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We present a whole series of novel methods to alleviate the sign problem of the Fermionic Shadow
Wave Function in the context of Variational Monte Carlo. The effectiveness of our new techniques is
demonstrated on liquid 3He. We found that although the variance is reduced, the gain in efficiency
is restricted by the increased computational cost. Yet, this development not only extends the scope
of the Fermionic Shadow Wave Function, but also facilitates highly accurate Quantum Monte Carlo
simulations previously thought not feasible.

INTRODUCTION

The difficulty to solve the Schrödinger equation for
many interacting particles stems from the fact that it is
generally impossible to analytically determine its ground
state for more than a few particles. Quantum Monte
Carlo techniques [1–4], such as Variational Monte Carlo
(VMC) [5], are stochastic methods that enables to ap-
proximately solve the many-body Schrödinger equation.
The main concepts underlying VMC are the applica-
tion of the Rayleigh-Ritz variational principle and the
use of importance sampled Monte Carlo (MC) to effi-
ciently evaluate the high-dimensional integrals, which are
involved in the many different expectation values such
as the energy [6–8]. Its great appeal is based upon the
low computational complexity, as opposed to quantum-
chemical methods [9]. Since many-body correlation ef-
fects are taken into account by a prescribed trial wave
function, VMC is substantially more accurate than com-
monly employed mean-field techniques, such as Hartree-
Fock and density functional theory [10], and permits to
treat even strongly correlated systems. However, since
the exact wave function is unknown from the outset, the
trial wave function ought to resemble it as closely as pos-
sible. Nevertheless, given that the addition of a simple
correlation function of the Jastrow form enables to re-
cover most of the correlation effects [11], VMC typically
yields sufficiently accurate results.

Here, we consider the Shadow Wave Function (SWF),
first introduced by Kalos and coworkers [12, 13], as our

trial wave function. The SWF allows to describe all pos-
sible condensed phases (gas, liquid and solid) and even
phase coexistence within the same trial wave function
[14]. Therefore, it is for instance possible to simulate
a solid without a priori knowing its crystal structure,
which instead emerges from the calculation. Moreover, it
even permits to describe inhomogeneous systems [15–17].
In addition, the SWF has further advantageous proper-
ties, such as for instance that it introduces many-body
correlations and obeys a strong similitude with the exact
ground state wave function [18].

Since fermions must obey Fermi-Dirac statistics to
comply with the Pauli exclusion principle, an antisym-
metric version of the SWF is required that changes
its sign upon interchanging any two like-spin particles.
While these extensions of the SWF to fermionic sys-
tems indeed constitute a substantial improvement, when
compared to other more conventional trial wave func-
tions, they are plagued by the occurrence of a sign prob-
lem, which limits its applicability to rather small systems
[19]. Hence, an efficient and accurate method to simulate
fermionic systems remains an open and upmost challeng-
ing problem. In this paper, we therefore study the origin
and nature of the sign problem and present multiple novel
methods to alleviate it.

The remaining of the paper is organized as follows. In
section we introduce the SWF and its antisymmetric
variant, while in the associated sign problem of the lat-
ter is described. Sections and describe two kinds of
novel approaches to reduce the sign problem, whereas in
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section all the methods presented in the previous sec-
tions are assessed in terms of their efficiency. The last
section contains the conclusions.

THE SHADOW WAVE FUNCTION

Let us begin by defining the SWF that is con-
structed by introducing auxiliary degrees of freedom
S = (s1, s2, . . . sN ) coupled to the particles coordinates,
called shadows, and integrating over all of them [12]. The
most general form of the SWF reads as

ψSWF(R) =

∫
dSΓ(R,S), (1)

where Γ(R,S) is an arbitrary wave function, while R =
(r1, r2, . . . rN ) represents all N particle coordinates.

However, the extension of the SWF to fermionic sys-
tems is non-trivial, due to the antisymmetry requirement
of the wave function to obey the Pauli exclusion princi-
ple. The simplest ansatz to achieve this, is known as the
Antisymmetric Shadow Wave Function (ASWF) [20]

ψASWF(R) ≡ Φ(R)Jp(R)

∫
dSΞ(R,S)Js(S), (2)

where Φ(R) is a Slater determinant (SD) that sat-
isfies the antisymmetry condition by changing sign
upon the exchange of any two like-spin fermions
[21]. Two-body correlations between the particles
are taken into account by a Jastrow correlation fac-
tor Jp(R) = e−

1
2

∑
i<j upp(|ri−rj |) [11] and likewise in-

teractions between the shadows are introduced via
Js(S) = e−

∑
i<j uss(|si−sj |). The kernel Ξ(R,S) =

e−
∑Np
i=1 ups(|ri−si|) connects the particles with the shad-

ows, even though it can also be interpreted as a Green’s
function. Therein, upp, uss and uss, respectively, are
denoted as two-body pseudopotentials because of their
similarity to the potential in the Boltzmann distribution.
Here, we have employed

upp(rij) =

(
b

|ri − rj |

)5

(3a)

uss(sij) = c1V (c2|si − sj |) (3b)
ups(|ri − si|) = C|ri − si|2, (3c)

where V is the potential used in the Hamiltonian, while
b, c1, c2 and C are variational parameters. While Eq. 3a
is chosen to satisfy Kato’s cusp condition, Eq. 3b is to
account for the observation that in a strongly correlated
system, the spread of delocalized quantum particles is
spatially limited. Lastly, Eq. 3c is motivated by fact that
the shadows can be thought of as the centroid of the delo-
calized quantum particles that are behaving according to
the classical Maxwell-Boltzmann distribution. In order
to preserve the translational symmetry of the wave func-
tion, which is one of the many appealing properties of the

SWF, plane wave orbitals are the natural choice to build
up Φ(R). As we have considered an unpolarized system,
we have adopted a product of two Slater determinants to
describe spin-up and spin-down atoms, respectively, i.e.
Φ(R) = Φ↑(R↑)× Φ↓(R↓).

The advantage of the ASWF with respect to conven-
tional trial wave functions is that many-body correla-
tion effects of any order are included from the outset.
In fact, even if the shadows are correlated through a
two-body function only, the convolution integral permits
even higher-order correlation effects to be taken into ac-
count. In particular at the presence of phase transitions,
where these subtle many-body correlation effects are es-
sential, the ASWF has proven to be superior to ordinary
trial wave functions [20]. However, only symmetric cor-
relation effects are taken in account, whereas three-body
and backflow correlations are not considered [20, 22–30].
Furthermore, the nodal surface is imposed a priori by a
single Slater determinant, and as such only improvable
within the flexibility of Φ(R).

Nevertheless, a more intriguing way to devise an anti-
symmetric version of the SWF is to introduce a SD as a
function of S, i.e. Φ(S). The resulting Fermionic Shadow
Wave Function (FSWF) [18, 19, 31] reads as

ψFSWF(R) = Jp(R)

∫
dSΞ(R,S)Φ(S)Js(S). (4)

In fact, given an arbitrary like-spin odd-particle per-
mutation operator P, and exploiting that Ξ(PR,S) =
Ξ(R,PS),

ψFSWF(PR) = Jp(PR)

∫
dSΞ(PR,S)Φ(S)Js(S)

= Jp(R)

∫
dSΞ(R,PS)Φ(S)Js(S)

= Jp(R)

∫
d(PS) Ξ(R,PS) (−Φ(PS))

× Js(PS)

= −ψFSWF(R). (5)

The FSWF has several advantages over the ASWF: (i) It
closer resembles the projection onto the exact fermionic
ground state, (ii) in the limits of high and low density,
the exact asymptotic nodal structure is correctly repro-
duced and (iii) backflow correlation effects are naturally
included [18].

As can be seen in Table I, the FSWF provides a
much improved variational ground state energy of liquid
3He, even though with an admitted large statistical un-
certainty. The corresponding computational details are
given in [34]. But, as we are going to explain in detail in
the next section, the FSWF entails a serious sign problem
that makes it computationally expensive to obtain reli-
able results for large systems. This system size limitation
not only restricts the applicability, but also the reliabil-
ity of the FSWF in the thermodynamic limit, due to the
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Trial wave function Energy per particle N

J-SD[27] −1.08± 0.03 K 38

JB-SD[27] −1.55± 0.04 K 38

JT-SD[27] −1.61± 0.03 K 38

JBT-SD[27] −1.91± 0.04 K 38

DMC[32] −2.299± 0.005 K 54

ASWF −1.222± 0.006 K 66

FSWF −1.8± 0.2 K 66

Exp.[33] −2.47 K ∞

Table I. The ground state energy per particle of liquid 3He
as obtained by VMC using different trial wave functions. The
Jastrow-Slater Determinant (J-SD) trial wave function is de-
fined as ψJ-SD ≡ Φ(R)Jp(R) and may be augmented by back-
flow (B) and three-body (T) correlation. The values from
Diffusion Monte Carlo (DMC) and experiment are shown for
comparison.

presence of significant finite-size effects [35]. Therefore,
it would be highly desirable to solve - or at least alleviate
- the sign problem, and to facilitate accurate simulations
employing the FSWF, though with many more particles
than presently feasible.

THE SIGN PROBLEM OF THE FSWF

We will illustrate the sign problem of the FSWF when
computing the ground state energy E, which in VMC is
estimated by

E ' 1

M

M∑
i=1

Hloc(Ri), (6)

where Hloc(Ri) = Hψ(Ri)
ψ(Ri)

is the local energy and M the
number of sampling points. To this end, the positions Ri

of the particles are sampled from the probability density
function (pdf) |ψ2(R)|, where ψ is the preassigned nor-
malized trial wave function. The required positiveness of
|ψ2(R)| is satisfied by definition.

In conjunction with the previously introduced SWF,
the energy reads as

E =

∫
dR dS1dS2 Γ(R,S1)HΓ(R,S2)∫
dR dS1dS2 Γ(R,S1)Γ(R,S2)

, (7)

where Ri, S1i and S2i should in principle be sampled
from Γ(R,S1)×Γ(R,S2). However, due to the fact that
the FSWF is evaluated using two different shadows, S1

and S2, the necessary positiveness requirement of the
sampled function is no longer fulfilled. As a consequence,
it is not possible to sample Ri, S1i, and S2i directly from
Γ(R,S1)× Γ(R,S2).

In spite of that, it is feasible to sample from |Γ(R,S1)×
Γ(R,S2)| by introducing the weights w(R,S1,S2) =
sign(Γ(R,S1)× Γ(R,S2)) and estimating the energy as

E '

∑M
i=1

wi
2

(
Hloc

1i + Hloc
2i

)
∑M
i=1 wi

, (8)

where

Hloc
1 ≡ HΓ(R,S1)

Γ(R,S1)
and Hloc

2 ≡ HΓ(R,S2)

Γ(R,S2)
.

However, due to the sign w(Ri,S1i,S2i), the sum in Eq. 8
is typically very slowly converging. This issue is partic-
ularly severe for disordered systems, such as liquid 3He
[36].

In order to evaluate the mean value of E and its unbi-
ased error bar σ we have employed the so-called blocking
technique [7, 37]. To that extent, the data set is divided
into nblock disjoint blocks (typical values for nblock are
between 4 and 50), each one with its corresponding aver-
age value Eblock

j . Hence, the average energy 〈E〉block and
the corresponding variance σ2

block can be computed as

〈E〉block =
1

nblock

nblock∑
j=1

Eblock
j and (9a)

σ2
block =

1

nblock − 1

nblock∑
j=1

(
Eblock
j − 〈E〉block

)2
.(9b)

The straightforward evaluation of the standard deviation
σ provides only a biased estimate that may severely un-
derestimate the true error bar due to the presence of
serial correlation between successive data points. Nev-
ertheless, given that the length of each block M

nblock
is

large enough, serial correlation between the block aver-
ages Eblock

j becomes arbitrarily small with the result that
σ can after all be correctly estimated. In fact, when plot-
ting σblock as a function of nblock and assuming that M
is sufficiently large, a plateau that corresponds to the
correct estimation of the unbiased error bar is emerging.
We remark that, mathematically speaking, 〈E〉block may
vary for different values of nblock, but as long as M is
large enough, each value Eblock

j is very close to E, so
that eventually 〈E〉block is independent from the choice
of nblock.

The block average-energy 〈E〉block and the correspond-
ing standard deviation σblock as a function of nblock from
a FSWF simulation of 3He are shown in Fig. 1. However,
the expected plateau of σblock and the estimated energy
〈E〉block can only be observed when the lengths of the in-
dividual blocks is rather large. As a consequence, the sta-
tistical uncertainty of the mean value 〈E〉block = 1.8(2) K
is relatively large, which is a clear manifestation of the
sign problem of the FSWF. Nevertheless, it has to be said
that the present example represents a worst-case scenario
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Figure 1. The block average-energy 〈E〉block and the corre-
sponding error bar σblock from a FSWF simulation of 3He
with N = 66 atoms and M = 128 · 108 sampling points as a
function of nblock.

for the FWSF and that the sign problem is in this case
particularly severe. In fact, if the parameter C of Eq. 3c
is large, S1 and S2 are confined around R, which causes
that Φ(S1) as well as Φ(S2) have actually the same sign.

In any case, it is important to emphasize that the sign
problem of the FSWF differs from the infamous fermion
sign problem of projection methods such as Green’s Func-
tion [38] or Diffusion Monte Carlo [39], which is due to the
intrinsic difficulty to sample from a positive pdf gener-
ated by a squared antisymmetric function. Nevertheless,
contrary to the latter, there is no categorical reason that
prohibits to solve the former and to efficiently evaluate
a largely fluctuating integral. Nevertheless, the conver-
gence is drastically reduced, so that in many cases, such
as the one we have just illustrated, it is practically im-
possible to obtain reliable results for any reasonable large
number of particles. Apart from that, we would like to

point out that an antisymmetric component in the inte-
gral always entails convergence problems using MC tech-
niques, so that the present sign problem can be viewed
as a particular case of a more general class of integrals.

ANTITHETIC VARIATES

In order to accelerate the convergence, one can exam-
ine the behavior of the integrand, and sum over those
contributions that immediately leads to a better approx-
imation of the average [40]. The following example is
intended to clarify this concept.

Suppose that we are interested in numerically evaluat-
ing the integral

I =

∫ ∞
0

dx ae−ax︸ ︷︷ ︸
f(x)

sin(πx)︸ ︷︷ ︸
g(x)

=
πa

π2 + a2
. (10)

A MC procedure is to sample xk from the pdf f(xk) and
form the average of g(xk). The variance of this estimator
reads as

σ2 =

∫
f(x)g2(x)dx− I2

=
π2(2π4 + a4)

(4π2 + a2)(π2 + a2)2
, (11)

whereas the quotient

I2

σ2
=
a2(4π2 + a2)

(2π4 + a4)
(12)

is a measure of the “signal-to-noise” ratio and approaches

2
a2

π2
+O

(
a4

π4

)
as a→ 0. (13)

That is to say that the procedures becomes very inef-
ficient if a small. This is a simple example of a “sign
problem”.

Nevertheless, the problem can be completely elimi-
nated by various forms of correlated estimates, e.g. by
correlating a negative lobe with the previous positive
lobe. The most effective correlation (and easiest to ana-
lyze) is to sample x only on [0, 1], but include all x+ n,
where n = 0 . . .∞, with the factor (−1)ne−na. Since

∞∑
n=0

(−1)ne−na =
ea

1 + ea
, (14)

we can recast the integral as

I =

∫ 1

0

dx

{
ae−ax

1− e−a

}
︸ ︷︷ ︸

fA(x)

{
ea − 1

ea + 1

}
sin(πx)︸ ︷︷ ︸

gA(x)

=
πa

π2 + a2
, (15)
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where again fA(x) and gA(x) are the modified functions
to sample and average over, respectively. The associated
variance reads as

σ2
A =

∫ 1

0

{
ae−ax

1− e−a

}[{
ea − 1

ea + 1

}
sin(πx)

]2

dx− I2

=
2π2 tanh2

(
a
2

)
a2 + 4π2

− π2a2

(a2 + π2)
2 (16)

and the signal-to-noise ratio

lim
a→0

I2

σ2
A

=
8

π2 − 8
+

2(2π2 − 21)

3(π2 − 8)2
a2 +O(a4) (17)

is now finite, at variance to Eq. 13.
In the case of the FSWF, the underlying idea is that

the integral ∫
dSΞ(R,S)Φ(S)Js(S) (18)

has both positive and negative contributions, and that
summing pairs of positive and negative values speeds up
the convergence. To that extent two promising geometri-
cal transformations that take advantage of the antithetic
contributions are proposed in the following: permuta-
tions and reflections.

Permutations

In all of the presented methods belonging to this cat-
egory, pair permutations of like-spin shadows are em-
ployed to induce the desired antithetic contributions.

Gaussian Determinant

The first approach is to directly sum over all permuted
terms, which eventually translates into a determinant
consisting of Gaussians. To illustrate this, we sum over
all pair permutations P(2)

ij , which leads to

ψFSWF(R) = Jp(R)

∫
dS
[
Ξ(R,S) (19)

−
N−1∑
i=1

N∑
j=i+1

Ξ(R,P(2)
ij S)

]
Φ(S)Js(S),

as well as over all 3-term permutations P(3)
ijk, i.e.

ψFSWF(R) = Jp(R)

∫
dS
[
Ξ(R,S) (20)

+

N−2∑
i=1

N−1∑
j=i+1

N∑
k=j+1

Ξ(R,P(3)
ijkS)

]
Φ(S)Js(S).

This is to say that in general an even number of permu-
tations results in a change of sign, while an odd number
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Figure 2. (Color online) Estimated error with and without
the adoption of the GD approach, for different values of C.
Results were obtained for N = 38 and M = 64 · 107.

does not. It is now clear that the sum over all the possi-
ble permutations can be expressed in a compact way as
a matrix determinant det

(
e−C(rα−sβ)2

)
, where α and β

denotes the matrix rows and columns, respectively. As a
consequence,

ψFSWF(R) = Jp(R)

∫
dSΦ(R,S)Φ(S)Js(S) (21)

that we refer to as Gaussian determinant (GD) Φ(R,S).
This representation is particularly convenient, because,
similar to the Slater determinant, it permits the sum-
mation over all N ! terms with a computational cost of
O(N3), where N is the number of atoms [21].

In other words, in this first scheme, the Gaussian prod-
uct Ξ(R,S) is replaced by the GD Φ(R,S). The corre-
sponding results are illustrated in Fig. 2. Due to the fact
that the parameter C of Eq. 3c is related to the mutual
confinement of the particles and shadows, it is large in the
crystalline phase, while for a liquid it is relatively small.
As expected, the GD method reduces the variance, in
particular for small values of C.

However, a potential limitation of the present scheme
may arise due to sampling a sum of permuted terms,
which means that only one of them is sampled efficiently,
regardless of all the others.

Explicit pair permutation term: Duet and Quartet

Therefore, an alternative approach is to add the con-
tributions, which are due to a single pair permutation
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Pab, to the original integrand, i.e.

ψFSWF(R) =

∫
dS (Γ(R,S) + Γ(R,PabS))

= Jp(R)

∫
dS Js(S)Φ(S)

× (Ξ(R,S)− Ξ(R,PabS)) . (22)

Compared with the GD method, the latter has the advan-
tage of allowing to sample from a product of permuted
terms, instead of from a sum:

ρ(R,S1,S2) =
√

Γ(R,S1)Γ(R,PabS1)

×
√

Γ(R,S2)Γ(R,PabS2) (23)

At variance to the GD, the original as well as the per-
muted configuration are given equal importance in the
sampling function, so that eventually their contributions
will be of the same order, which results in a more ef-
fective mutual annihilation. The permuted term can ei-
ther be added to Γ(R,S1) alone or to both Γ(R,S1) and
Γ(R,S2), respectively. Due to the fact that this results
in two or four terms in the expression for the energy,
we will refer to these schemes as the Duet and Quartet
techniques, respectively.

To assess the effectiveness of this concept, we have per-
formed a calculation for N = 14 and M = 16 · 106 using
the Duet technique. However, at variance to the naive ap-
proach, the fluctuations were so high that it was difficult
to estimate the error. Therefore, the sampling function
of Eq. 23 seems to be not optimal for integrating either
Γ(R,S) or Γ(R,PabS).

This is to say that a single permutation does not pro-
vide an effective antithetic contribution, as otherwise the
product of Γ with its permuted term would exhibit its
maximum in the same region where the function itself
has its maximum, so that the sampling problem causing
the ineffectiveness of the present schemewould not have
emerged in the first place.

Permutation move

As we have just seen, even if a permutation implies a
sign change, it is not necessarily resulting in an optimal
antithetic contribution, which is due to the presence of
the kernel that breaks the symmetry.

We can therefore infer that after performing a permu-
tation, a specific translation needs to be added in order
to obtain an effective antithetic contribution leading to
mutual cancelation. Even though this translation is ev-
idently unknown, it is yet possible to allow a walker to
diffuse after a permutation, so that it can spontaneously
move to the correct antithetic point. To implement this
idea we need to consider permutations as proposed moves

for the walkers in the context of the M(RT)2 algorithm
[41]. To that extend, it is of upmost importance to take
all possible pair permutations into account, and to select
the most favorable one in order to maximize the accep-
tance rate.

Specifically, given a certain R and S, we evaluate
Ξ(R,PijS) for all the possible i and j and propose a
permutation (a, b) according to the transition probabil-
ity

T (S→ PabS) =
Ξ(R,Pab)∑

(i,j) Ξ(R,Pij)
. (24)

Thereafter, the acceptance probability has to be modified
and reads as

A(S→ PabS) =
|Γ(R,PabS)|T (PabS→ S)

|Γ(R,S)|T (S→ PabS)
. (25)

The permutation moves are proposed always after the
evaluation of the estimator, in order to allow the walkers
to diffuse before the next evaluation of Hloc(R).

Following this procedure for N = 14 and M = 16 ·106,
we obtained E = −1.997(11) K, which has to be com-
pared to E = −1.986(18) K using the naive algorithm.
These values differ from those of Table I for N = 66 due
to the presence of single-particle finite-size effects. The
acceptance rate for the permutation moves was roughly
2.5%. This implies that it is actually possible to employ
permutation moves, since the acceptance rate is signif-
icant, and that they indeed systematically reduce the
variance. But, although our novel permutation moves
lower the variance, this is largely due to the smaller cor-
relation between successive steps, and thus cannot be a
definitive solution to the sign problem, for which negative
correlation ought to be introduced.

Reflections

In general, the integral over S is centered around R
by the Gaussian term. This means that if the parameter
C is small, there is a significant delocalization, and S is
more likely to cross the nodal surface defined by Φ(S).
However, if we additionally consider the contributions
that are arising from a reflected shadow S′ = 2R − S,
we will possibly obtain an opposite contribution. The
underlying notion of this approach is illustrated in Fig. 3.

To take advantage of this idea, we sample from the
usual pdf

ρ(R,S1,S2) = |Γ(R,S1)Γ(R,S2)|, (26)

but sum up the contributions that are originating from
the reflected shadows in the energy estimator
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Thursday, October 10, 2013Figure 3. (Color online) Illustration of a reflected shadow S′.
Since R is close to the nodal surface defined by the SD, S and
S′ are in different nodal pockets.

E =

1
2

∑M
i=1

{[
(Γ(R,S1)+Γ(R,S′

1))H(Γ(R,S2)+Γ(R,S′
2))

|Γ(R,S1)Γ(R,S2)| +
(Γ(R,S2)+Γ(R,S′

2))H(Γ(R,S1)+Γ(R,S′
1))

|Γ(R,S1)Γ(R,S2)|

]}
i∑M

i=1

{
(Γ(R,S1)+Γ(R,S′

1))(Γ(R,S2)+Γ(R,S′
2))

|Γ(R,S1)Γ(R,S2)|

}
i

. (27)

But, in a realistic calculation Γ(R,S′) turns out to be
considerably smaller than Γ(R,S), which implies that its
contribution is essentially negligible. Specifically, using
14 particles, the estimated energy and error, with and
without the adoption of the GD method, improved by
less a factor of 10−4. This marginal enhancement imme-
diately suggests that our initial suggestion to generate
antithetic contributions by employing reflected shadows
needs to be reconsidered. Finally, we remark that the
presented reflection method suffers from an infinite vari-
ance problem, which can be effectively eliminated by re-
moving the zero values from the sampling function.

Constrained Domains

Eventually, it is possible to use symmetry arguments to
constrain the domain of the integrals over R, S1 and S2,
which results in a significant reduction of the integration
space. First of all, due to the antisymmetry requirement
of the FSWF, R is constrained to the positive (or nega-
tive) domain of the corresponding Φ(R). No particular
form is required for Φ(R): the present method is correct
independent of its choice. The second symmetry argu-
ment is only valid in conjunction with the GD method.
In fact, if we sum over all the permutations of S, it is
possible to integrate S1 and S2 only in the positive (or
negative) domains, i.e. where Φ(S1) and Φ(S2) are pos-
itive (or negative). We stress that these restrictions do
not imply that Γ must always be positive (or negative),
as the Gaussian determinant permits a change of sign.

A simulation using the above described constrained do-
mains method, with N = 38 and M = 60 · 106, yielded
E = −2.5(10) K, whereby 5% and 0.5% of the moves
for R and S, respectively, were rejected due to the con-
straints. Comparing this with E = −1.9(1) K using

the bare GD technique without any restrictions, it is
clear that no reduction of the sign fluctuations has been
achieved. However, the fact that error increases by a
factor of 10 is surprising, but might be explained to be
most likely a consequence that when integrating on a re-
strained domain the efficiency decreases near its borders.

THE GROUPING TECHNIQUE AND THE
MARGINAL DISTRIBUTION

A completely different approach can be devised by an-
alyzing the expression for the energy with a special at-
tention on the integrals over S1 and S2, i.e.

E =

∫
dR

(∫
dS1 Γ(R,S1)

) (∫
dS2 HΓ(R,S2)

)
∫
dR

(∫
dS1 Γ(R,S1)

)
︸ ︷︷ ︸

Ω1(R)

(∫
dS2 Γ(R,S2)

)
︸ ︷︷ ︸

Ω2(R)

. (28)

We point out that Ω1(R) = Ω2(R) = ψFSWF(R). From
this it follows that knowing ψFSWF(R), i.e. knowing the
analytical solution of the integral over S, the sign prob-
lem ceases to exist, since Ω1(R)Ω2(R) = ψ2

FSWF(R) ≥ 0.
The fact that ψFSWF(R) is apparently unknown has the
following two major consequences. First, Ω1(R) and
Ω2(R) needs to be approximated by sampling Γ(R,S1)
and Γ(R,S2), respectively. Due to the fact that the es-
timates may have have different signs, the local energy
is weighted by an extremely noisy function. Second, R
is not efficiently sampled from its marginal distribution
ψ2

FSWF(R). The following example is intended to illus-
trate this subtle point. Suppose that R0 is on the nodal
surface, i.e. ψFSWF(R0) = 0. Even though this configura-
tion should never be sampled, since its probability is iden-
tical to zero by its very definition, it will, nevertheless, be
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Ms Efficiency
1 0.63

10 0.36

100 0.36

1000 0.23

Table II. Efficiency in units of 1/(sec×K2) of the improved
grouping technique in conjunction with the GD approach for
N = 14 as a function of the block size Ms. The efficiency is
defined as 1/(simulation time× variance).

sampled with a finite probability of Γ(R0,S1)Γ(R0,S2),
which is a manifestation that that integrand and the in-
tegral may greatly differ from each other. Moreover, if
ψFSWF ' 0, Γ(R,S1) and Γ(R,S2) are contributing only
with noise.

The first problem has been previously addressed in a
study of the vacancy formation energy in solid 3He using
the grouping technique that is based on the aforemen-
tioned blocking scheme [17]. We have modified this ap-
proach in our improved grouping technique by sampling
many successive shadows in order to obtain a rough esti-
mate of Ω1(R) and Ω2(R). The present algorithm then
reads as:

1. Start from a configuration R(0), S1(0,1), as well as
S2(0,1) and set i = 1

2. Sample R(i) from the pdf

ρ(R) = |Γ(R,S1(i−1,1))Γ(R,S2(i−1,1))|

3. Sample Ms points
(
S1(i,1), . . . ,S1(i,Ms)

)
from

ρ(S1) = |Γ(R(i),S1)Γ(R(i),S2(0,1))|

and analog
(
S2(i,1), . . . ,S2(i,Ms)

)
from the pdf

ρ(S2) = |Γ(R(i),S1(i,Ms))Γ(R(i),S2)|

4. Evaluate Ω1(R(i)) =
∑Ms

j=1

Γ(R(i),S1(i,j))

|Γ(R(i),S1(i,j))|

and Ω2(Ri) =
∑Ms

j=1

Γ(Ri,S2(i,j))

|Γ(Ri,S2(i,j))|

5. Evaluate Hloc
1 (Ri) =

∑Ms

j=1

HΓ(R(i),S1(i,j))

|Γ(R(i),S1(i,j))|

and Hloc
2 (Ri) =

∑Ms

j=1

HΓ(R(i),S2(i,j))

|Γ(R(i),S2(i,j))|

6. Set i = i+ 1

7. Repeat the steps 2 to 6 M times

8. Compute E =
1
2

∑M
i=1(Ω1(Ri)Hloc

2 (Ri)+Ω2(Ri)Hloc
1 (Ri))∑M

i=1 Ω1(Ri)Ω2(Ri)

We have repeated the calculation using the blocking tech-
nique to ensure that successively sampled R values were

actually decorrelated and thus finding the optimal num-
ber of diffusive steps Mdiff. However, we found that even
though the improved grouping technique indeed stabi-
lizes the sign of Ω1(R)Ω2(R), the computational time
required to do so is not entirely compensated by the re-
duced variance. This can be seen in Table II, where the
efficiency that is defined as 1/(simulation time×variance)
is reported for different values of Ms. Nevertheless, al-
though this scheme alone does not improve the efficiency
for the liquid phase, it potentially does for the solid state,
where the sign problem is less severe.

In order to make further progress, we will focus on
the second problem, whose solution may also solve the
first one en passant. To this end we are going to propose
two different methods: In the first approach the marginal
distribution is approximated analytically, whereas in the
second scheme it is estimated numerically instead.

J-SD approximation

In our first approach, the J-SD trial wave function is
employed as an approximation for ψFSWF(R) to sample
R, which is why we call this technique J-SD approxima-
tion. However, in this way R would be sampled inde-
pendent from its shadows, which would require to relax
S1 and S2 whenever R changes. To avoid this, we have
decided to use the same sampling function for R and S.
At variance to the just described algorithm based on the
blocking technique, Γ(R,S) is replaced by Γ′(R,S) to-
gether with appropriate weights in the energy estimator.
Specifically, the following forms are proposed here, which
all incorporates Φ(R) into the sampling function for R:

• Γ′1(R,S) = Γ(R,S)
(
Φ(R)2 + Λ2

)1/4
• Γ′2(R,S) = Γ(R,S)

(
Φ(R)2 + Λ2

)
• Γ′3(R,S) = Γ(R,S)

(
Φ(R)2 + Λ2

)1/2
• Γ′4(R,S) = Γ(R,S)

(
Φ(R)4 + Λ4

)1/4
To prevent the infinite variance problem, we have intro-
duced an auxiliary factor Λ, whose optimal value is ex-
pected to be of the same order as Φ(R).

From Fig. 4 we can conclude that by incorporating
Φ(R) into the sampling function it is possible to reduce
the variance by up to a factor of 3/2. Among the various
sampling functions we proposed, Γ′4 appears to be the
most effective, which demonstrates that, in the absence
of the extra term, R is not efficiently sampled from its
marginal distribution.

S-averaged marginal distribution

An alternative possibility that we have investigated
here is to employ a numeric estimate of Ω1 and Ω2
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Figure 4. (Color online) Comparison of the error for N = 38
with respect to Λ(R) as obtained using the GD approach
together with the modified grouping technique in conjunction
with the J-SD approximation, i.e. Γ′(R,S) instead of Γ(R,S).
In the upper panel, the blocking technique with Ms = 100
was used and averaged over M = 96 · 104 points. Instead,
in the lower panel M = 48 · 106, though without utilizing
the blocking technique. The expectation value 〈Φ(R)〉 was
evaluated by sampling from the pdf Γ(R,S1)Γ(R,S2).

as the sampling function. To that extent we assume
2NS shadows S1,1,S1,2, . . . ,S1,NS ,S2,1,S2,2, . . . ,S2,NS ,
and replace

∫
dS1 Γ(R,S1) with

NS∑
i=1

∫
dS1,i Γ(R,S1,i), (29a)

NS Error

1 0.024

2 0.025

4 0.034

10 0.029

Table III. The error forN = 14 andM = 8·106 as obtained by
the S-averaged marginal distribution approach in conjunction
with the GD method with respect to the number of shadows
2NS .

100 350 600 850 1100 1350
Number of steps

1x10-140

1x10-110

1x10-80

1x10-50

1x10-20

1x1010

|Γ
₁|

S₁ ₁
S₁ ₂
S₁ ₃
S₁ ₄

Figure 5. (Color online) Trend of the various Γ correspond-
ing to S1,1, . . . ,S1,4, during the progression of a simulation.
The line associated with S1,3 is interrupted when, because
of the double precision float limitations, the value of Γ is so
small that it is numerically identical to zero and is no longer
visualizable on a logarithmic scale.

and∫
dS2 Γ(R,S2) with

NS∑
i=1

∫
dS2,i Γ(R,S2,i). (29b)

From this it follows that our sampling function will take
the form

ρ(R,S1,1, . . . ,S1,NS ,S2,1, . . . ,S2,NS ) =∣∣∣∣∣
(
NS∑
i=1

Γ(R,S1,i)

)(
NS∑
i=1

Γ(R,S2,i)

)∣∣∣∣∣ . (30)

In this way, R is sampled from a more accurate approxi-
mation of Ω1(R)Ω2(R) than in the J-SD approximation.

The results, which are shown in Table III, imply that
the introduction of additional shadows does not have any
statistical significant influence on the variance. From
Fig 5 it is clear why assuming multiple shadows is not
effective: During the sampling only one of the S1,i and
one of the S2,i become significant, whereas all the others
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Figure 6. Fitting procedure to estimate the efficiency more
accurately. Here we present the data obtained with the naive
method, simulating 38 3He atoms. Each estimated error was
calculated averaging over the eight independent simulations.
The fitted function f(x) = A/

√
M is represented with a dot-

ted line. The chi-squared test was successfully fulfilled.

tend to zero. As a result, the algorithm returns to its
original form, which is hence an inherent consequence of
sampling from a sum of Γ(R,S1,i) and Γ(R,S2,i), respec-
tively.

DISCUSSION

The reduced variance of the presented methods, specif-
ically the GD and the J-SD approaches, has to be re-
lated to the required computational effort. Thus, for
the purpose of assessing the various techniques presented
here, we have summarized their corresponding efficien-
cies in Table IV. All the presented results were obtained
by means of the M(RT)2 algorithm [41], where single-
particle or single-shadow moves were proposed at ran-
dom without any additional drift term. In this process,
the step lengths were adjusted to yield an acceptance ra-
tio of ∼ 50%. Due to the fact that the Duet, Quartet,
and R-S domain constraint methods are apparently in-
efficient, no error bars for the efficiency were calculated.
On the contrary, the J-SD approximation somewhat re-
duces the variance, though this is largely eroded by the
additional computational cost. As a consequence, the J-
SD method is only marginally more efficient. The GD
technique, however, does indeed exhibit a sizable vari-
ance reduction. In spite of its increased computational
cost to evaluate the Gaussian determinants, it is yet very

competitive with the original approach, though generally
not significantly more efficient either. Nevertheless, for
C < 0.5 Å−2 the GD method is clearly superior.

Eventually, the combination of the GD and J-SD ap-
proximation methods turned out to be the best among

Used
technique

Energy
[K]

Efficiency
[sec−1K−2]

Naive −1.949± 0.016 30± 3

Gaussian determinant −1.943± 0.014 22± 3

Duet −2.7± 4.3 ≈ 0

Quartet −2.2± 1.6 ≈ 0

Permutation moves −2.012± 0.016 25± 3

Reflections† −1.945± 0.016 15± 2

R-S domain constraint† −1.974± 0.028 ≈ 5

R domain constraint† −1.975± 0.017 24± 3

J-SD approximation −1.953± 0.015 31± 3

J-SD approximation† −1.949± 0.017 35± 7

Table IV. Average energy, associated error and efficiency of
all the presented methods. In each case, we have performed
eight independent simulations with N = 38 and M = 12 ·108.
For the J-SD approximation method we set Ms = 1. We did
not estimate the efficiency error for certain methods, because
they clearly proved unable to provide an improvement. The
symbol † denotes that the technique was used in conjunction
with the GD method. The efficiency of the Duet and Quartet
approaches was extremely low (minor than 10−3) and there-
fore approximated to be zero. The R-S domain constraint
scheme refers to the algorithm described above, whereas for
the R domain constraint technique, we limited the constraint
only to R. For the sake of readability, we multiplied the effi-
ciency by an arbitrary value of 100.

the various technique we have devised here. For this rea-
son we have reviewed the accuracy of our results, in order
to exclude the possibility that our outcomes were affected
by an ergodicity problem. To that extend we have per-
formed several additional calculations for different values
of M . Then we have fitted the obtained errors to the
function f(x) = A/

√
M , which is the expected asymp-

totic behavior, as shown in Fig. 6. The fact that the
chi-squared test was passed successfully indicates that
M was large enough to ensure ergodicity. In addition,
the eventual parameter A can be used as a more accu-
rate estimate for the efficiency instead of the variance.
The final results are reported in Table V.

CONCLUSIONS

To summarize, beside revisiting the FSWF and demon-
strating the origin and implications of the correspond-

ing sign problem, we have proposed two families of novel
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Technique N=16 - Efficiency N=38 - Efficiency N=54 - Efficiency

Naive 1375± 50 3.03± 0.06 0.0210± 0.0005

Gaussian Determinant 1220± 30 2.54± 0.14 0.0216± 0.0032

J-SD approximation* - 3.23± 0.22 -

Table V. Accurate efficiency estimates of the GD and J-SD techniques, for different number of atoms N . We decided to pass
over evaluating the efficiency of the "J-SD approximation*" method for N > 38, since there are no reason to expect significantly
different results.

methods to solve it: Antithetic variates and an improved
marginal distribution to sample from. Several specific
implementations of these ideas were presented. Even
though the GD and J-SD methods are indeed rather ef-
fective in reducing the variance, the gain in efficiency is
limited due to increased computational cost associated
with them.

We thus conclude that although the presented tech-
niques alleviate the sign problem and allow for accurate
accurate calculations of fermionic systems up to 66 parti-
cles, at least when using state of the art supercomputers,
a general solution of the sign problem is still outstanding.
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