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We show that sensory noise can enhance the nonlinear response of neuronal networks, and when
delivered together with a weak signal, it improves the signal detection by the network. We reveal
this phenomenon in neuronal networks that are in a dynamical state preceding a saddle-node bifur-
cation corresponding to the appearance of sustained network oscillations. In this state, even a weak
subthreshold pulse can evoke a large-amplitude oscillation of neuronal activity. The signal-to-noise
ratio reaches a maximum at an optimum level of sensory noise, manifesting stochastic resonance
(SR) at the population level. We demonstrate SR by use of simulations and numerical integration
of rate equations in a cortical model. Using this model, we mimic the experiments of Gluckman et
al. [B. J. Gluckman et al., Phys. Rev. Lett. 77, 4098 (1996)] that have given evidence of SR in
mammalian brain. We also study neuronal networks in which neurons are grouped in modules and
every module works in the regime of SR. We find that even a few modules can strongly enhance the
reliability of signal detection in comparison with the case when a modular organization is absent.

PACS numbers: 05.10.-a, 05.40.-a, 87.18.Sn, 87.19.ln

I. INTRODUCTION

Noise is ubiquitous in sensory systems and strongly af-
fects their function [1, 2]. Many investigations have been
devoted to the problem of how sensory systems compen-
sate, counter or account for noise in order to detect and
process sensory information. Stochastic resonance (SR)
is recognized as a possible mechanism that allows sen-
sory systems to use noise for its own benefit [1-3]. This
phenomenon manifests itself in an amplification and an
optimization of weak signals by noise [4]. In the brain, SR
was observed in sensory systems [5-8], in central neurons
such as hippocampal CA1 neurons in rat cortex [9-11],
in the human blood pressure regulatory system [12], and
the human brain’s visual processing area [13]. SR is also
considered as a mechanism mediating neuronal synchro-
nization within and between functionally relevant brain
areas [14-16]. At the present time, the understanding
the role of SR in brain functioning remains elusive.

Most of the theoretical works on SR, including the sem-
inal paper [17], and experimental realizations of SR refer
to systems based on the motion of a particle subjected
to a weak periodic signal in a bistable potential [4]. An-
other mechanism of SR was revealed in a class of dynam-
ical systems based on excitable dynamics [18, 19]. A key
ingredient of these systems is that if the system is kicked
by a stimulus from its ‘rest state’ above an activation
threshold, then it returns to the state deterministically,
within a certain refractory time [18-20]. Based on these
ideas, several single neuron models have been proposed
to explain SR observed in the brain [6, 10, 11, 19, 21].

SR was also observed at the level of an entire sensory
system, i.e., as a collective phenomenon. Gluckman et
al. [9] revealed a resonance in the response of a neuronal
network from mammalian brain on a weak periodic elec-
tric stimulus with a certain magnitude of the stochastic
component. Since no manifestation of SR at the sin-

gle cell level was clearly seen in these experiments, one
can assume that the observed SR has another nature.
Until now, no theoretical explanation of these experi-
ments was proposed. There are some studies of SR in
arrays of neurons [22, 23] and summing networks [24], but
they did not study the role of interactions between neu-
rons. Pacemaker-driven SR [25, 26] was observed in com-
plex networks of interacting excitable units modeled by
Rulkov’s discrete map. Also, evidences for SR were found
in simulations of small networks of interacting Hodgkin-
Huxley neurons [27, 28] and in hippocampal CA3-CA1
networks [29]. Actually, small networks (at most 300 neu-
rons in these papers) do not allow to study collective phe-
nomena due to finite-size effects that manifest themselves
in strong irregular fluctuations destroying synchronized
activity of neurons. Their impact on critical fluctuations
of neuronal activity was recently analyzed in [30]. The
breaking of collective phenomena by finite-size effects is a
well known phenomenon in physical systems [31, 32], but
these effects are still poorly understood in the dynamics
of neuronal networks.

In this paper, we propose a mechanism of SR that is
based on excitable dynamics of neuronal networks and
caused by interaction between neurons rather than ex-
citable dynamics of single neurons. Using simulations of a
cortical model of large neuronal networks with stochastic
neurons [30, 33] and numerical integration of dynamical
equations, we show that, even weak subthreshold (peri-
odic or pulsed) sensory signals can generate correlated
activity of a large fraction of neurons in the presence of
sensory noise. The signal-to-noise ratio reaches a maxi-
mum at an optimum level of sensory noise, manifesting
stochastic resonance at the population level. We mimic
the experiments of Gluckman et al. [9] and we find qual-
itative agreement with the data. Moreover, we discuss
the role of modular organization in the detection of weak
signals. For this purpose, we study networks where neu-



rons are grouped in modules and every module works in
the regime of SR. We demonstrate that, in this case, the
reliability of signal detection is strongly enhanced in com-
parison with the case when modular organization is ab-
sent. We show that when the size of modules decreases,
finite-size effects manifest themselves in an increase of
activity fluctuations that destroy collective synchronized
activity of neurons in the modules.

II. CORTICAL MODEL

In this section, we describe the cortical model, which
we use to study SR in neuronal networks. The model
was introduced in [33] and generalized to the case of shot
noise in [30]. A similar model was proposed in [34, 35]
(differences between these models have been discussed in
[30]).

A. Structure and rules of stochastic dynamics

We consider neuronal networks composed of stochas-
tic excitatory and inhibitory neurons. The total number
of neurons is N, the fraction of excitatory neurons is ge,
and the fraction of inhibitory neurons is g; = 1 —g.. The
neurons are connected by directed edges (synapses) at
random with the probability ¢/N where ¢ is the mean
number of synaptic connections. This network has the
structure of the Erd6s-Rényi network with the Poisson
degree distribution. The neurons are bombarded by a
flow of random delta-like spikes that represent sponta-
neous releases of neurotransmitters in synapses and ran-
dom spikes arriving from other areas of the brain (for ex-
ample, the activity of the hippocampal CA3 network that
causes membrane potential fluctuations in CA1l pyrami-
dal cells like in the model [29]). This flow has properties
of shot noise if the spike duration is sufficiently small.
The intensity of this flow strongly influences on network
dynamics and plays the role of the control parameter in
the cortical model [30].

Neurons also receive spikes from active presynaptic ex-
citatory and inhibitory neurons. The total input I(¢) at
time ¢ to a neuron is the sum of three contributions: (i)
random spikes from shot noise, (ii) spikes from excitatory
neurons, and (iii) spikes from inhibitory neurons. The in-
put V; to a neuron with index j, j = 1,2,... N, is the
integral of I,(t) over the time interval [t — T, ¢],

Vi(t) = ndy + kJ. + LT;, (1)

where n, k, and [ are the numbers of spikes arriving dur-
ing the time interval [t — 7,¢] from shot noise, active
presynaptic excitatory and inhibitory neurons, respec-
tively. J, is the amplitude of the shot noise spikes. Je
and J; are the efficacies of synapses from excitatory and
inhibitory neurons, respectively.

The dynamics of the stochastic neurons is determined
by the following rules. If during the integration time

window 7 the total input V;(f) to an inactive neuron
becomes larger than a threshold value €2, then with the
probability 7u, the neuron becomes active and fires a
spike train with a constant frequency v (the index a = e
if the neuron is excitatory and a = i if it is inhibitory). If
the total input Vj(t) of an active excitatory (inhibitory)
neuron becomes smaller than €2, then the neuron stops to
fire with the probability 7. In this model, the rates .
and pu; are the reciprocal first-spike latencies of excitatory
and inhibitory neurons, respectively. If the ratio

o= 1 e (2)

is smaller than 1 then it means that excitatory neurons
respond faster to stimuli than inhibitory neurons.

B. Rate equations

The fractions p.(t) and p;(t) of active excitatory and
inhibitory neurons, respectively, at time t characterize
the neuronal activity in the cortical model. They are
determined by the following rate equations [30, 33]:

fa
— = —pa + Valpe, pi), (3)
[t

where a = e, i, p = dp/dt. The function ¥, (pe, p;) is the
probability that, at time ¢, the total input to a randomly
chosen excitatory (a = e) or inhibitory (a = 4) neuron
is at least the threshold Q. The function ¥, (pe,p;) is
determined by the network structure, the distribution
function of shot noise (we consider the Gaussian distribu-
tion for simplicity), and the frequency-current relation-
ships for single neurons (the step function in our model).
Note that the probability W, (pe, p;) is the same for both
excitatory and inhibitory neurons because, in the net-
work under consideration, excitatory and inhibitory neu-
rons occupy topologically equivalent positions. There-
fore, \Ile(pea pl) = \Iji(pevpi) = \Ij(pevpi)v where

U(pe, i) = X a0 OTn+Jek+Ji1—Q)G(n) x
Pr(gepec)Pi(gipic)- (4)
Here, ¢ = cvt, ©(x) is the Heaviside step function, Py(c)
is the Poisson distribution function,
Py(c) = Fe k), (5)
and G(n) is the Gaussian distribution function,
G(n) = Goe™ (= (n))?/20° (6)

G(n) is the probability that a neuron receives n random
spikes from shot noise during the integration time 7. (n)
is the mean number of these spikes, o2 is the variance,
and Gy is the normalization constant, >~  G(n) = 1.
Note that Egs. (3) and (4) are asymptotically exact in
the limit N — oo [30, 33]. They are similar to the phe-
nomenological Wilson-Cowan equations [36, 37] (see a
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FIG. 1. (Color online) Phase diagram of the cortical model in
dependence on the flow intensity (n) of random spikes bom-
barding neurons in the case when excitatory neurons respond
faster to input than inhibitory neurons (a = 0.7) (adapted
from [30]). Stochastic resonance takes place in the region
Ner < (n) < ne2 preceding the saddle-node bifurcation at
(n) = ne2. Above nc2 sustained network oscillations appear.

discussion in [33]). The activities p. and p; are com-
parable to electroencephalographic recordings (EEG), or
local field potentials (LFP), representing the activity of
thousands of neurons.

In numerical simulations, we use the algorithm pro-
posed in [30] and the following model parameters: N =
104, ¢ = 103, Q =30, 7v = 1, per = 0.1, @ = 0.7,
ge = 0.75 and g; = 0.25. Throughout this paper we use
1/pe = 1 as time unit and J. = 1 as input unit. Follow-
ing [38], we consider balanced networks with J; = —3.J,.
We also use J,, = J. and o2 = 10 for the amplitude and
the variance of shot noise.

C. Excitable dynamics in the region with
stochastic resonance

Now we discuss the excitable dynamics in the region
with SR (the region with single sharp oscillations in
Fig. 1). At a low noise intensity, (n) < nc1, the neu-
ronal network is in a state with a low neuronal activity
and a weak response to stimuli. Above n.;, in the region
ne1 < (n) < neg, the network demonstrates a peculiar
excitable dynamics (the critical points n.; and n.o are
defined in [30]). It still relaxes exponentially to the rest
state with low activity if a perturbation of neuronal ac-
tivity is sufficiently weak. However, if a perturbation
caused by a pulse is larger than an activation threshold,
then a strongly synchronized neuronal activity emerges
in the form of a single sharp oscillation. This single sharp
oscillation has a large amplitude, it is deterministic and
strongly nonlinear. The activation threshold of this sharp
oscillation depends on the shot noise intensity (n). For
example, in the considered network of 10* neurons (7500
excitatory and 2500 inhibitory neurons), at (n) = 16,
below n. = 18.8 but above n.; = 7.6, the simultane-
ous activation of only 75 excitatory neurons chosen at
random among 7500 excitatory neurons (i.e., about 1%
of excitatory neurons), while the other neurons are inac-
tive at that moment, generates a single sharp oscillation
formed by the synchronized activity of about 9000 neu-
rons (nature and properties of these nonlinear oscillations

are discussed in detail in [30]). The activation threshold
decreases when (n) — ng and finally it becomes zero
in the bifurcation point. Due to the small value of the
activation threshold, a subthreshold signal together with
sensory noise can overcome the threshold and generate
a large-amplitude spike of neuronal activity. This kind
of excitable dynamics is similar to one discussed within
single neuron models [6, 10, 11, 19, 21].

III. STOCHASTIC RESONANCE IN THE
CORTICAL MODEL

In this section, using excitable dynamics described in
Sec. IIC, we demonstrate SR in neuronal networks and
mimic SR observed in [9]. In our numerical calculations
and simulations, we assume that the first-spike latencies
1/pe and 1/p; of excitatory and inhibitory neurons equal
to 20 ms and 28.6 ms, respectively. Note that the first
spike latency is ranged from 25 to 49 ms for CA3 hip-
pocampal pyramidal (excitatory) neurons [39] and from
20 to 128 ms for inhibitory cerebellar stellate cells [40].
For the parameters chosen in Sec. IIB and the noise in-
tensity (n) = 25 corresponding to 12.5 random spikes
per second from a synaptic connection, the frequency of
sustained network oscillations is about 5.2 Hz. This fre-
quency lies in the range of theta waves [41].

A. SR in numerical integration

Let us study the response of the cortical model to a
weak periodic stimuli when the neuronal network is in
the regime with excitable dynamics described in Sec. I1 C.
In our numerical integration of Eq. (3), the neuronal net-
work is stimulated by a sensory stimulus z(¢) that con-
tains both sensory noise £(t) and a periodic signal S(t),

a(t) = () +5(t). (7)

We assume that the sensory stimulus is delivered by
Ny = gsN. = gsgeN sensory neurons, where g, is a
model parameter. These additional sensory neurons are
connected at random with the probability ¢/N only to
excitatory neurons. Therefore, each excitatory neuron
receives in average an input from gsg.c sensory neurons.
This method of stimulation assumes that excitatory neu-
rons receive the same signal+noise inputs Eq. (7). It is
similar to the experimental method in [9] where all neu-
rons were stimulated by the same electric field.

One can show that the introduction of the sensory neu-
rons leads to a simple modification of Eq. (3). Namely,
in Eq. (3), we must substitute the function ¥(pe, p;) by
U(pe + Ac(t), p;) where Ac(t) = z(t)gs/(vT). We also
introduce an additional stochastic force F(t) acting on
neurons and representing other sources of noise differ-
ent from shot and sensory noise (for example, the force
can represent irregular fluctuations caused by finite-size



effects [30, 42]). Equation (3) takes a form,

B (1= p)F(0) = pu+ ¥lpe+ Aclt)op). (9

We consider the sensory noise £(t) generated by the Gaus-
sian process with the mean number (£(¢)) = 4 x 1072 of
random spikes per the integration time 7 and the vari-
ance 02, = 7.3 x 10~* (we only use the positive part of
this Gaussian process and the effective mean amplitude
of noise, Ag, is 4.3 x 1072) (see Fig. 2(c)). The sensory
signal is sinusoidal,

S(t) = Afsin(2nf,t) + 1]/2, 9)

with the amplitude A, = 4.5 x 1072 and the frequency
fs = 1.25 Hz. The ratio A5/(£(t)) is close to the value
used in [9]. The stochastic force F'(t) representing finite-
size effects is a random variable uniformly distributed in
the interval [0, 0.009].

Analyzing the dynamics of the cortical model by use
of Eq. (8), we find that, in the absence of a periodic sig-
nal, the sensory noise produces occasionally sharp oscil-
lations. Adding a sinusoidal subthreshold sensory signal,
which alone can not generate network oscillations (see
Fig. 2(b)), we find that sharp spikes appear preferentially
near the maximums of the signal (see Fig. 2(d)).

Following the analysis of Gluckman et al., we find the
burst probability density (BPD) defined as the probabil-
ity to observe a burst (a sharp spike in our case) of net-
work activity when the sinusoidal signal S(¢) has a phase
¢ (the signal maximums take place at ¢ = 7w(2n + 1)/2,
where n = 0,1,...). Figure 3 displays the BPD of the
neuronal network at different levels of sensory noise. One
can see that the BPD correlates with the sensory signal
(see Fig. 3(c)) around an optimal level of sensory noise,
while no correlations were observed at weaker or stronger
levels of sensory noise (see Figs. 3(b) and (d), respec-
tively). These results agree with the results in [9].

The signal-to-noise ratio (SNR) is defined as follows:

SNR = % (10)

where a is the amplitude of the peak of the power spec-
tral density (PSD) of neuronal activity at the signal’s fre-
quency fs and b is the average value of the background
PSD excluding the peak. This method is the same as
the one in [9]. The only difference is that in [9] the SNR
was defined as SNR = (a — b)/b. We apply the periodic
sinusoidal signal plus noise to the network as discussed
above and then analyze the PSD of the neuronal activity.
Results of numerical integration of Eq. (8) and estima-
tion of the SNR for different levels of mean sensory noise
are displayed in Fig. 4. The error bars represent the
statistics: for each level of noise, we repeat 10 times the
measurements of the response of the neuronal network.
The maximum of the SNR at a nonzero level of noise in
Fig. 4 is a fingerprint of stochastic resonance.
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FIG. 2. (Color online) In the absence of sensory noise, a
periodic sensory signal (S) with the amplitude A, = 4.5 X
107* (see panel (a)) generates a weak perturbation of the
excitatory population activity p. that can hardly be identified
in panel (b). However, the addition of sensory noise ¢ with
the mean amplitude Az = 4.3 x 1072 (see panel (c)), which is
about 10 times larger than the signal’s amplitude A, results
in neuronal activity with single sharp oscillations shown in
panel (d). The single sharp oscillations appear preferentially
near the peaks of the sensory signal. Network parameters:
c = 1000, Q = 30, g; = 0.25, J; = —3J., 0% = 10, (n) = 10,
a=0.7, gs = 0.1, and fs = 1.25 Hz. Time ¢ is in units 1/ue.

B. SR in simulations

In our simulations we considered another stimulation
method. The sensory noise and the sinusoidal signal
(Egs. (7) and (9)) were delivered directly to a fraction
gs of g N excitatory neurons chosen at random. Sensory
noise £ was represented by random spikes with the mean
number (£) of spikes per the integration time 7 and the
variance oZ,. The amplitude A, of the sinusoidal signal
S(t) was fixed while the level (¢) of sensory noise was
gradually increased. Note that there is a simple approx-
imate relationship between (£) and the noise amplitude
A¢ used in Sec. IITA, (£) o< cAe. We used the amplitude
of the sinusoidal signal A; = 4.5 as in the numerical inte-
gration. Other model parameters were the same as those
in Sec. IIT A, except (£) and the variance (02, = 5).

Results of our simulations for N = 10* are represented
in Figs. 5 and 6. At a small level (£) of sensory noise
((¢) < b), the response of the neuronal network to the
sinusoidal sensory signal is weak since the probability
of generation of sharp oscillations by the signal is small
(see Fig. 5(a)). When the level (€) of sensory noise is
increased, sharp oscillations are generated with a larger
probability. Note that the degree of correlation of the
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FIG. 3. Burst probability density (BPD) versus the phase ¢ of
the sinusoidal sensory signal from the numerical integration of
Eq. (8). (a) The BPD versus ¢ in the presence of sensory noise
with the mean amplitude A¢ = 4.3 X 1072 when the signal
is very weak (As < A¢). (b) BPD versus ¢ at sensory noise
A¢ = 24 x 1072, (c) BPD at the optimal level of sensory
noise A¢ = 4.3 x 1072, (d) BPD at strong sensory noise,
A = 7.0 x 1072. The signal’s amplitude As = 4.5 X 1073
is the same for (b), (c), and (d). The data were obtained by
averaging over 2500 periods of the signal. The dashed lines
represent the signal versus ¢. Other parameters are the same
as in Fig. 2.
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FIG. 4. Signal-to-noise ratio (SNR) versus the mean ampli-
tude A¢ of the sensory noise in the cortical model from numer-
ical integration of Eq. (8). SNR is in decibel [101log,,(SNR)].
Error bars were estimated from rms distribution of 10 mea-
surements. The bar length is equal to twice the standard
deviation. The middle point of the bar corresponds to the
mean value of SNR. Parameters are the same as those in Fig.
2.
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FIG. 5. (Color online) Response of the cortical model of neu-
ronal networks to the sinusoidal sensory signal S(t) at differ-
ent levels (£) of sensory noise: (a) (§) = 5.0; (b) (§) = 5.5;
(c) (§) = 6.0; (d) (&) = 7.0; (e) sinusoidal signal S(t); (f)
(€) = 7.5. Parameters: A, = 4.5 and 02, = 5. Other param-
eters in simulations are the same as in Fig. 2.

sharp oscillations with the sensory signal also increases.
At the optimum level of sensory noise ((§) =~ 7), the
network response (Fig. 5(d)) is well synchronized with
the sensory signal (Fig. 5(e)). This synchronization is re-
markable since only 10% of excitatory neurons receive the
signal+noise input and the level of sensory noise is larger
than the signal’s amplitude. With increasing (£) above
the optimum level, the correlation between the signal and
the network response becomes worse (see Fig. 5(f)).

In order to characterize the network response, we also
measured the power spectral density of activity fluctua-
tions and calculated the SNR from Eq. (10). Figures 6(a)
and (b) show the PSD of the neuronal activity displayed
in Fig. 5(d). One sees that the PSD has a strong peak at
the frequency of the sinusoidal signal S(¢) (other peaks
correspond to the respective harmonics). The amplitude
of this peak characterizes the network response. With
increasing the level (£) of sensory noise, the peak in-
creases in comparison with the background amplitude
of the PSD, and consequently the SNR increases (see
Fig. 6(c)). The SNR reaches a maximum at the optimal
noise and then decreases. Again, the inverted-U shape of
the SNR is a hallmark of stochastic resonance.

Comparing Figs. 4 and 6(c), one sees that the differ-
ent methods of stimulation of neurons by signal+noise
inputs, which were used in our numerical integration and
simulations, give a similar behavior of the SNR. A quan-
titative comparison of the optimum noise levels in these
two different methods is not simple since in numerical
calculations we stimulated all excitatory neurons by a
signal+noise input from a small group of sensory neu-
rons while in simulations we delivered the signal4noise
directly to a small fraction of excitatory neurons. An-
other reason for this difference is due to strong activity
fluctuations caused by finite-size effects. This kind of
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FIG. 6. (Color online) Power spectral density (PSD) of the
cortical model in which a small fraction (gs = 0.1) of exci-
tatory neurons is stimulated by a sinusoidal signal (Eq. (9))
with frequency fs = 1.25 Hz in the presence of sensory noise
with (€) = 7.0. (a) PSD versus the frequency f, linear scale;
(b) PSD versus f, log-log scale. (c) Signal-to-noise (SNR) ra-
tio versus (£). SNR is in decibel [101log;,(SNR)]. Parameters
in simulations are the same as in Fig. 2 and 5.

fluctuations plays a role of an additional noise that af-
fects collective phenomena in interacting systems [31].
We discuss finite-size effects in Sec. IV B.

IV. SIGNAL DETECTION IN MODULAR
NEURONAL NETWORKS

In the brain, neurons of similar function are grouped
together in columns (or modules). This kind of organi-
zation assumes that synaptic connections are arranged
denser within columns and sparser between columns.
The columnar organization of the neocortex has been
documented in studies of sensory and motor areas in
many species [43-45]. Cortical columns are formed by
the binding of many minicolumns (their number varies
between 50 and 80) by common input and short range
horizontal connections [45]. Understanding the role of
modular organization (community structure, clustered
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FIG. 7. (Color online) Signal detection in neuronal networks
with modular structure from numerical integration of Eq. (3).
(a) A signal together with noise is delivered to four modules
1, 2, 3 and 4. Responses of these modules are averaged in a
module denoted as X. (b) S represents the signal ‘ola’ sent to
these four modules. This signal with noise generates output
signals 1, 2, 3 and 4 from the respective modules. The signal
3 represents the average over the output signals.

d

networks) is an open problem in neuroscience [46, 47].
In this section we show by use of numerical integration
and simulations that the signal recognition in the regime
with SR may be remarkably improved if a neuronal net-
work has a modular organization similar to the partition
of columns into minicolumns. We consider a neuronal
network in which N neurons are grouped in n modules
of size N/n. These modules are described by the cortical
model in Sec. II and act in the regime of SR. A modular
system is shown schematically in Fig. 7(a). All mod-
ules receive signal+noise inputs. Signals are represented
by trains of pulses instead of periodic signals. Then the
responses of the modules are summed up and averaged.

A. Detection of pulsed signals in numerical
integration

The sinusoidal signal in Fig. 2(a) carries no informa-
tion. Let us consider a case when a sensory signal con-
tains information. We choose the message ‘ola’ (‘hello’ in
Portuguese) expressed in Morse code as the digital code,
1110111011100010111010100010111. In order to repre-
sent this message as a sensory signal, we consider rectan-
gular pulses separated by a time interval equal to 235 ms
(the period of the sustained network oscillations of 5.2
Hz). The duration of these pulses was chosen about 30
ms that is about 8 times smaller than the period of net-
work oscillations. The number of these pulses equals the
number of bits in our message. Finally, we remove pulses
corresponding to zeros. As a result we obtain a sensory
signal representing our message ‘ola’ (see Fig. 7). De-



spite the pulse amplitude was chosen sufficiently small,
every pulse can generate with a certain probability a sin-
gle sharp oscillation in a module. Figure 7 shows that
the response of the modules to this message is stochastic
even at the optimal level of sensory noise. On one hand,
the module does not detect some pulses. On the other
hand, it may elicit ‘false’ responses. For given network
parameters, sensory noise level, and signal’s amplitude,
we measured the probability p that a pulse in the signal
is detected in a module, i.e., the pulse generates a sin-
gle sharp oscillation. For the parameters chosen in our
model and the signal’s amplitude As = 0.0135, numerical
integration of Eq. (3) gives p ~ 5/7. Alternatively, one
can say that two pulses of seven may be missed or may
be ‘false’. In our numerical integration of Eq. (3) we
assume that all modules receive the same signal4noise
input (note that apart the sensory noise there is also in-
trinsic synaptic noise in every module). This method
is similar to the stimulation of neuronal networks by an
electric field as in [9]. Then, responses of the modules
to the sensory signal are combined and we obtain an av-
eraged response as shown in Fig. 7. For every pulse in
the message ‘ola’; the probability that at least one of the
modules detects it is

n

M(n) =1 - [ (1-pu), (11)

m=1

where p,, is the probability that the module with index
m =1, ...,n detects a pulse. If the modules have the same
probability p,, = p, then II(n) increases with increasing
the number of modules n as II(n) =~ np at p < 1. In turn,
the probability of an error, 1 — II(n), decreases exponen-
tially with increasing n as 1 —II(n) = exp[—n|In(1—p)|].
If we want to detect every pulse of the message with
probability of, say, 99%, then the necessary number n of
modules can be found from the condition II(n) = 0.99
(see, for example, Ref. [48]). For the obtained p ~ 5/7,
Eq. (11) gives n = 4. The response to the message ‘ola’
averaged over 4 neuronal modules is shown in Fig. 7.
This result illustrates that modular structures improve
remarkably the detection of weak signals.

B. Simulations of modular networks

In our simulations of modular networks, N = 50400
neurons were grouped in n modules of size N,,, = N/n,
n = 1,2,...,50. The modules are bound together by
a common input but there are no connections between
modules. The modules have the same structure as the
random networks described in Sec. II. We used a train
of random pulses obtained from a periodic pulse train by
the removal of pulses with probability 40%. The pulse
duration was W = 0.2 s, the amplitude As = 4.5, and the
pulse rate f = 0.75 Hz. The pulsed signal was delivered
to the modules together with sensory noise (normally dis-
tributed random spikes with the mean number () = 5.7
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FIG. 8. (Color online) (a) Probability p(n) that a signal’s

pulse is detected by a module of size N/n versus n (N =
50400 in our simulations). (b) Probability II(n) of the signal
detection in a network with n modules. In panels (a) and
(b), symbols represent results of two stimulation methods:
(1) each neuron in every module receives independent sensory
noise but the same pulsed signal (triangles); (2) neurons in the
modules receive the same sensory noise and the same pulsed
signal (squares). Parameters of the signal4+noise input are in
the text. Other parameters are the same as in Figs. 2 and 5.

of spikes per integration time, and the variance o2 = 5).
We used two stimulation methods. In both methods,
we chose at random a small fraction, g; = 10%, of ex-
citatory neurons in each module. In the first method,
every chosen neuron received independent sensory noise
together with the pulsed signal. In the second method,
the pulsed signal was delivered with the same noise to
all chosen neurons. While the first method takes into ac-
count the synaptic noise in sensory systems, the second
method mimics the stimulation of neuronal networks by
an electric field that acts simultaneously on many neu-
rons as in [9]. Analyzing dynamics of the network during
a large observation time (80 s), we found the probability
Pm that a signal’s pulse is detected by a module with
index m = 1,...,n of size N/n (a pulse is detected if it
evokes a sharp large-amplitude network oscillation dur-
ing a time interval equal to twice the pulse duration after
the signal’s pulse begins). Averaging p,, over 10 network
realizations, we found the average probability p(n) shown
in Fig. 8(a) for the two stimulation methods. Using
the first stimulation method (uncorrelated sensory noise),
we observed that p(n) first increases, meaning that the
excitability of the modules increases. After reaching a
maximum, p(n) decreases. Using the second stimulation
method (correlated sensory noise), we observed a mono-
tonic decrease of p(n) with decreasing the module size.
Since, except the module size, all model parameters were
fixed in our simulations for uncorrelated and correlated
noise, we believe that the observed decrease of p(n) at
large n is mainly due to finite-size effects. Finite-size
fluctuations are expected to increase as n increases and
disrupt collective oscillations in the neuronal networks.

We also suggest that the peak of the function p(n) ob-
served at n = 10 in the case of uncorrelated noise may
be caused by a competition between the increase of mod-



ule excitability and suppression of collective oscillations
as n increases. The large values of p(n) observed in the
case of correlated noise (see Fig. 8(a)) may be due to the
fact that the correlated noise results in correlations be-
tween neuronal activities of modules. As one can expect,
these correlations increase p(n) in comparison to the case
of uncorrelated noise. However, it is unclear how these
correlations together with finite-size effects are respon-
sible for the observed monotonic decrease of p(n) as n
increases in the case of correlated noise, in contrast to
the non-monotonic behavior of p(n) observed in the case
of uncorrelated noise.

Figure 9 shows that when the module size decreases,
sharp network oscillations evoked by signal’s pulses lose
their deterministic shape and strongly vary in amplitude.
Unfortunately, the mechanism of this effect is unknown.
It may be due to an increase of the clustering coefficient
when size N,, of the modules decreases. Neglecting the
directness of connections between neurons, we can esti-
mate the clustering coefficient characterizing the occur-
rence of triangles in the network structure. The clus-
tering coefficient is ¢/N,,, where ¢ is the mean degree
(size dependence of structural properties of complex net-
works and the role of triangles in network dynamics are
discussed in the review [32]). Appearance of numerous
triangles may destroy the balance between excitation and
inhibition. Note that standard statistical analysis shows
that the scale of stochastic activity fluctuations in a net-

work of size N, is O(l/ern/2) (see, for example, [42]).

Finally, we found the probability TI(n), using Eq. (11)
and averaging over the observation time. As one can see
in Fig. 8(b)), II(n) increases with increasing the number
of modules n for both stimulation methods. Interest-
ingly, at large n, even though p(n) decreases, II(n) re-
mains large, meaning that the large number of modules
compensates the decrease of p(n). Therefore, the frag-
mentation of the neuronal system into several modules
increases the reliability of signal detection.

Now we compare our model of interacting neurons with
the summing network [22] of noninteracting neurons. In
the summing network, neurons receive common input
and act in parallel. In our model, neurons are grouped in
modules receiving common input and working in parallel.
If the same fraction g, of neurons in both models is ini-
tially activated by a signal, then in the summing network
their outputs are summed while in our model they acti-
vate other neighbors, forming sharp spikes of neuronal
activity in the modules. Every spike involves about 90%
of the neurons in a module independently of g, if g, is
at least about 0.01 (at (n) = 16). Thus, the output from
the modules can be 0.9/g, = 90 times larger than the
one in the summing network. Note that our model is
best suited for detecting low frequency signals, whereas
the summing network recognizes high frequency signals
(since our model uses network oscillations, whereas neu-
rons in the summing network can generate action poten-
tials with higher frequency than network oscillations).
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FIG. 9. (Color online) (a) A train of random rectangular
pulses as a sensory signal. Panels (b)-(e) show stimulated
neuronal activity of one of n modules of size N,, = N/n for
N = 50400: (b) n = 2 (N, = 25200); (c) n = 10 (N, =
5040); (d) n = 30 (N, = 1680); (e) n = 40 (N,, = 1260).
Neurons receive independent sensory noise together with the
signal. Other parameters are the same as in Fig. 8.

V. CONCLUSION

In this paper, we demonstrated stochastic resonance in
the response of neuronal networks to sinusoidal signals
in the presence of sensory noise and intrinsic synaptic
noise. We also showed that SR together with modular
structure can remarkably improve signal detection. Our
simulations of the cortical model with stochastic neu-
rons and numerical integration of rate equations revealed
that sensory noise can enhance response of neuronal net-
works to sinusoidal and non-periodic pulsed signals. We
demonstrated this noise-enhanced response in the case
of neuronal networks that are in a dynamical state near
a saddle-node bifurcation corresponding to the appear-
ance of sustained network oscillations. In this state, neu-
ronal networks have a remarkable excitability. Even a
subthreshold sensory input delivered to a small fraction
of excitatory neurons can evoke a sharp large-amplitude
oscillation of neuronal activity synchronized with some
degree of correlation with the signal. These sharp os-
cillations are nonlinear events that represent a strongly
synchronized activity of a large fraction of neurons (90%
of neurons in our model) and have a deterministic shape.
We found that the signal-to-noise ratio reaches a maxi-
mum at an optimum level of sensory noise, manifesting
stochastic resonance. The important feature of our mech-
anism is that this mechanism is universal and does not
qualitatively depend on the underlying model. SR has
a collective nature due to interaction between neurons,
rather than just due to excitable dynamics of single neu-
rons as in models [6, 10, 11, 19, 21]. Therefore, breaking
of cooperation between neurons results in suppression of
this mechanism. Indeed, we observed suppression of sig-
nal detection by finite-size effects. However, these effects
play no role for single neuron dynamics.



Using our model, we mimicked the experiments of
Gluckman et al. [9] who observed SR in hippocampal
slices from mammalian brain. Results of our numerical
analysis qualitatively agree with the experiments. This
evidences that the phenomena observed in [9] may have
collective nature. It also supports the suggestion that SR
may enhance effects of weak hippocampal theta or more
widespread gamma oscillations within the brain.

We suggest that the network response represented by a
strongly synchronized activity of a large fraction of neu-
rons can also play an important role in various mecha-
nisms of signal processing in the brain. The fact that
the sharp oscillations have a deterministic form and can
be evoked by a small group of neurons may be of crucial
importance not only for signal detection, but also for in-
formation transmission and communication between dif-
ferent areas of the brain. This mechanism enables a small
group of neurons to control a large neuronal network.

In order to show the role of modular organization in
signal detection, we considered networks in which neu-
rons are grouped in modules working in the regime of
SR. Using numerical integrations and simulations of the
cortical model, we demonstrated that even a few modules

can strongly enhance the reliability of signal detection in
comparison with the case when a modular organization
is absent.

One can note the following important properties of our
model: (1) the amplification of subthreshold signals can
be regulated by a flow of spikes from other brain areas;
(2) a sensory signal can be delivered to a small fraction
(we used 10%) of neurons without a lost in the output
signal; (3) neurons in our network use for its own benefit
not only sensory noise but also internal synaptic noise;
(4) grouping of neurons into modules improves signal de-
tection.
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