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Abstract - The gravity-driven instability of a thin liquid film located underneath

a soft solid material is considered. The equations and boundary conditions governing

the solid deformation are systematically converted from a Lagrangian representation

to an Eulerian representation, which is the natural framework for describing the liquid

motion. This systematic conversion reveals that the continuity-of-velocity boundary

condition at the liquid-solid interface is more complicated than has previously been

assumed, even in the small-strain limit. We then make clear the conditions under

which the commonly used simplified version of this boundary condition is valid. The

small-strain approximation, lubrication theory, and linear stability analysis are ap-

plied to derive an expression for the growth rate of small-amplitude perturbations.

Asymptotic analysis reveals that the coupling between the liquid and solid manifests

itself as a lower effective liquid-air interfacial tension that leads to larger instability

growth rates. Although this suggests that it is more difficult to maintain a stable

liquid coating underneath a soft solid, the effect is expected to be weak for cases of

practical interest.
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1 Introduction

One very challenging class of problems in interfacial fluid mechanics concerns the flow

of liquids near deformable solid boundaries. In addition to the strong nonlinearity

introduced by the presence of a deformable interface, care must be taken to properly

couple the motion of the liquid—typically described from an Eulerian perspective—

with that of the solid—typically described from a Lagrangian perspective.

The present paper has two objectives. The first is to present a systematic deriva-

tion of the governing equations and boundary conditions that describe the liquid-solid

interface. In doing so, we will begin with a Lagrangian description of the solid motion

and carefully convert it to an Eulerian description. We will show that even when the

displacement gradients are small (the small-strain limit), the continuity-of-velocity

boundary condition at the liquid-solid interface is more complicated than has previ-

ously been assumed. Our systematic conversion allows us to make clear the conditions

under which the commonly used simplified version of this boundary condition is valid.

The second objective of this paper is to study the gravity-driven instability of

a thin liquid film underneath a deformable, or soft, solid layer. Although the case

where the solid is rigid has been well studied [1], the influence of solid deformability

appears not to have been worked out and is of fundamental interest. This problem is

also of practical interest since the liquid film may represent a coating and one would

like to know whether solid deformability enhances or delays its instability.

In §2 we derive the governing equations and boundary conditions with a focus on

the small-strain limit, and obtain further simplifications through application of the

lubrication approximation. A linear stability analysis is described in §3, with results

presented in §4. Finally, conclusions are given in §5.
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2 Governing Equations

We consider a system consisting of an incompressible Newtonian liquid layer lying

underneath an incompressible, impermeable, and deformable viscoelastic solid (Fig.

1), which we refer to as a gel. The gel is fixed to a rigid substrate that is horizontal

and the liquid layer is in contact with passive air. We focus on two-dimensional

disturbances with respect to x and z, where x denotes the horizontal coordinate

and z denotes the coordinate normal to the rigid substrate; the system is assumed

invariant in the y-direction, which is oriented out of the plane of Fig. 1. The interfaces

are initially flat such that the the liquid is in the region 0 ≤ z ≤ R, and the gel is in

the region −HR ≤ z ≤ 0, where H is a constant.

Gel

Liquid

Air

x

z = R

z = 0

z = -HR

Gravity

z

Figure 1: Coordinate system for liquid film lying underneath a deformable solid.

2.1 Liquid Motion

An Eulerian perspective is used to describe the motion of the liquid. The liquid

motion is thus governed by:

ρℓ
(

∂vℓ

∂t
+ vℓ · ∇vℓ

)

= ∇ ·Tℓ + ρℓgk, (1)

∇ · vℓ = 0, (2)

where ρℓ is the density of the liquid, vℓ is the velocity vector of the liquid, Tℓ is the

stress tensor of the liquid, and g is the gravitational acceleration. The operator ∇ =

i ∂/∂x+ k ∂/∂z, where i and k denote the unit vectors in the x− and z−directions,
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respectively. The liquid is modeled as Newtonian so the total stress tensor is given

by:

Tℓ = −pℓI+ ηℓ
(

∇vℓ +
(

∇vℓ
)T
)

, (3)

where the pressure is denoted by pℓ, I is the identity tensor, ηℓ is the liquid viscosity,

and the superscript T denotes transpose. At the liquid-air interface z = f ℓ(x, t), we

impose a zero-shear-stress condition and set the normal-stress difference across the

interface equal to the surface tension, denoted by σa, times the mean curvature of

the interface. In addition, the kinematic condition is applied at this interface.

2.2 Gel Motion

The stress and strain in a solid are most naturally described from a Lagrangian

perspective, as the strain invoked is determined via reference to the undeformed

locations in the body. However, the motion of the liquid is more naturally described

in Eulerian form, where the motion of arbitrary material bodies of finite volume

can be tracked in time, and the formalism of continuum mechanics can be applied

to generate differential field equations. In addition, the gel and liquid motions are

intimately coupled. In what follows, we present general governing equations for the gel

from an Eulerian perspective. The stress in the gel is indeed described in Lagrangian

form, but then is carefully mapped back to the Eulerian perspective so it can be

inserted into the Eulerian equations of motion.

From an Eulerian perspective, the motion of the gel is governed by statements of

momentum and mass conservation:

ρs
(

∂vs

∂t
+ vs · ∇vs

)

= ∇ ·Ts + ρsgk (4)

∇ · vs = 0 (5)

where ρs, vs, and Ts are, respectively, the density, velocity vector, and stress tensor

of the gel. For simplicity, we adopt the approach of much prior literature and model

the gel as a Kelvin-Voigt material. In the Kelvin-Voigt model, the motion of the gel

is represented by a viscous damper and purely elastic spring connected in parallel.
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Although here we focus on the small-strain limit, we note that accounting for the

effect of finite strains in the gel requires the use of a nonlinear constitutive model

[2, 3]. Before considering the expression for Ts, we review mass conservation from a

Lagrangian perspective; this is necessary to carefully establish conditions under which

the approximations used in the analysis to follow are valid.

The dynamics of the gel are characterized by the Lagrangian displacement field,

the measurement of the deviation of the gel from its unstressed state. The reference

configuration has independent spatial variables (X,Z) to characterize the material

particles in the reference (i.e., unstressed) frame. In the deformed state, the (x, z)

spatial location of the material particle (X,Z) in the reference configuration is given

by:

x = X + Ux(X,Z, t) and z = Z + Uz(X,Z, t), (6)

where Ux and Uz are the Lagrangian displacements in the x− and z−directions,

respectively.

In the limit of small strains, the incompressibility of the gel is expressed as

∂Ux

∂X
+

∂Uz

∂Z
= 0. (7)

To see why, we consider an initially rectangular gel element in the XZ−plane with

sides ∆X and ∆Z aligned with and parallel to the X− and Z−axes, respectively.

The area of this element is thus ∆X∆Z. This rectangle is deformed in the xz−plane

as shown in Fig. 2 and has vertices given by:

P1 = (X + Ux(X,Z, t), Z + Uz(X,Z, t)),

P2 = (X + Ux(X,Z +∆Z, t), Z +∆Z + Uz(X,Z +∆Z, t)),

P3 = (X +∆X + Ux(X +∆X,Z +∆Z, t), Z +∆Z + Uz(X +∆X,Z +∆Z, t)),

P4 = (X +∆X + Ux(X +∆X,Z, t), Z + Uz(X +∆X,Z, t)).

The area of the stretched gel element is given by the cross product |P1P2 × P1P4|.

If we ignore quadratic terms in the Taylor expansions as ∆X and ∆Z approach zero,

then the vectors P1P2 and P1P4 are given by:

P1P2 =

(

∆Z
∂Ux

∂Z
(X,Z, t),∆Z +∆Z

∂Uz

∂Z
(X,Z, t)

)

,

P1P4 =

(

∆X +∆X
∂Ux

∂Z
(X,Z, t),∆X

∂Uz

∂X
(X,Z, t)

)

.
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Thus, the area of the stretched gel element is
∣

∣

∣

∣

∂Ux

∂Z

∂Uz

∂X
−

(

1 +
∂Uz

∂Z

)(

1 +
∂Ux

∂X

)
∣

∣

∣

∣

∆X∆Z. (8)

For the volume to be conserved, i.e., the area remains as ∆X∆Z, we must have

∂Uz

∂Z
+

∂Ux

∂X
+

∂Uz

∂Z

∂Ux

∂X
−

∂Ux

∂Z

∂Uz

∂X
= 0. (9)

z

x

P3

P4
P1

P2

Figure 2: Stretched gel element in the xz-plane.

In this work, we will apply the small-strain approximation, which requires that

the displacement gradients be small compared to unity, i.e.,

∂Ux

∂X
<< 1,

∂Ux

∂Z
<< 1,

∂Uz

∂X
<< 1, and

∂Uz

∂Z
<< 1. (10)

This approximation allows products of displacement gradients to be dropped from

(9) and leads to the incompressibility condition stated in (7).

The strain, or measure of deformation in the gel, is given by spatial derivatives

of the displacement fields. The components of the resulting Lagrangian infinitesimal-

strain tensor L are given by:

Lxx =
∂Ux

∂X
, Lxz = Lzx =

1

2

(

∂Ux

∂Z
+

∂Uz

∂X

)

, and Lzz =
∂Uz

∂Z
. (11)

To characterize the purely elastic behavior, we use Hooke’s law for an isotropic

medium. For an incompressible solid subject to (7), the elastic stress TE is

TE = 2EL, (12)
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where E is the shear modulus.

The velocity field in the gel is the time derivative of the position (6):

dx

dt
=

∂Ux

∂t
and

dz

dt
=

∂Uz

∂t
, (13)

since X and Z are independent of time. Therefore, the rate-of-strain tensor is given

by ∂L/∂t and the viscous stress TV is characterized by:

TV = 2ηs
∂L

∂t
, (14)

where ηs is the viscosity of the gel. The total stress tensor in the gel, in accordance

with the assumed Kelvin-Voigt model, is

Ts = −P sI+TV +TE, (15)

where P s denotes the pressure in the gel, and is the desired stress tensor to be used in

conjunction with (4). The constitutive law is linear from the Lagrangian perspective.

A complication in using (4) is that the total stress tensor, Ts, is expressed in

Lagrangian coordinates X and Z, and this needs to be converted to Eulerian coordi-

nates x and z to be used. To do so, we introduce the Eulerian displacements ux and

uz satisfying the equations

x = X + ux(x, z, t) and z = Z + uz(x, z, t),

as well as an Eulerian pressure ps. When (X,Z, t) and (x, z, t) correspond, in the

sense that at time t the material particle (X,Z) is at physical location (x, z), we have

Ux(X,Z, t) = ux(x, z, t), Uz(X,Z, t) = uz(x, z, t) and P s(X,Z, t) = ps(x, z, t).

More formally, we have by definition:

Ux(X,Z, t) = ux(X + Ux(X,Z, t), Z + Uz(X,Z, t), t),

Uz(X,Z, t) = uz(X + Ux(X,Z, t), Z + Uz(X,Z, t), t),

P s(X,Z, t) = ps(X + Ux(X,Z, t), Z + Uz(X,Z, t), t).
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Physically, the Lagrangian description fixes attention on specific particles of the gel,

whereas the Eulerian description concerns itself with a particular region of the space

occupied by the gel.

To write down general formulas mapping the Lagrangian derivatives into Eulerian

derivatives, we assume we have a generic function withH(X,Z, t) = h(x(X,Z, t), z(X,Z, t), t).

Using the relationships x = X + Ux(X,Z, t) and z = Z + Uz(X,Z, t), we find:

∂H

∂X

∣

∣

∣

∣

Z,t

=
∂h

∂x

∣

∣

∣

∣

z,t

(

1 +
∂Ux

∂X

∣

∣

∣

∣

Z,t

)

+
∂h

∂z

∣

∣

∣

∣

x,t

(

∂Uz

∂X

∣

∣

∣

∣

Z,t

)

, (16)

where the subscript indicates what independent variables are being held fixed when

derivatives are taken. To generate equations for the Lagrangian partial derivatives of

Ux and Uz in terms of Eulerian partial derivatives of ux and uz, we use the generic

formula (16) with H = Ux and h = ux as well as H = Uz and h = uz. We find:

∂Ux

∂X

∣

∣

∣

∣

Z,t

=
A

J
,

∂Uz

∂X

∣

∣

∣

∣

Z,t

=
B

J
, where (17)

A =
∂ux

∂x

∣

∣

∣

∣

z,t

−
∂ux

∂x

∣

∣

∣

∣

z,t

∂uz

∂z

∣

∣

∣

∣

x,t

+
∂ux

∂z

∣

∣

∣

∣

x,t

∂uz

∂x

∣

∣

∣

∣

z,t

,

B =
∂uz

∂x

∣

∣

∣

∣

z,t

,

J = 1−
∂ux

∂x

∣

∣

∣

∣

z,t

−
∂uz

∂z

∣

∣

∣

∣

x,t

+
∂ux

∂x

∣

∣

∣

∣

z,t

∂uz

∂z

∣

∣

∣

∣

x,t

−
∂ux

∂z

∣

∣

∣

∣

x,t

∂uz

∂x

∣

∣

∣

∣

z,t

.

An identical process is used to map the partial derivatives with respect to Z:

∂Ux

∂Z

∣

∣

∣

∣

X,t

=
C

J
,

∂Uz

∂Z

∣

∣

∣

∣

X,t

=
D

J
, where (18)

C =
∂ux

∂z

∣

∣

∣

∣

x,t

,

D =
∂uz

∂z

∣

∣

∣

∣

x,t

−
∂ux

∂x

∣

∣

∣

∣

z,t

∂uz

∂z

∣

∣

∣

∣

x,t

+
∂ux

∂z

∣

∣

∣

∣

x,t

∂uz

∂x

∣

∣

∣

∣

z,t

.

We will now formally argue that the small-strain approximation in the Lagrangian

coordinates implies the small-strain approximation in the Eulerian coordinates. To
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do so, we assume that terms quadratic in the Eulerian derivatives are small and utilize

the method of dominant balance. With this assumption, we obtain:

∂ux

∂x

∣

∣

∣

∣

z,t

∼
∂Ux

∂X

∣

∣

∣

∣

Z,t

,
∂uz

∂x

∣

∣

∣

∣

z,t

∼
∂Uz

∂X

∣

∣

∣

∣

Z,t

, (19)

∂ux

∂z

∣

∣

∣

∣

x,t

∼
∂Ux

∂Z

∣

∣

∣

∣

X,t

,
∂uz

∂z

∣

∣

∣

∣

x,t

∼
∂Uz

∂Z

∣

∣

∣

∣

X,t

. (20)

Substituting these results back into (17) and (18), and invoking incompressibility of

the gel (7) in J (defined in (17)) shows that indeed quadratic terms in the Eulerian

derivatives are equivalent in order to quadratic terms in the Lagrangian derivatives.

Thus, equations (19) and (20) are asymptotically consistent with the small-strain

approximation used in the Lagrangian framework.

Next, we determine the consequence of the infinitesimal-strain approximation on

the time derivatives. Specifically, we again assume we have a generic function with

H(X,Z, t) = h(x(X,Z, t), z(X,Z, t), t). Using the relationships x = X + Ux(X,Z, t)

and z = Z + Uz(X,Z, t), we find:

∂H

∂t

∣

∣

∣

∣

X,Z

=
∂h

∂x

∣

∣

∣

∣

z,t

(

∂Ux

∂t

∣

∣

∣

∣

X,Z

)

+
∂h

∂z

∣

∣

∣

∣

x,t

(

∂Uz

∂t

∣

∣

∣

∣

X,Z

)

+
∂h

∂t

∣

∣

∣

∣

x,z

. (21)

To generate Lagrangian time derivatives of Ux and Uz in terms of Eulerian partial

derivatives of ux and uz, we use the generic formula (21) with H = Ux and h = ux as

well as H = Uz and h = uz. We find:

∂Ux

∂t

∣

∣

∣

∣

X,Z

=
α

J
,

∂Uz

∂t

∣

∣

∣

∣

X,Z

=
γ

J
, where (22)

α =
∂ux

∂t

∣

∣

∣

∣

x,z

−
∂ux

∂t

∣

∣

∣

∣

x,z

∂uz

∂z

∣

∣

∣

∣

x,t

+
∂ux

∂z

∣

∣

∣

∣

x,t

∂uz

∂t

∣

∣

∣

∣

x,z

,

γ =
∂uz

∂t

∣

∣

∣

∣

x,z

−
∂uz

∂t

∣

∣

∣

∣

x,z

∂ux

∂x

∣

∣

∣

∣

z,t

+
∂uz

∂x

∣

∣

∣

∣

z,t

∂ux

∂t

∣

∣

∣

∣

x,z

,

and J is again given in (17). Using the small-strain approximation, (19) and (20),

and the incompressibility of the gel (7), we obtain:

∂Ux

∂t

∣

∣

∣

∣

X,Z

∼
∂ux

∂t

∣

∣

∣

∣

x,z

−
∂ux

∂t

∣

∣

∣

∣

x,z

∂uz

∂z

∣

∣

∣

∣

x,t

+
∂ux

∂z

∣

∣

∣

∣

x,t

∂uz

∂t

∣

∣

∣

∣

x,z

, (23)

∂Uz

∂t

∣

∣

∣

∣

X,Z

∼
∂uz

∂t

∣

∣

∣

∣

x,z

−
∂uz

∂t

∣

∣

∣

∣

x,z

∂ux

∂x

∣

∣

∣

∣

z,t

+
∂uz

∂x

∣

∣

∣

∣

z,t

∂ux

∂t

∣

∣

∣

∣

x,z

. (24)
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Note that in (23) and (24), terms involving products of a displacement gradient

and a time derivative cannot generally be neglected, even in spite of the fact that the

small-strain limit has already been invoked. Nevertheless, prior works (e.g., [4]-[8])

have neglected these terms, apparently without realizing it. However, we can now

make clear the conditions under which the commonly used simplified version of these

equations is valid.

Equations (23) and (24) can be greatly simplified by considering the following

order-of-magnitude argument. In the small-strain limit, ux, uz ∼ δ and x, z ∼ L such

that δ/L ≪ 1 where δ is a characteristic displacement and L is length scale charac-

teristic of the problem geometry. Suppose that t ∼ L/U where U is a characteristic

velocity. Then, the time derivative terms are O(δU/L), and the terms involving prod-

ucts of a time derivative and displacement gradient are an order of magnitude smaller.

This implies:

∂ux

∂t

∣

∣

∣

∣

x,z

∼
∂Ux

∂t

∣

∣

∣

∣

X,Z

, (25)

∂uz

∂t

∣

∣

∣

∣

x,z

∼
∂Uz

∂t

∣

∣

∣

∣

X,Z

. (26)

Thus, when prior works use (25) and (26) they implicitly assume the above scalings.

The assumptions of lubrication theory, which we will apply later, are consistent

with the above order-of-magnitude argument. However, even within the small-strain

limit there could conceivably be regimes where this argument does not hold, e.g.,

if t ∼ δ/U , this corresponds to much faster motions than those considered above.

This is an important point that appears to have been overlooked in prior work, but

becomes clear through a systematic conversion from a Lagrangian framework to an

Eulerian one.

With the above results, the components of the Eulerian total stress tensor are

given by:

Ts

xx = −ps + 2ηs
∂vsx
∂x

+ 2E
∂ux

∂x
, (27)

Ts

xz = Ts

zx = ηs
(

∂vsx
∂z

+
∂vsz
∂x

)

+ E

(

∂ux

∂z
+

∂uz

∂x

)

, (28)

Ts

zz = −ps + 2ηs
∂vsz
∂z

+ 2E
∂uz

∂z
, (29)
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where

vsx =
∂ux

∂t
, (30)

vsz =
∂uz

∂t
. (31)

(The expressions for vsx and vsz from a Lagrangian perspective are given by (13).)

Here, the constitutive law is linear from an Eulerian perspective, but it would have

been nonlinear had the terms in (23) and (24) involving products of a displacement

gradient and a time derivative been retained. In addition, we note that (30) and

(31) are the expressions used in prior work, where they are simply written down

(e.g., [4]-[8]). However, the order-of-magnitude arguments given above make clear

the assumptions under which these expressions are valid.

We now state the remaining boundary conditions. At the rigid plane z = −HR,

the displacements are zero; that is, the deformable gel is perfectly attached to the

horizontal plane. At the gel-liquid interface, z = f s(x, t), the normal and tangential

stresses in the gel and liquid are balanced:

ns ·Tℓ − ns ·Ts + 2σsHns = 0, (32)

where ns is the normal vector to the gel-liquid interface that points into the liquid, σs

is the surface tension of the gel-liquid interface, and H is the mean curvature of the

gel-liquid interface. The velocities in the gel and the liquid are equal, which enforces

both the no-slip and no-penetration conditions,

vsx = vℓx and vsz = vℓz. (33)

In addition, there is a kinematic condition describing the location of the gel-liquid

interface. In what follows, we simplify the calculations by studying the limit in which

the gel has no viscosity. Thus, ηs = 0 and we refer to the gel as a solid.
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2.3 Leading-Order Equations

The liquid thickness R is taken as a characteristic length scale in the vertical direction.

We denote the characteristic length scale in the horizontal direction as λ and assume

that ǫ = R/λ ≪ 1, allowing us to focus on long-wavelength perturbations to the

system [1, 9]. Specific choices could be made for λ (e.g., the instability wavelength),

but here we leave λ arbitrary for generality. The governing equations are made

dimensionless with the following scalings:

x′ =
x

λ
, z′ =

z

ǫλ
, t′ =

t

λ/V
, (34)

(vℓx)
′ =

vℓx
V
, (vℓz)

′ =
vℓz
ǫV

, (pℓ)′ =
pℓ

ηℓV/(ǫ2λ)
, (35)

u′

x =
ux

λ
, u′

z =
uz

ǫλ
, (ps)′ =

ps

ηℓV/(ǫ2λ)
, (36)

where V is a characteristic velocity scale in the x-direction. Note that the scaling

of time is consistent with the order-of-magnitude argument given in the previous

section. It should also be recognized that in order to be consistent with both the

small-strain limit and lubrication theory, we require δ/R ≪ 1 and R/λ ≪ 1, where δ

is a characteristic displacement.

In the limit ǫ → 0, the following leading-order dimensionless equations are ob-

tained in the liquid:

0 = −
∂pℓ

∂x
+

∂2vℓx
∂z2

, (37)

0 = −
∂pℓ

∂z
+ ǫG, (38)

0 =
∂vℓx
∂x

+
∂vℓz
∂z

, (39)

where G = ρℓgR2/ηℓV reflects the physical balance between the gravitational and

viscous forces (from the liquid). We note that one could define a rescaled version of

G equal to ǫG if desired. At the liquid-air interface z = f ℓ(x, t), we have:

∂f ℓ

∂t
+ vℓx

∂f ℓ

∂x
= vℓz, (40)

pa − pℓ = Sa∂
2f ℓ

∂x2
, (41)

∂vℓx
∂z

= 0, (42)
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where Sa = ǫ3σa/ηℓV is the ratio of the forces due to the liquid-air interfacial tension

relative to those due to the liquid viscosity, and pa is the pressure of the air, taken to

be zero.

In the solid, we have:

−
∂ps

∂x
+ Ē

∂2ux

∂z2
= 0, (43)

−
∂ps

∂z
+ ǫρG = 0, (44)

∂ux

∂x
+

∂uz

∂z
= 0, (45)

where Ē = Eλ/ηℓV measures the relative significance of elastic to viscous forces

(from the liquid), and ρ = ρs/ρℓ is the solid-liquid density ratio. At the surface of

the horizontal plane z = −H ,

ux(x,−H, t) = 0 and uz(x,−H, t) = 0. (46)

Finally, at the liquid-solid interface z = f s(x, t), the kinematic condition, continuity-

of-velocity boundary conditions, and continuity-of-stress boundary conditions become

∂f s

∂t
+ vℓx

∂f s

∂x
= vℓz, (47)

∂ux

∂t
= vℓx, (48)

∂uz

∂t
= vℓz, (49)

pℓ − ps = Ss∂
2f s

∂x2
, (50)

∂vℓx
∂z

= Ē
∂ux

∂z
, (51)

where Ss = ǫ3σs/ηℓV is the ratio of the forces due to the gel-liquid interfacial tension

relative to those due to the liquid viscosity.

3 Linear Stability Analysis

The base state of the present system corresponds to flat liquid-solid and liquid-air

interfaces that are located at z = 0 and z = 1, respectively. The liquid is at rest and

13



the solid is undeformed in the base state. The velocity and pressure distributions

in the base state, denoted by an overbar, are solutions to the leading-order system

(37)-(51) with no free-surface or interfacial deformations (f̄ s = 0 and f̄ ℓ = 1):

v̄ℓx = 0, v̄ℓz = 0, and p̄ℓ = ǫG(z − 1). (52)

The base-state displacements in the solid are

ūx = 0, ūz = 0, and p̄s = ǫG(ρz − 1). (53)

We study the stability of the base state to small-amplitude perturbations. To each

variable, a perturbation of the form

F ′(x, z, t) = F̃ (z)ei(kx−ωt), (54)

where F̃ (z) is a complex-valued eigenfunction, k is a wavenumber, and ω is a complex-

valued growth rate, is added to the base state and substituted into the leading-order

system. With this choice for the normal mode, the perturbation quantities grow and

instability occurs when the imaginary part of ω, denoted by Im [ω], is positive. Note

that the quantities and f ℓ(x, t) and f s(x, t) do not depend on z, so the quantities f̃ ℓ

and f̃ s are constants.

The governing equations for the perturbation quantities in the liquid and the solid,

respectively, are given by:

0 = −ikp̃ℓ +
d2ṽℓx
dz2

, (55)

0 = −
dp̃ℓ

dz
, (56)

0 = ikṽℓx +
dṽℓz
dz

, (57)

0 = −ikp̃s + Ē
d2ũx

dz2
, (58)

0 = −
dp̃s

dz
, (59)

0 = ikũx +
dũz

dz
. (60)
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At the liquid-air interface, z = 1, we apply a domain perturbation method to find

−iωf̃ ℓ = ṽℓz, (61)

−ǫGf̃ ℓ − p̃ℓ = −k2Saf̃ ℓ, (62)

dṽℓx
dz

= 0, (63)

where the first equation is the kinematic condition, the second is the normal force

balance, and the third is the tangential force balance. The domain perturbation

method involves replacing each variable as the sum of its base state value and a

perturbation of the form (54). The boundary conditions are then expanded in a

Taylor series around the location of the unperturbed interface and only terms linear

in the perturbation quantities are retained [10]. Note that the perturbation parameter

associated with the liquid-air interface, f̃ ℓ, is a constant.

Similarly, at the liquid-solid interface, z = 0, the domain perturbation method

gives the following five boundary conditions:

−iωf̃ s = ṽℓz, (64)

(1− ρ)ǫGf̃ s + p̃ℓ − p̃s = −k2Ssf̃ s, (65)

dṽℓx
dz

= Ē
dũx

dz
, (66)

−iωũx = ṽℓx, (67)

−iωũz = ṽℓz, (68)

where the first equation is the kinematic condition, the second two equations are the

force balances, and the final two equations are the continuity-of-velocity boundary

conditions in the x− and z−directions, respectively. Again, the perturbation param-

eter associated with the liquid-air interface, f̃ s, is a constant in the system above.

Finally, to close the system,

ũx(−H) = ũz(−H) = 0, (69)

at the rigid substrate. The system (55)-(69) constitutes the generalized eigenvalue

problem that needs to be solved to complete the linear stability analysis.
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The stability problem is solved analytically. From the governing equations for the

liquid perturbation quantities, we have:

ṽℓx(z) =
ikp̃ℓ

2
z2 + c1z + c2 (70)

ṽℓz(z) =
k2p̃ℓ

6
z3 −

ikc1
2

z2 − ikc2z + c3, (71)

where p̃ℓ, c1, c2, and c3 are constants. Applying the kinematic condition (61), we find:

c3 = −iωf̃ ℓ −
k2p̃ℓ

6
+

ikc1
2

+ ikc2. (72)

The tangential stress condition (63) gives

c1 = −ikp̃ℓ, (73)

and the normal stress condition (62) yields

p̃ℓ = f̃ ℓ(k2Sa − ǫG). (74)

Therefore, the perturbation liquid velocities are given by:

ṽℓx(z) =
ikp̃ℓ

2
z2 − ikp̃ℓz + c2, (75)

ṽℓz(z) =
k2p̃ℓ

6
(z3 − 1) +

k2p̃ℓ

2
(1− z2) + ikc2(1− z)− iωf̃ ℓ, (76)

where p̃ℓ is given by equation (74); these velocities are expressed in terms of unknown

constants c2 and f̃ ℓ. Similarly, the perturbation quantities for the displacements in

the solid are given by

ũx(z) =
ikp̃s

Ē

(

z2

2
−

H2

2

)

+ c′4(z +H), (77)

ũz(z) =
k2p̃s

Ē

(

z3

6
−

H2z

2
−

H3

3

)

− ikc′4

(

z2

2
+Hz +

H2

2

)

, (78)

where p̃s and c′4 are unknown constants.

We substitute the calculated perturbation quantities into the five liquid-solid

boundary conditions (64)-(68) to obtain a linear system of equations for the unknown

constants c2, f̃
ℓ, f̃ s, p̃s, and c′4. The determinant of the linear system must be zero

because we seek nontrivial solutions. The characteristic equation is a quadratic in

the complex growth rate, where one root is found to always be zero. The imaginary

part of the second root is examined to determine stability.
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4 Results

The characteristic equation governing the growth rate is

[

−k2H
3

3
(D1 +D2)− k2H2(D1)− k2H(D1)− k4 H4

12Ē
(D1)(D2)− Ē

]

ω2

+

[

−k4H
3

9
(D1)(D2)− k2 1

3
Ē(D1)

]

iω = 0, (79)

where

D1 = k2Sa − ǫG,

D2 = k2Ss + (1− ρ)ǫG.

To further simplify matters, we set ρ = 1 (the density of the liquid equals the den-

sity of the solid) and Ss = 0 (there is no surface tension at the liquid-solid interface).

Then, the non-zero root of the characteristic equation is

ω = −i
−k2 1

3
Ē(k2Sa − ǫG)

−k2H3

3
(k2Sa − ǫG)− k2H2(k2Sa − ǫG)− k2H(k2Sa − ǫG)− Ē

. (80)

Note that in the case where H = 0 (solid thickness is zero),

Im[ω] = −k2 1

3
(k2Sa − ǫG), (81)

which is the well-known result for the case where the solid is rigid [1].

Figure 3 shows how Im[ω] varies as function of k, G, and H . Fig. 3(a) shows

that the maximum growth rate and the range of unstable wavenumbers increase as G

increases. Explicit expressions for the cut-off and most-dangerous wavenumbers are

readily obtained,

kcfull =

√

ǫG

Sa
(82)

kmfull
=

√

ǫG

2Sa
(83)
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Figure 3: (Color online) (a) Growth rate versus wavenumber for H = 0 (dashed line)
and H = 0.1 (solid line) with Ē = 1, Sa = 1, Ss = 0, ǫ = 0.1, and ρ = 1. The case
H = 0 corresponds to a rigid substrate. (b) Growth rate versus wavenumber for Ē
= 1, G = 10, Sa = 1, Ss = 0, ǫ = 0.1, ρ = 1, and different values of H : H = 0 (solid
line), H = 0.1 (dashed line), H = 0.5 (dashed-dot line), H = 1 (circles), and H = 2
(triangles).
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Figure 4: (Color online) (a) Growth rate versus wavenumber for Ē = 1, G = 10,
H = 0.1, Sa = 1, Ss = 0, ǫ = 0.1, and ρ = 1: Full equation (solid line), Asymptotic
equation (dashed line). (b) Maximum growth rate versus ratio of gravitational to
viscous forces for Ē = 1, H = 0.1, Sa = 1, Ss = 0, ǫ = 0.1, and ρ = 1: Full equation
(solid line), Asymptotic equation (dashed line).
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These expressions do not depend on the thickness of the deformable layer. We note

that setting the value of Sa determines the velocity scale V , and our choice of Sa = 1

is consistent with lubrication theory [1, 9].

The maximum growth rate is

Im[ω]mfull
= −

1
12Sa Ē(ǫ2G2)

H3

12Sa (ǫ2G2) + H2

4Sa (ǫ2G2) + H
4Sa (ǫ2G2)− Ē

(84)

The maximum growth rate increases when the solid layer is deformable (H 6= 0).

These features are clearly seen in Fig 3(a). In Fig. 3(b), we see that when H >

1.35, the growth rate becomes unbounded at two wavenumbers due to a zero value in

the denominator of equation (84). This singularity could be removed by considering

inertial terms, but for values of H < 1.35 the inertialess theory is expected to yield

accurate results [11].

The growth rate can be examined in the limit of small H by performing a Taylor

series expansion of (80):

Im[ω]asym. = −k2 1

3
(k2Sa − ǫG) + k2 H

3Ē
k2(k2Sa − ǫG)2 +O(H2). (85)

The leading order term is the expression for a rigid substrate. The O(H) term ∼ k4

and is positive, indicating that the coupling between the liquid and solid manifests

itself as an lower effective liquid-air interfacial tension. The effect becomes more

pronounced for thicker (larger H) and softer (lower Ē) solid layers.

In the limit of small H , the maximum growth rate is given by:

Im[ω]masym.
≈

1

3

(

ǫG

2

)2
1

Sa
+

H

3Ē

(

ǫG

2

)4(
1

Sa

)2

+O(H2). (86)

The expressions for the cutoff and most-dangerous wavenumber are the same as (82)

and (83). Figure 4 shows that our asymptotic results agree well with predictions from

the full equations when H = 0.1. Although not shown, we have found good agreement

even when H = 1 provided that G is sufficiently small. This can be rationalized by

noting that the entire O(H) term in (86) can be small even when H = 1 provided

that the other parameters have suitable values.
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Finally, it worthwhile to consider the magnitude of the effect predicted above. If

we take ηl = 10−3 Pa s, σl = 0.01 N/m, ρl = 103 kg/m3, E = 100 Pa, and ǫ = 0.1,

then for G = 10 and Sa = 1 we find R ∼ 100 µm and Ē ∼ 104. The large value

of Ē indicates that even for very soft solids (E ∼ 100 Pa), the enhancement of the

growth rate due to solid deformability is expected to be weak for cases of practical

interest. Nevertheless, without carrying out the analysis here, it would not have

been obvious to determine whether solid deformability enhances or delays the film

instability, and the manner in which it does so (cf. (85)). It is also interesting to

note that much stronger effects of solid deformability on liquid behavior have been

observed experimentally in cases where the liquid is flowing (e.g., shear flow past a

gel) [12]-[14]. In these cases, solid deformability can introduce new instabilities as

well as modify existing ones.

5 Conclusions

Systematic conversion of the equations and boundary conditions governing solid de-

formation reveals that the continuity-of-velocity boundary condition at the liquid-

solid interface is more complicated than has previously been assumed, even in the

small-strain limit. Terms involving products of a displacement gradient and a time

derivative appear and cannot be neglected in the small-strain limit unless the charac-

teristic time scale is O(L/U), where L and U are a characteristic length and velocity,

respectively, in the lateral direction. The approach taken here thus makes clear the

conditions under which the commonly used simplified version of the continuity-of-

velocity boundary condition is valid.

The small-strain approximation, lubrication theory, and linear stability analysis

are then applied to study the gravity-driven instability of a liquid film underneath

a soft solid. Asymptotic analysis reveals that the coupling between the liquid and

solid manifests itself as a lower effective liquid-air interfacial tension that leads to

larger instability growth rates. Although this effect is expected to be weak for cases

of practical interest, our work is limited to the linear regime and much stronger

effects may take place in the nonlinear regime. The systematic approach taken here
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provides a framework that could be extended to study nonlinear effects, e.g., through

the development of long-wave evolution equations [7]. Such studies will also require

accounting for nonlinear constitutive behavior when the deformation gradients are no

longer small.
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