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We present an X-ray microtomography study of the three-dimensional (3D) 

structural correlations in monodispersed granular packings. By measuring an 

orientation-dependent pair correlation function, we found that the local structure 

shows angularly anisotropic orientation correlation. The correlation is strongest along 

the major axis of the local Minkowski tensor of the Voronoi cell. It turns out that this 

anisotropic correlation is consistent with the existence of some locally favored 

structures. The study suggests the importance of high-order structural correlations in 

random granular packings. 
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I. INTRODUCTION 

The nature of random granular packings remains elusive after significant amount 

of efforts have been devoted to its understanding [1-4]. The difficulty lies in the 

lacking of a generally accepted theoretical framework. In approaching the packing 

problem based on statistical mechanics, the theoretical efforts have been carried out 



mostly along two lines. A statistical volume ensemble theory was first proposed by 

Edwards and his coworkers in which the volume has taken the role of energy, and the 

granular packing samples all mechanical stable states with equal probability [5, 6]. 

Later, stress has been augmented to simple volume ensembles and both ensembles 

have been extensively investigated [7-10]. 

Another line of work has drawn the close analogy between jammed granular 

packings with thermal glassy systems [11-13]. Especially, a unified jamming phase 

diagram has been proposed [2, 11]. Recently, it was argued that the jamming 

transition corresponds to a glassy state at infinite pressure [13], and the jamming 

transition happens with a finite range of volume fractions [13, 14]. Therefore, the 

static granular packing problem can be studied using replica method employed in the 

studies of glass transition [13].  

We note that two theoretical approaches are intimately connected as the 

mechanical stable states in Edwards’ ensemble are essentially related to the inherent 

states of glassy systems [5]. However, both approaches have mostly been carried out 

at mean-field levels. At finite dimensions, it is generally believed that fluctuations will 

be significant [15], and the study of the fluctuations is hampered by the fact that the 

concepts of order and disorder are not well defined [16, 17]. Still, a jammed granular 

packing show structural features which differ significantly from a “frozen” liquid 

state: the pair correlation function shows distinct scaling behavior around the contact 

peak and a split second peak structure [18-20]; the distribution of contact force also 

shows the development of a peak in the small force regime [21]; a network of strong 



and weak force chains develop which show certain correlations [22, 23]. 

In liquid theory, the correlations can be systematically expanded by including 

increasing higher orders of correlation functions [24, 25]. In most cases, it is found 

that simple pair correlation function is sufficient. Recent studies on hard-sphere glass 

transition which is closely related to random granular packings have focused on the 

importance of high-order correlation functions including bond orientation order or 

locally favored structures [26-28]. There also exist approaches of systematical 

searching for the translational and orientational order [17]. Building upon these 

approaches and a recent finding that the local environment a particle resides is highly 

anisotropic [29], we characterize the orientation-dependent pair correlations beyond 

the standard pair correlation in 3D random granular packings using synchrotron X-ray 

microtomography [30-32]. We found that the development of the 

orientation-dependent correlation is in direct correspondence with the development of 

some locally favored structures, especially structures with approximate five-fold 

symmetry [33, 34]. Meanwhile, we also characterize the correlations of other 

parameters like local packing fraction and neighbor number which also involve 

many-particle information [35, 36]. 

This paper is organized as follows. In Sec. II we describe the experiment and 

image processing procedures. In Sec. III we introduce some indices to characterize the 

anisotropic Voronoi cell around each particle based on one Minkowski tensor [29, 37]. 

We also quantify the correlations among these structural indices. In Sec. IV we define 

an orientation-dependent pair correlation function to quantify how local anisotropy is 



correlated over several particle diameters. Furthermore, we calculate an orientational 

entropy associated with this orientation-dependent pair correlation function. In Sec. V 

we introduce some correlation functions to characterize how local anisotropy indices 

and Voronoi cells’ orientations are spatially correlated. Finally, in Sec. VI, we present 

some concluding remarks. 

 

II. EXPERIMENT PROCEDURE 

In the experiment, the bead packings were prepared by filling a 9 mm ID acrylic 

cylindrical container to about 1cm in height using monodispersed glass beads (Duke 

Scientific, 200 15D = ±  μm). Packings with different packing fractions were 

obtained by tapping the container using an electromagnetic exciter with different 

tapping intensity Γ, which is measured by an accelerometer as the ratio between the 

peak-to-peak acceleration and the gravitational acceleration. The tapping consists of a 

single cycle of 60-Hz sine wave spaced with 0.5 s intervals to allow the system to 

relax completely. A total of 1000 taps were applied on each packing with different Γ 

before the tomography was carried out. The final packing fraction Φ  ranges from 

0.634 to 0.617 when Γ is increased from 3 to 12 [38]. 

The X-ray experiment was carried out at the 2BM beamline of the Advanced 

Photon Source at Argonne National Lab. The “pink” X-ray beam from a bending 

magnet source with a median energy around 27 keV was utilized for the high-speed 

tomography image acquisitions. One full tomography scan consists of 1500 projection 

images. The single exposure time is 30 ms and the full scan lasts about 2 min. The 3D 



structures were first reconstructed using the conventional filtered back-projection 

algorithm. Subsequently, the particles’ positions and sizes were acquired by a 

marker-based watershed image segmentation technique [32]. The reconstructed 3D 

structure consists of about 17,000 particles in each packing after excluding particles 

within four particle diameters from the container boundary. In this following, for 

brevity, all physical lengths are expressed in units of average particle diameter. 

 

III. STRUCTURAL ANISOTROPY 

 The local structure of the packing is ordinarily characterized by Voronoi 

tessellation. Local packing fraction 0 /loc cellw wΦ =  ( 0w  and cellw  are volumes of 

the particle and its Voronoi cell) and Voronoi neighbor number N  (numbers of 

particles sharing a common Voronoi cell surface with the central particle) are 

calculated to quantify the local environment of a granular particle. In addition to 

above scalar parameters, the shape of the Voronoi cell was analyzed using a 

Minkowski tensor 0,2
1W  defined as the surface integral of the tensor-valued 

self-product of the bounding surface normal n [29, 37]: 

0,2
1W dA= ⊗∫ n n .       (1) 

The tensor representation allows an explicit depiction of the cell’s anisotropy. The 

eigenvalues of 0,2
1W  are listed as ( )1 2 3, ,ε ε ε  with 1 2 3ε ε ε> >  without loss of 

generality. To characterize the cell’s shape anisotropy, the anisotropy index 

3 1β ε ε=  is introduced [29]. The value of β  ranges from one (isotropic shape) to 

zero (a line or a plane). Additionally, another anisotropy index ( ) ( )2 3 1 3γ ε ε ε ε= − −  



is introduced to characterize the degeneracy of the three eigenvalues. The value of γ  

also ranges from zero (perfect oblate cell) to one (perfect prolate cell). The probability 

distribution functions (PDF) of β  and γ  for packing with 0.634Φ =  are shown 

in Fig. 1 (a) and (b). The PDFs suggest that the Voronoi cells are mostly anisotropic 

and consist of both prolate and oblate shapes. Averaged β  and γ  for different 

packings fractions Φ  were calculated and shown in the insets of Fig. 1 (a) and (b). 

Similar to previous findings [29], β  increases for higher Φ , while γ  is 

almost constant for different Φ . 

In the following, we demonstrate that β  and γ  are structural indices that carry 

local structural information of the amorphous packing beyond other standard local 

structural indices. In addition to local packing fraction locΦ  and Voronoi neighbor 

number N , we calculate bond orientational order parameters 4Q , 6Q , and three 

other order metrics fccΔ , hcpΔ , and cosiΔ  [28, 39]. The last three order metrics are 

calculated from a rank-four Minkowski tensor of a Voronoi cell, in which fccΔ  ( hcpΔ , 

or cosiΔ ) is the root-mean-square of the difference between the six eigenvalues of this 

rank-four tensor and those of perfect face-centered-cubic crystalline 

(hexagonal-close-packing or quasi-crystalline icosahedral) cluster [39]. These order 

metrics are sensitive in identifying local crystalline clusters [39]. The linear 

correlation coefficients among above structural indices for packing with 0.634Φ =  

are shown in Table I. We note that the anisotropy index β  is correlated with locΦ  

and N , but is almost uncorrelated with those indices quantifying local crystalline 

orders. γ  seems to be uncorrelated with all other local indices. Specifically, we 



show the scattered plots and conditional averages of locΦ , N , 4Q  and 6Q  for 

different β  in Fig. 2. The averages of all indices show monotonic dependencies 

upon β , but the correlations are rather weak. Similar relationships apply for all other 

structural indices. 

 

IV. ORIENTATIONAL CORRELATION 

A. Orientation-dependent pair correlation function 

In addition to β  and γ , we also calculate the local orientation of each Voronoi 

cell from 0,2
1W . We calculate the eigenvectors corresponding to the eigenvalues of 

0,2
1W : the major axis Me  and minor axis me  corresponds to 1ε  and 3ε  

respectively. The global distributions of Me  and me  are uniform in all directions, 

suggesting that the packing is isotropic globally. However, it turns out that the 

anisotropy of Voronoi cell is not localized within the first shell, but is spatially 

correlated and affects the structures in a range of about three to four particle diameters 

around the central particle. 

In the following, we introduce a set of orientation-dependent correlation functions 

to quantify such anisotropic spatial correlations. First we augment the standard pair 

correlation function ( )g r  into an orientation-dependent pair correlation function 

( ), ,g r θ ϕ . A local Cartesian coordinate system for each particle was set up based on 

Me  and me : Me  is the z-axis, me  is the x-axis, and ×M me e  is the y-axis as 

shown in Fig. 3 (a). A local spherical coordinate system is further defined based upon 

the Cartesian coordinate system. In the spherical coordinate system, the relative 



positions and orientations of two particles’ Voronoi cells can be expressed using six 

independent variables: ( ), ,ij ij ijr θ ϕ  represents the relative position of particle j in the 

coordinate system of particle i, and another three variables represents the relative 

orientations of the two Voronoi cells. 

For simplicity, we first neglect the relative orientation of two Voronoi cells and 

calculate an orientation-dependent pair correlation function ( ), ,g r θ ϕ  defined as:  

( ) ( ) ( ) ( )2

1, ,
4 ij ij ijg r r r

r r
θ ϕ δ δ θ θ δ ϕ ϕ

π ρ
= − − −

Δ ΔΩ
,   (2) 

where the average is taken for all pairs of particles. ρ  is the number density of the 

packing. rΔ  is the increment of r  and ΔΩ  is the size of solid angle centering at 

( ),θ ϕ . Due to the symmetry between ( ),θ π θ− , ( ),ϕ π ϕ−  and ( ),ϕ ϕ− , we map 

all data to [ ], 0, 2θ ϕ π∈  and average data from equivalent ranges. Since ( ), ,g r θ ϕ  

is a function with three variables, we plot it using a set of 2D colormaps as shown in 

Fig. 3 where different colors are used to indicate the intensity of correlations. As 

comparison, the ordinary pair correlation function ( )g r  is also plotted in Fig. 3 (b). 

We plot ( ), ,g r θ ϕ  on 0ϕ =  plane, 2ϕ π=
 
plane, and 2θ π=  plane. These 

colormaps clearly demonstrate that pair correlation function is strongest along the 

major axis and weakest along the minor axis and the correlation extends to several 

particle diameters. Furthermore, we show ( ), ,g r θ ϕ  at given r  ( ( )3, ,g r θ ϕ=  

and ( )2, ,g r θ ϕ= ). 3r =  and 2r =  are chosen as the positions of two 

sub-peaks in the split second peak of ( )g r  (see Fig. 3 (b)). It was evident that 

3r =  peak is highest along Me  while 2r =  peak is relatively uniform angularly. 

B. Anisotropic local configurations 



In this section, we try to establish the connection between the local anisotropy 

and its spatial correlation with some locally favored structures. As pointed out before 

[33], pair correlation function ( )g r  can be decomposed into the contributions of 

various local configurations, defined as jkl  pairs. jkl  pairs were identified by a 

classification of the geometry of the common neighbors of pairs of particles. 

Neighboring particles (or bonded particles) were defined with a cut-off distance 

1.34cr =  which corresponds to the first minimum of ( )g r . Index j  corresponds to 

the number of common neighbors to the pair of particles. Index k  is the number of 

bonds among the j  common neighbors. Index l  is the length of the longest 

continuous chain formed by the k  bonds [33]. Motivated by this approach, we 

calculate the orientations of these jkl  pairs and compare them with Me  and me . 

For each pair, we calculate the angle Mθ  ( mθ ) between the pair’s relative 

direction and the corresponding individual Me  ( me ) of the two particles. ( )jkl Mf θ  

is the PDF of Mθ  for some specific jkl  types, and we plot 
( )

sin
jkl M

M

f θ
θ

 versus Mθ  

in polar coordinates as shown in Fig. 4, where sin Mθ  is a normalization factor. 

Similar diagrams were also shown for mθ . We present the results of 555 , 544  and 

433  pairs corresponding to the first peak of ( )g r  [33]. 555  pair is a part of 

icosahedral arrangement of 13 particles while 544  and 433  pairs correspond to a 

part of distorted icosahedral order. As illustrated in Fig. 4 (a) and (b), 555  pair 

shows the best alignment with Me  compared with other pairs. We also show the 

results of 333 , 211 and 100  pairs which correspond to the second peak of ( )g r  

(Fig. 4 (c) and (d)). 333  pair shows the best alignment with Me  while the 



orientations of other two types of pairs show comparatively uniform distributions. 

333  pair is a bi-pyramid cluster of two tetrahedral configurations, which is also a 

local dense structure and a part of icosahedral arrangement. We notice that the above 

555  and 333  pairs correspond to 7A  and 5A  clusters in the topological cluster 

classification method [27]. Above calculation suggests that locally dense structures 

with five-fold symmetry serve as the major contribution to local anisotropy and its 

spatial correlations. 

We further verified that the choice of the cut-off distance cr  in the range 

[1.3,1.5]  has only minor effects on above results, i.e., if neighboring particles were 

defined based on Voronoi cell connection or a recent parameter-free method [40], the 

corresponding numbers of different particle pair types would change, but the PDFs of  

Mθ  ( mθ ) only show minor differences. 

C. Orientational entropy 

 The anisotropic local structures of random granular packings suggest the 

existence of some orientational degrees of freedom. These degrees of freedom and 

their correlations should contribute to a non-trivial part of the configurational entropy 

of the packing. Motivated by the calculations of the configurational entropy for 

liquids with anisotropic molecules [41], we define an orientational distribution 

function ( ),og rθ ϕ  according to the decomposition of ( ), ,g r θ ϕ  into translational 

and orientational part: 

( ) ( ) ( ), , ,t og r g r g rθ ϕ θ ϕ= ,      (3) 

and 



( ) ( )1 , , sin
4tg r g r d dθ ϕ θ θ ϕ
π

= ∫       (4) 

is the ordinary radial distribution function ( )g r . 

Afterwards, the two-particle term in the entropy expression can also be 

decomposed into translational and orientational part: t os s s= +  with: 

( ) ( ) ( ) 24 log 1
2t t t ts g r g r g r r drπ ρ= − − +⎡ ⎤⎣ ⎦∫ ,    (5) 

and  

( ) ( ) 24o t os g r S r r drπρ= ∫ ,      (6) 

where 

( ) ( ) ( )1 , log , sin
8o o oS r g r g r d dθ ϕ θ ϕ θ θ ϕ
π

= − ∫ .    (7) 

In above calculations, the Boltzmann constant is set to unity. The integration 

range in both Eq. (5) and (6) is [ )0,+∞ . In reality, a range [ ]0,8  is sufficient. The 

translational and orientational entropy ts  and os  were calculated for packing with 

different packing fractions as shown in Fig. 5 (a) and (b). Decreasing of both 

entropies with increasing packing fraction towards the random close packing limit 

0.64Φ ≈  was observed [18], which suggests that jamming transition is accompanied 

with increasing ordering in both translational and orientational degrees of freedom. 

The absolute value of os  is about one-order of magnitude smaller than that of ts . It 

is worth noting that the anisotropy of a local cell is due to the multiple particle 

correlations and therefore ( ), ,g r θ ϕ  by nature corresponds to a multi-to-one-particle 

correlation. Therefore, os  calculated from ( ), ,g r θ ϕ  corresponds to some 

high-order expansion of the configurational entropy omitted in the ordinary pair 



correlation function ( )g r . 

Furthermore, we calculate the contributions to ts  and os  from nearest 

neighbors by defining ,t nns  and ,o nns  which has an integration range from [ ]0,1.34  

in Eqs. (5) and (6). We plot the relative contribution to the total entropy from nearest 

neighbor particles: ,t nn ts s  and ,o nn os s  as a function of Φ  in the insets of Fig. 5 

(a) and (b). Particle arrangements of nearest neighbors contribute about 45% to os  

which suggests that the orientational correlation mainly comes from the anisotropy 

beyond first shell, while translational correlation beyond first shell is comparatively 

smaller. Both  ,t nn ts s  and ,o nn os s  decrease with increasing Φ  suggesting that 

correlations get more long-ranged towards random close packing. 

 

V. CORRELATION OF VORONOI CELLS 

A. Correlation of cell orientation 

For even higher order orientational correlations, we focus on the spatial 

correlation between the orientations of eigenvectors between pairs of particles. As 

noted above, the correlation of particle positions is relatively strong along the major 

axis of 0,2
1W , we therefore presume that the meso-scale anisotropy in sphere packings 

mainly exists along Me . We then calculate the orientational correlation between Me  

for pairs of particles, and neglect the correlations of other two axes. 

This orientational correlation function is defined as: 

( ) ( ) ( ) ( ) ( )
2

3 1
, ,

2 ij ij ijo r r rθ ϕ δ δ θ θ δ ϕ ϕ
⋅ −

= − − −M,i m,ie e
  (8) 

where the average is taken for all pairs of particles and M,ie  is the major axis of 



particle i . The 
( )2

, ,3 1

2
M i M je e⋅ −
uuur uuur

 term is in analogy with nematic order parameter in 

liquid crystals. ( ), ,o r θ ϕ  is illustrated in Fig. 6. Similar to ( ), ,g r θ ϕ , the 

orientational correlation between major axes is also stronger along Me  for each 

particle, while the variation of ( ), ,o r θ ϕ  for different ϕ  seems comparatively 

weak. The oscillatory behavior of ( ), ,o r θ ϕ  along Me  suggests that the 

orientations of Me  for neighboring particles exhibit an alternating tendency between 

being parallel and orthogonal with Me  of the central particle and extend to about 

three particle diameters. We also calculate the correlation of the orientations of minor 

axes of pairs of particles and found that the correlation extends to only about 1.5 

particle diameters. 

The estimation of configurational entropy associated with this non-uniform 

distribution of the orientation between Me  or even me  is beyond the scope of this 

work. However, as os  is contributed by multi-to-one-particle correlation and above 

( ), ,o r θ ϕ  correlation is contributed by multi-to-multi-particle correlation, we 

presume that its contribution to total configurational entropy should be much smaller 

than os . 

B. Correlation of cell anisotropy 

Finally, to fully quantify the meso-scale anisotropic structures of sphere packings, 

we further calculate the spatial correlations of anisotropy indices β  and γ . For 

simplicity, we neglect the variation of spatial correlation in ( ),θ ϕ  degrees of 

freedom and the correlation function becomes isotropic: 



( ) ( )( )
( ) ( )var

i j
a ij

a a a a
c r r r

a
δ

− −
= −      (9) 

where a  represents a specific structure quantity ( ,  , , Na β γ= Φ , etc.) and the 

average is taken for all pairs of particles. a  and ( )var a  are the average value 

and variation of a  respectively. As shown in Fig. 7, β  shows positive correlation 

within two particle diameters while the γ  correlation is basically zero. This suggests 

that anisotropic cells tend to locate near anisotropic ones while the degeneracy of 

eigenvalues seems uncorrelated. Together with the analysis of the correlation between 

γ  and other structural quantities, it seems that whether the shape of the Voronoi cell 

is close to an oblate ellipsoid or a prolate one is unimportant. As comparison, we 

calculate ( )c rΦ  and ( )Nc r  as well (Fig. 7). It was shown that all these scalar 

structural parameters has a spatial correlation of about two particle diameters, which 

is close to the correlation length of ( ), ,o r θ ϕ , while the correlation length of 

( ), ,g r θ ϕ  along Me  is slightly longer. 

 

V. DISCUSSION AND CONCLUSIONS 

In summary, the non-uniform angular distribution of neighboring particles results 

in an anisotropic local structure of sphere packings. This anisotropy is well 

characterized through some anisotropy indices. In the current study, by using an 

orientation-dependent pair correlation function, we find that this anisotropy structure 

extends beyond first shell, and shows an anisotropic correlation extending to several 

particle diameters with the maximum correlation along the major axis of local 

Minkowski tensor. 



The current study bridges the approaches of studying the packing structure using 

topological classification [27] and systematic expansion beyond pair correlation 

functions [24]. By decomposing the standard pair correlation function into 

translational and orientational parts, we can investigate their individual contributions 

to the correlations in the system, and clearly established the connection with the 

topological structural analysis. 

However, there are two points need caution. The first is that the preferred 

correlation along the major axis only suggests a strong correlation along a fixed 

direction while in reality the true correlation in amorphous systems might not follow a 

straight line [42]. Therefore, the actual correlation could be even longer. Secondly, in 

defining the neighbors, the method of a cut-off distance has been adopted which 

follows the custom in systems with short-range attractive interactions in which the 

local cluster structures correspond to the local minima of the energy landscape [27]. 

For hard sphere systems, the interactions are purely repulsive. Therefore, how to 

establish the connections between local anisotropy, particular local structures, and 

their free energy implications remain elusive. 

The current study also brings interesting connections with packings of anisotropic 

particles, which have orientational degrees of freedom intrinsically [43, 44]. 

Additionally, the local anisotropic correlations could also be related to force chains 

[22, 23]. How to relate structure with force information will be of great interest in the 

future. 

 



ACKNOWLEDGEMENTS 

We appreciate helpful discussion with Yuliang Jin. This work and the use of the 

APS are supported by the U.S. Department of Energy, Office of Science, Office of 

Basic Energy Sciences, under contract No. DE-AC02-06CH11357. Some of the 

preliminary experiments have been carried out at BL13W1 beamline of the Shanghai 

Synchrotron Radiation Facility (SSRF). The work is supported by the Chinese 

National Science Foundation Nos. 11175121, National Basic Research Program of 

China (973 Program; 2010CB834301). 

  



[1] J. Bernal and J. Mason, Nature 188, 910 (1960). 
[2] A. J. Liu and S. R. Nagel, Annu. Rev. Cond. Matt. Phys. 1, 347 (2010). 
[3] S. Torquato and F. Stillinger, Rev. Mod. Phys. 82, 3197 (2010). 
[4] M. P. Ciamarra, P. Richard, M. Schröter, and B. P. Tighe, Soft Matter 8, 9731 

(2012). 
[5] S. F. Edwards and R. Oakeshott, Physica A 157, 1080 (1989). 
[6] A. Mehta and S. Edwards, Physica A 157, 1091 (1989). 
[7] S. Edwards and D. Grinev, Phys. Rev. Lett. 82, 5397 (1999). 
[8] R. C. Ball and R. Blumenfeld, Phys. Rev. Lett. 88, 115505 (2002). 
[9] S. Henkes and B. Chakraborty, Phys. Rev. Lett. 95, 198002 (2005). 
[10] H. A. Makse and J. Kurchan, Nature 415, 614 (2002). 
[11] A. J. Liu and S. R. Nagel, Nature 396, 21 (1998). 
[12] R. D. Kamien and A. J. Liu, Phys. Rev. Lett. 99, 155501 (2007). 
[13] G. Parisi and F. Zamponi, Rev. Mod. Phys. 82, 789 (2010). 
[14] P. Chaudhuri, L. Berthier, and S. Sastry, Phys. Rev. Lett. 104, 165701 (2010). 
[15] Y. Jin, J. G. Puckett, and H. A. Makse, Phys. Rev. E 89, 052207 (2014). 
[16] S. Torquato, T. M. Truskett, and P. G. Debenedetti, Phys. Rev. Lett. 84, 2064 

(2000). 
[17] T. M. Truskett, S. Torquato, and P. G. Debenedetti, Phys. Rev. E 62, 993 (2000). 
[18] C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys. Rev. E 68, 011306 

(2003). 
[19] A. Donev, S. Torquato, and F. H. Stillinger, Phys. Rev. E 71, 011105 (2005). 
[20] L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys. Rev. E 73, 041304 (2006). 
[21] C. S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett. 86, 111 

(2001). 
[22] T. S. Majmudar and R. P. Behringer, Nature 435, 1079 (2005). 
[23] F. Radjai, D. Wolf, M. Jean, and J. Moreau, Phys. Rev. Lett. 80, 61 (1998). 
[24] J. P. Hansen and I. R. McDonald, Theory of simple liquids (1990). 
[25] D. C. Wallace, J. Chem. Phys. 87, 2282 (1987). 
[26] H. Tanaka, T. Kawasaki, H. Shintani, and K. Watanabe, Nature Mater. 9, 324 

(2010). 
[27] C. P. Royall, S. R. Williams, T. Ohtsuka, and H. Tanaka, Nature Mater. 7, 556 

(2008). 
[28] P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983). 
[29] G. E. Schröder-Turk, W. Mickel, M. Schröter, G. W. Delaney, M. Saadatfar, T. J. 

Senden, K. Mecke, and T. Aste, Europhys. Lett. 90, 34001 (2010). 
[30] P. Richard, P. Philippe, F. Barbe, S. Bourlès, X. Thibault, and D. Bideau, Phys. 

Rev. E 68 (2003). 
[31] T. Aste, M. Saadatfar, and T. Senden, Phys. Rev. E 71 (2005). 
[32] Y. X. Cao, B. Chakrabortty, G. C. Barker, A. Mehta, and Y. J. Wang, Europhys. 

Lett. 102, 24004 (2013). 
[33] A. S. Clarke and H. Jónsson, Phys. Rev. E 47, 3975 (1993). 
[34] A. Anikeenko and N. Medvedev, Phys. Rev. Lett. 98, 235504 (2007). 
[35] T. Aste and T. Di Matteo, Eur. Phys. J. E 22, 235 (2007). 



[36] S. C. Zhao, S. Sidle, H. L. Swinney, and M. Schröter, Europhys. Lett. 97, 34004 
(2012). 

[37] G. E. Schröder-Turk, W. Mickel, S. C. Kapfer, M. A. Klatt, F. M. Schaller, M. J. 
F. Hoffmann, N. Kleppmann, P. Armstrong, A. Inayat, D. Hug, M. Reichelsdorfer, 
W. Peukert, W. Schwieger, and K. Mecke, Adv. Mater. 23, 2535 (2011). 

[38] E. R. Nowak, J. B. Knight, M. L. Povinelli, H. M. Jeager, and S. R. Nagel, 
Powder Technol. 94, 79(1997). 

[39] S. C. Kapfer, W. Mickel, K. Mecke, and G. E. Schröder-Turk, Phys. Rev. E 85 
(2012). 

[40] Z. A. Tian, R. S. Liu, K. J. Dong and A. B. Yu, Europhys. Lett. 96, 36001, (2011). 
[41] T. Lazaridis and M. Karplus, J. Chem. Phys. 105, 4294 (1996). 
[42] T. Tomida and T. Egami, Phys. Rev. B 52, 3290 (1995). 
[43] A. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger, R. Connelly, S. 

Torquato, and P. M. Chaikin, Science 303, 990 (2004). 
[44] C. Xia, K. Zhu, Y. Cao, H. Sun, B. Kou, and Y. Wang, Soft Matter 10, 990 

(2014). 

 

  



 

FIG. 1. PDFs of β  (a) and γ (b) for packing with 0.634Φ = . The insets show the 

averaged value β  v.s. Φ  (a) and γ  v.s. Φ  (b). 

  



TABLE I. Correlation matrix for various structural indices. This matrix is symmetric 

thus the data in the lower half are not shown. 

  

 β  γ  
locΦ N  4Q 6Q fccΔ hcpΔ

 cosiΔ

β  1 -0.044 0.253 -0.251 -0.122 0.118 -0.049 -0.049 -0.034 

γ  - 1 0.016 -0.019 0.014 0.080 -0.013 -0.011 -0.008 

locΦ  - - 1 -0.187 -0.265 0.063 -0.227 -0.290 -0.290 

N  - - - 1 -0.093 -0.580 0.146 0.172 0.173 

4Q  - - - - 1 0.183 0.328 0.510 0.511 

6Q  - - - - - 1 -0.137 -0.175 -0.181 

fccΔ
 - - - - - - 1 0.706 0.657 

hcpΔ
 - - - - - - - 1 0.990 

cosiΔ  - - - - - - - - 1 



 

FIG. 2. Conditional average of (a) locΦ , (b) N ,(c)  4Q  and (d) 6Q  for given 

values of β . The gray scattered points are the unaveraged data points. 

  



 

FIG. 3. (Color online) (a) A schematic for the local coordinate system of particle i , 

and the relative position and orientation of particle j . The red coordinate system 

marks the orientations of the axes of particle j . (b) Ordinary pair correlation function 

( )g r . (c,d,e,f,g) Orientation-dependent pair correlation function ( ), ,g r θ ϕ  shown 

on (c) 0ϕ =  plane (yellow plane in panel (a)), (d) 2ϕ π=  plane (red plane in 

panel (a)), (d) 2θ π=  plane (blue plane in panel (a)), (f) 3r =  spherical surface 

and (g) 2r =  spherical surface. 

  



 

FIG. 4. (Color online) Angles between various jkl  pairs and Me
uur

 (solid symbols) 

or me
uur

 (open symbols). Data for following types of pairs are shown: 555  (square), 

544  (circle), 433  (up triangle), 333 (down triangle), 211 (diamond), and 100  

(left triangle) pairs. 

 

  



 

FIG. 5. Translational (a) and orientational (b) entropy for packings with different Φ . 

Insets: Relative contributions to translational (a) and orientational (b) entropy from 

nearest neighbors for packings with different Φ . 

  



 

FIG. 6. (Color online) Orientation-dependent correlation function ( ), ,o r θ ϕ  shown 

on (a) 0ϕ =  plane, (b) 2ϕ π=  plane, (c) 2θ π=  plane, (d) 1r =  spherical 

surface and (e) 3r =  spherical surface. 

  



 

FIG. 7. (Color online) Correlation functions for various structural indices: β  

(square), γ  (triangle), locΦ  (circle) and N  (diamond). 


