-
enced the results, as experimental stress and strain mea-
surements produced good agreement with finite-element
calculations which did not have these slightly rounded
corners.

As shown in Fig. 2a, the samples have tabs on two sides
so they could be clamped to a materials tester for the
failure studies. The size of these tabs does not impact the
results; most of the strain occurs in the perforated part
of the samples. The effect of tab length was explicitly
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FIG. 2: (Color online) (a) Imaging studies were conducted
using a custom-built apparatus. The samples are held fixed
at one boundary, while the other boundary is displaced at
a constant rate. Enlargement indicates the parameters that
characterize the hole size (s,l) and spacing (d). (b) Force-
displacement curves for two sample geometries, d = 1lmm, s
=2mm, ! = 2 mm (left) and d = lmm, s = 2.5 mm, [ =5
mm (right). The lines show the data obtained from the ex-
perimental samples, while the open symbols show the results
of finite-element calculations. The good agreement between
measurements and calculations demonstrates that the sam-
ples behave in a nearly linear fashion.

tested by varying the tab length by a factor of 2; this
produced no change in the results.

All samples were broken under uniaxial tension, of-
ten termed Mode I failure; the displacement direction is
defined as the ¢ direction. A custom apparatus was con-
structed for displacement controlled failure experiments
as shown in Fig. 2a. One end of the sample is held on
a fixed stage, machined from cast aluminum (MIC 6),
while the other end is held on translation stage made
from a cast aluminum block firmly attached to a ma-
chine vise. A geared down DC gearmotor was used to
drive this translation stage at a constant displacement
rate of 83.0 £0.5pm/s.

Extreme care was taken to ensure that the fixed stage
was, to the nearest mil, machined to be the exact height
as the translation stage. This was done to ensure the
samples would experience an even loading, so the failure
behavior could be assumed to occur under pure uniaxial
tension. As illustrated in Fig. 2a, the samples are at-
tached to both the translation stage and the fixed stage
via cast aluminum bars. Screws were used to apply pres-
sure to the bars, clamping the samples down. Again, care
was taken to machine both the surfaces of the stages as

well as the bars to be as flat as possible so as not to in-
duce uneven loading conditions. Failure was observed to
initiate on both sides (left and right) of the samples, ver-
ifying that they experienced a uniform loading condition.

A high speed camera (Vision Research, Phantom v1610
and Phantom V9) was used to record the fracture behav-
ior at speeds up to 400,000 fps. The samples were back-
lit with a 18W LED light panel (rosco LitePad HO+).
Use of an LED panel assured no significant heat was in-
put to the samples, as significant heating could cause a
change in material properties [29]. For some experiments,
crossed polarizers (Edmund Optics) were used to image
the stress field of the sample. This aided in determin-
ing the precise location where material failure occurred,
as the samples halves only separated by a small amount
during the failure process.

An additional series of tests was performed in a com-
mercial materials tester (Instron 5869) in displacement-
controlled mode: a constant displacement is applied to
the samples, while the force is measured. A 50 kN load
cell was used for these tests, as the force required to break
the samples ranged from 200 N - 1200 N. Due to the size
constraints of the materials tester, the samples fabricated
for materials testing were confined to be 25.4 mm or less.

Figure 2b shows the measured force-displacement
curves for two sample geometries demonstrating that the
curves appear quite linear until failure. Overlaid on the
measured curves are the results of finite element calcu-
lations (COMSOL, v4.4) of the force-displacement re-
sponse for the same geometries. At small strains, the
calculations agree very well with the measurements, em-
phasizing that these materials remain reasonably close
to a linear material, even when near failure. Slight de-
viations from the linear behavior become apparent only
after the strain has reached half of its value at failure.

B. Finite element calculations

In additional to the experiments, finite element cal-
culations were performed using a commercial package
(COMSOL, v4.4). Simple geometries were constructed
directly with the COMSOL interface, to facilitate pa-
rameter sweep testing (a suite of studies done by varying
one geometric parameter). The model numerical samples
were always made to be identical in size and elastic prop-
erties to the experimental samples. To construct more
complex geometries, the CAD files used as laser cutter
patterns could be directly imported into COMSOL. All
calculations were done using the plane stress 2D approx-
imation, as appropriate for a thin plate.

Two types of calculations were done in the 1D geom-
etry. To study stress enhancement as a function of ge-
ometry, the constant displacement conditions used in the
failure experiments were reproduced: all sample bound-
aries were free except the upper and lower boundary. The
lower boundary was held fixed and the upper boundary
was displaced by a fixed amount corresponding to a strain



of 0.005. Two tests were performed, one in a pristine ge-
ometry, and one in which one or more struts were ‘bro-
ken’. A break was modeled by manually inserting an
additional free boundary (i.e., a cut) in the middle of a
strut. The computed stress field (oy,) from both tests
was then analyzed to look for evidence of stress enhance-
ment.

An additional set of calculations was performed to
compare with the Instron test results (Fig. 2b). Here,
the lower edge of the sample was held fixed and a con-
stant force was applied to the upper edge of the sam-
ple. This allowed the (maximum) displacement of the
sample to be measured and directly compared with the
materials-testing results.

IV. ONE-DIMENSIONAL FRACTURE:
TRANSITION IN FAILURE MODE

When the holes in the 1D samples are relatively small,
and spaced relatively close together, the perforated ge-
ometry fails in a manner similar to a solid piece of plastic,
via a running crack (as shown in Fig. 1a). Here, the term
running crack is used to describe failure that, once ini-
tiated, spreads across the sample at velocities compara-
ble to material sound speeds, with no additional applied
strain. The running crack state is characterized by the
struts comprising the sample breaking in rapid succes-
sion, and in a directed manner (only nearest neighbor
breaks).

When the struts are long and narrow, or are spaced
very far apart, a different mode of failure occurs:
random-breaking. In this regime, the struts do not break
in an ordered manner; many non-nearest-neighbor breaks
occur (as shown in Fig. 1b). The breaking rate in this
regime is orders of magnitude slower than in the running
crack regime; failure does not spread across the sample
after being initiated — additional failure requires addi-
tional applied strain.

To characterize this transition between the two failure
modes, I used two measures: failure time, 7, and the
fraction of non-adjacent breaks, f. Failure time is defined
as the time for the material to completely break into two
separate pieces. The fraction of non-adjacent breaks, f,
is defined as the ratio of the number of struts that fail at a
position not adjacent to the last strut to fail, normalized
by the total number of struts. Fig. 3a,b shows how 7 and
f dramatically increase as the struts become long and
narrow, i.e., as [ /d increases.

When [/d is small, failure occurs via a running crack,
moving at a velocity comparable to the material sound
velocity, thus 7 is very small. However, as [/d increases,
7 becomes orders of magnitude longer. The saturation
of 7 at high I/d is a reflection of the displacement rate
applied to the samples. To confirm this, identical tests
were conducted at a displacement rate that was 5 times
slower, 17.4 £ 0.9um/s. As shown by the open symbols
in Fig. 3a, changing the displacement rate only changes
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FIG. 3: (Color online) Transition in failure mode. (a) As l/d
increases, the failure time 7 increases dramatically. Data for
two displacement rates is shown. Tests were performed at
constant s/d = 3. (b) The fraction of nonadjacent breaks, f,
increases with 1/d as well. (c) f vs. s/d; tests were performed
at constant [/d = 2. As s/d increases, the fraction of nonad-
jacent breaks, f, increases dramatically. (d) All of the data
in (b - circles), (c - triangles) can be collapsed by plotting f

as a function of Hdcs, where ¢ = 0.25 £ 0.1.

the saturation value at high I/d, and does not change the
failure time at low {/d.

Along with a transition in 7, there is a transition in
breaking order as illustrated in Fig. 3b, which shows the
fraction of non-adjacent breaks, f, versus [/d. At small
l/d, adjacent struts break as a crack runs across the sam-
ple. However, as [/d is increased, this no longer occurs;
most breaks are not at adjacent struts, and therefore f
increases. At high I/d, f saturates, as there are always
some small fraction of adjacent breaks. Fig. 3a,b thus il-
lustrates that [ /d serves as a control parameter for failure,
changing both the failure timescale and breaking pattern
of the sample.

However, 1/d is not the only control parameter for this
transition in the failure dynamics. Fig. 3c illustrates that
a similar transition in failure behavior is observed as s/d
is varied. As seen in that figure, f increases dramatically
as s/d is increased. As the struts become spaced further
and further apart, failure via a running crack crosses over
to random-breaking, similar to what was observed when
l/d was increased.

A comparison of 7 as a function of s/d is not shown, as
the samples used for this test varied largely in size, thus
making comparisons of absolute time difficult. (Chang-
ing s/d experimentally requires making larger and larger
samples to ensure a sufficient number of struts in each



sample.) However, f is a normallized quantity, and thus
is independent of sample size; it serves as a suitable con-
trol parameter to characterize the transition in dynamics
as seen in Fig. 3c.

Figure 3a-c illustrates that there are two independent
control parameters for the transition from running cracks
to random-breaking. Neither s/d nor [/d alone are suf-
ficient to parameterize the transition; both of these ge-
ometric parameters control the failure dynamics sepa-
rately. However, Fig. 3d demonstrates that all of the
data can be collapsed onto a single curve by plotting f
versus l+dcs7 where ¢ = 0.25£0.1. This rescaling is consis-
tent with the observation that both I/d and s/d control
this transition, but in independent ways.

When a single strut is broken, the stress on the rest
of the sample necessarily increases. More or less of this
stress will be borne by the remaining struts, depending on
the material geometry. To gain insight into how the stress
enhancement on the struts varies as a function /d and
s/d, finite element calculations (COMSOL, v4.4) were
performed (for details see Section ITIB). A test geom-
etry was input into COMSOL and a fixed displacement
was applied. Then o,, was measured in all of the struts.
Here, oy, is the average value of the yy-component of
the stress field in the strut, where the spatial average is
computed over the entire surface of the strut. When no
struts are broken, this stress field is relatively uniform
across the entire sample, as shown in Fig. 4a. However,
when a break was inserted into the middle strut, an en-
hancement in stress was found in the remaining struts, as
shown in Fig. 4b. This stress-enhancement was observed
whether the break was inserted near the center or at one
the edge of the sample.

However, this enhancement in stress depends strongly
on the material geometry, as shown in Fig. 4c,d. Here,
the normalized stress enhancement, ¥, is defined as

5 Tuy (after break) — o, (before break)

oy (before break) S
and is measured for each strut. Figure 4c,d presents the
measured stress enhancement for two sets of calculations,
one in which s/d was varied at fixed {/d = 2, and one in
which [/d was varied at fixed s/d = 3. As seen in that
figure, in all cases, 3 is largest near the broken strut, and
then decays further away from the break. As either s/d
or [/d is increased, the peak value of ¥ decreases.

To quantify the overall decrease in stress enhancement
shown in Fig. 4c,d, we will use the maximum value,
Yo = max(X) and the width, ¥, of the stress enhance-
ment. Fig. 4e,f shows a plot of the maximum stress en-
hancement, Yo, as I/d and s/d are varied. Calculations
were done in two crack geometries: a center break and
an edge break.

As seen in Fig. 4e.f , in all cases, a transition in g is
observed when either I/d or s/d is increased; ¥ is rel-
atively constant, but then begins to drop rapidly. This
transition occurs near I/d ~ 5 and s/d ~ 10, values which
are consistent with the experimentally observed transi-

tion in failure mode (see Fig. 3). The insets in Fig. 4e,f
show ¥, the width of X curves, as a function of s/d and
1/d. ¥ increases modestly as I/d is increased, but remains
constant as s/d is increased. The width was determined
by fitting a gaussian to the X profiles.

The geometric parameters [/d and s/d separately con-
trol the transition between the failure modes, as demon-
strated Fig. 3. Likewise, [/d and s/d separately control
the stress enhancement present after a strut is broken, as
shown in Fig. 4e,f. This suggests that the data in Fig.
4e,f can be collapsed in the same manner as the f versus
[/d and f versus s/d experimental data. This collapse is
shown in Fig. 5. Here, the stress enhancement data of
Fig. 4e,f has been replotted as a function of (I + ¢s)/d,
akin to the collapse used for the experimental measure-
ments. As seen in that Figure, the data collapses reason-
ably well for both crack geometries, suggesting that the
appearance of the random-breaking failure mode may be
due to a loss of stress enhancement. Although the pa-
rameter ¢ differs slightly in the collapse of the numeri-
cal and experimental data, in all cases ¢ is of order one.
Furthermore, it is not clear that ¢ should be the same
for all cases, as physically different quantities are being
collapsed. Thus, what is relevant is that the same func-
tional form can be used to collapse all of the data sets,
emphasizing that I/d and s/d separately act as control
parameters.

By itself, the suppression of stress enhancement due to
strut-breaking does not explain why at high {/d and s/d
fracture proceeds via the breaking of struts at random
positions along the line of failure. However, it is possible
that once the stress-enhancement effect has been suffi-
ciently suppressed, so that the nearest-neighbor strut is
not preferentially broken, it is inherent material disor-
der which determines the strut breaking. Any disorder
due to fabrication or material inhomogeneities should be
randomly distributed; this may explain why the running
crack crosses over to failure by random breaking events.

The stress enhancement data in Fig. 4e.f is calculated
after breaking a single strut. To investigate how Xy was
modified by many breaks, calculations were done which
simulated an extending crack: neighboring struts were
broken one-at-a-time from left to right. Fig. 6 shows a
plot of ¥ versus the number of broken struts, for three
samples, one in the running crack regime (s/d = 1/d = 2),
and two in the random breaking regime (s/d = 2,1/d =
50 and s/d = 30,1/d = 2). As more struts are broken, ¥
first increases, but then quickly plateaus. Furthermore,
at large [/d or s/d, the stress enhancement, g, always
remains much below the value at small I/d/s/d, even
when many struts are broken. Thus, the loss of stress
enhancement demonstrated at high [/d or s/d remains
throughout the breaking process.

In conclusion, in this 1D perforated system, a transi-
tion in failure mode is observed as a function of material
geometry. The parameters s/d and [/d can separately
be tuned to change the failure mode from dynamic (a
running crack) to quasi-static (random-breaking). Fur-
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FIG. 4: (Color online) Finite element calculations of the stress enhancement due to a broken strut. (a) Stress on each strut
(oyy) vs. strut number; each point represents the total stress on a single strut. The inset shows a visualization of the stress
field in the sample (oyy), see color bar for scale. (o, represents the stress averaged over the strut surface) (b) Stress per strut
(oyy) vs. strut position after the center strut is broken. There is an enhancement of oy, adjacent to the break location. The
inset shows a visualization of the stress field in the sample (o), see color bar for scale. (c,d) Normalized stress enhancement,
3 vs. strut number, for various values of (¢) s/d and (d) I/d. The calculations are for a center-broken strut; points represent
the average over the left and right sides of the sample. X is a strong function of material geometry. (e,f) The maximum stress
enhancement, Yo vs. (e) s/d and (f) I/d. Data is shown for both crack geometries, a center crack and (filled symbols) an edge
crack (open symbols). In all cases ¥ decreases dramatically as either s/d or l/d is increased. Insets show the width of the
stress enhancement, 3. ¥ remains relatively constant as s/d and increases as [/d is increased.
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thermore, this transition appears to be connected to the
loss of stress enhancement which occurs when either I/d
or s/d becomes large.

V. CRACK VELOCITY AS A FUNCTION OF
GEOMETRY

As discussed in the previous section, when the I/d < 5
or s/d < 10, the 1D samples fail via a running crack;
struts break in rapid succession and in an ordered man-
ner. Within this dynamic fracture regime, there are two
velocity regimes. At fixed l/d, the crack velocity, v, can
be tuned by adjusting s/d, the ratio of hole size to spac-
ing, as shown in Fig. 7a. When s/d < 1, v is an increas-
ing function of s/d. However, behavior changes when
s/d > 1; v saturates, and becomes independent of s/d.

What sets the overall shape of the v versus s/d curve?
The simplest hypothesis is that the running crack moves
faster because it has to create less and less free surface,
e.g. the relative fraction of strut width to hole length is
lower. A simple model based on this hypothesis assumes
that the crack travels through the struts at one velocity,
vq, but then travels through the ‘hole region’ at a dif-
ferent velocity, vs. Thus the crack velocity through the
entire piece of perforated material, (v), will be a function
of both vg and v,:

Ax d+s 1+s/d
(vV)=—= - = T (2)
S R ) s
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FIG. 6: (Color online) 3¢ vs. crack length, at low [/d and
s/d (black circles), high I/d (red X’s), and high s/d (blue
triangles). Only the first 80% of breaks are shown. In all
cases after an initial increase, 3o plateaus as more and more
struts are broken. Furthermore, at high s/d or [/d, ¥ always
remains much below the value observed when s/d and [/d are
small.

However, this model fails completely to capture the ob-
served behavior, as illustrated in Fig. 7b. The dashed line
was obtained by forcing equation 2 to fit the points where
s/d < 1, i.e., where the velocity appears to be increas-
ing. While the model can be fit to the data at low s/d,
it predicts qualitatively incorrect behavior for s/d > 1:
a steadily increasing velocity rather than the experimen-
tally observed plateau. Thus, this simple hypothesis does
not explain why the crack velocity is controlled by s/d.

In contrast to the effect of changing s/d, changing the
aspect ratio of the struts, I/d, has no effect on crack
velocity. As shown in Fig. 7c, [/d is varied by a factor of
25, but the crack velocity remains unchanged. As long as
the aspect ratio is small enough so that the running crack
states exists (I/d < 5), the crack velocity is independent
of l/d.

It should be noted that it is the ratio of s/d which
controls the crack velocity, not the absolute value of d.
This is illustrated in Fig. 7d. The absolute value of d
is changed by almost a factor of 8, yet all of the points
remain within error of each other.

In this running-crack regime, it appears that crack ve-
locities are set by geometry alone. As a stringent test of
this hypothesis, additional experiments were conducted
in two other materials: impact-modified acrylic (Y = 1.76
GPa, p = 1115 kg/m?, v=0.4) and Delrin (Y = 3.1 GPa,
p = 1394 kg/m?3, v=0.4). As seen in Fig. Te, changing
the material properties does change the absolute value of
the crack velocity. However, as shown in Fig. 7f, all of
the curves can be collapsed by normalizing the crack ve-
locity by the Rayleigh velocity of each material (acrylic,
cr: 1017 m/s, impact-modified acrylic, cg: 715 m/s,
Delrin, cg: 841 m/s). This suggest that, independent of
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FIG. 7: (Color online) (a) Crack velocity vs. s/d. An un-
perforated material is represented by s/d = 0. There are two
dynamical regimes: s/d < 1, where the velocity increases with
increasing s/d, and s/d > 1, where the velocity is indepen-
dent of s/d. The arrow indicates the Rayleigh wave velocity
in acrylic, 1017 m/s. (b) The simple model of equation 2 does
not agree with the data, as indicated by the dashed line. The
fit was obtained by forcing the model to agree with the points
where s/d < 1. (c) Crack velocity vs. strut aspect ratio, {/d.
The crack velocity is independent of strut aspect ratio (when
l/d < 5). These tests were conducted for fixed s/d=3. (d)
Crack velocity vs. d, at a fixed value of s/d=3. The crack
velocity is independent of d; dashed line represents the mean
value of v. (e) Crack velocity vs. s/d for three different ma-
terials, acrylic (blue circles), delrin (red open squares), and
impact modified acrylic (green asterisk). (f) The same data,
with the crack velocity normalized by the Rayleigh wave ve-
locity in each material, cr. The non-dimensionalized data
collapse, and thus do not show any dependance on material
properties.

the specific details of the material, crack velocity can be
controlled simply by changing the perforation geometry.

Thus, regardless of the specific failure properties of
a material, a meta-material can be constructed from it
which will fail in a manner determined by geometry alone.
Simply by tuning two geometric control parameters (s/d
and [/d), the failure mode can be tuned to transition
from failure via a running crack to failure via the break-
ing of struts at random positions. Furthermore, in the
running crack regime, the crack velocity can be addition-
ally controlled by adjusting s/d.



VI. CONCLUSION

Failure of an elastic solid is often characterized as ei-
ther ductile or brittle, i.e., either occurring via highly
dissipative, slow plastic flow or by rapid, dynamic crack
propagation. Some correlations exist between material
microstructure and failure mode; poly-crystalline mate-
rials have a tendency to fail ductilily [2], while amor-
phous materials are more likely to fail in a brittle man-
ner [5]. However, these correlations are not one-to-one;
and furthermore some materials can exhibit a transition
from brittle to ductile failure as a function of tempera-
ture [30, 31]. Clearly, the link between atomic structure
and fracture behavior is nuanced.

The work presented here has explored how the geom-
etry of a meta-material can influence how it fails under
tension. In these materials the geometry of the struc-
ture is easily accessible and tunable — they are created
simply by introducing an array of holes in an otherwise
solid sheet of material. In these perforated geometries,
the transition in failure dynamics can be directly linked
to changes in the underlying structure. I have shown that
the failure behavior of a perforated sheet is modified as
the material becomes more sparse, and as strut bending
becomes more important. Furthermore, I demonstrate
that this transition between failure modes can be con-
nected to a loss of stress enhancement due to the sparse
geometry.

This transition in dynamics illustrates that perforating
a continuum material does more than modify its elastic
constants, or change its failure strength. Constructing a

meta-material in this way allows for a new kind of ma-
terial, one that has a tunable mode of failure. Simply
by choosing appropriate geometric parameters, the entire
dynamics of the failure process can be adjusted. This
change in dynamics may be reminiscent of the transi-
tion seen in the fiber bundle model of 1D failure [32-34],
where catastrophic failure failure of a complete bundle
transitions to failure that occurs more locally. However,
in this model the control parameter for the transition is
the amount of disorder present in the the bond breaking
strengths, which is distinctly different from the system
studied here. In these experiments, geometry was var-
ied while the amount of disorder was held fized. The
transition observed here is distinctly different than the
one studied in these models, and thus represents a new
control parameter for failure dynamics.
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