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Abstract

Helmholtz free energies of the dominant binary crystalline solids found in the Cu-Zr system at

high temperatures close to the melting curve are calculated. Our theoretical approach combines

fundamental measure density functional theory (applied to the hard sphere reference system) and

a perturbative approach to include the attractive interactions. The studied crystalline solids are

Cu(fcc), Cu51Zr14(β), CuZr(B2),CuZr2(C11b), Zr(hcp) and Zr(bcc). The calculated Helmholtz

free energies of crystalline solids are in good agreement with results from molecular dynamics (MD)

simulations. Using the same perturbation approach, the liquid phase free energies are calculated as

a function of composition and temperature, from which the melting curve of the entire composition

range of this system can be obtained. Phase diagrams are determined in this way for two leading

embedded atom method (EAM) potentials, and the results are compared with experimental data.

Theoretical melting temperatures are compared both with experimental values and with values

obtained directly from MD simulations at several compositions.

∗ xsong@iastate.edu
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I. INTRODUCTION

The discovery of bulk metallic glass (BMG) behavior in the Cu-Zr binary system [1, 2]

has generated great interest as BMG exists in very few binary systems and it has unique

tunable mechanical properties [3, 4]. However the formation of BMG in deeply cooled

melts and its structural order are still not well understood [4–7]. It is believed that this phe-

nomenon should mainly depend on the kinetics and thermodynamics of accessible phases in

the supercooled region. Currently molecular dynamics (MD) simulations and experimental

studies are widely used in glass formation studies. Alternatively a comprehensive theoret-

ical approach with the ability to consistently describe the liquid phase as well as the solid

phases would have the potential to provide a deeper understanding of the glass formation

process. In this paper we present a theoretical approach that can be used to predict the

thermodynamic properties of liquid phase and solid phases near the coexistence region of

the Cu-Zr system.

The fundamental measure density functional theory in combination with thermodynamic

perturbation theory is used to calculate Helmholtz free energies and hence the melting

curve of complex binary crystalline phases. Fundamental measure density functional theory

(FMT) is known to provide accurate values of the excess free energy of hard sphere (HS)

systems [8–13]. In the liquid region the functional yields the Mansoori-Carnahan-Starling-

Leland (MCSL) equation of state [14] of HS liquid mixtures in a wide range of densities.

For a realistic system, the attractive interaction can be captured using the perturbation

theory due to Weeks, Chandler, and Andersen (WCA) [15, 16]. It should be noted that

similar perturbation approaches in combination with a HS reference system have been used

before to calculate the free energies of liquid mixtures and binary alloys [17]. However,

these approaches are either based on different methodologies for each phase, rather than

on a single theoretical approach, or only for very simple crystalline structures [18]. The

approach presented in this paper computes the free energies of all solid and liquid phases

within a single theoretical framework, and hence, has the advantage of providing a consistent

description of solid and liquid phase coexistence.

Previously, WCA perturbation theory, as refined by Ree et al. [19], has been success-

fully applied to study melting behavior by calculating the free energy of liquids and simple

crystalline solids (fcc), interacting with Lennard-Jones potentials, or metallic systems, inter-
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acting with embedded-atom method (EAM) or Finnis-Sinclair (FS) potentials [18, 20–24]. In

Ref. [22] the parameters of the reference HS system were taken from simulations as there is

no density functional that can provide reliable thermodynamic properties of HS bcc crystal,

whereas in Ref. [23, 24] the necessary properties of the HS system were obtained from FMT.

An application to the freezing of LJ mixtures [24] has been successful as the obtained spindle

and azeotropic-type solid-liquid phase diagrams of LJ mixtures are in good agreement with

simulations. A recent study of the freezing of Cu-Au alloys (fcc solid solutions) reproduced

experimental melting curves reasonably well using an EAM potential [18]. A self-contained

theoretical approach the does not require any input from simulations would have the poten-

tial to provide a broader understanding of the thermodynamics of multi-component systems

as simulations or experimental measurements are often not easily accessible.

In this paper we present an extension of the above theoretical approach to calculate the

Helmholtz free energy of complex crystalline metals in which the interatomic interactions

are given by EAM potentials. The studied crystalline structures are Cu-fcc, Cu51Zr14(β),

CuZr(B2), CuZr2(C11b), Zr-bcc and Zr-hcp. In this work we present results using two

different EAM potentials developed for the Cu-Zr system, namely a potential developed by

Mendelev et al. (MKOSYP) [25] and another potential by Sheng et al. (CMS) [26]. We show

that our theoretical approach has the potential to provide reasonably accurate results in a

wide range of temperatures and composition when compared to simulations and experiments

[27].

The rest of the paper is organized as follows. After a concise presentation of the theoretical

framework in Sec. II, the calculated Helmholtz free energies are compared with available

simulation data [28] for the MKOSYP potential. We also discuss the phase stability of the

above-mentioned crystalline solids using both EAM potentials near the melting curve. The

calculated melting curves are compared with simulation results and the experimental phase

diagram. Some concluding remarks are provided to indicate the complimentary roles of the

current approach and molecular dynamics simulations.
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II. THEORETICAL METHODOLOGY

In an EAM potential, the total potential energy of the system can be expressed as

Etot =
∑

i

Fα(ρ
e
i ) +

1

2

∑

i,j

φαβ(rij), (1)

where ρei is the total electron density at the site i due to the surrounding atoms, Fα is

the embedding energy of an atom in the host electron sea of the metal, and φαβ(rij) is the

interaction energy between an atom pair i and j at a distance of rij. The indices α and

β refers to the species type of atoms i and j. The host electron density of site i can be

calculated using the electron density functions f using the relation ρei =
∑

j fαβ(rij). Thus,

there are as many different values for the ρei as the number of asymmetric sites in the crystal.

To reduce the complexity of the notation we henceforth denote the nth asymmetric site of

the species α as αn.

In order to carry out perturbation calculations, we first convert the EAM potential to

an effective pair potential (ψαnβ(rij)) by performing a Taylor expansion of the embedding

energy function around the host electron density of a given site (ρeαn
) [29]. The resulting

so-called effective pair potential can be expressed up to second order as

ψαnβ(rij) = φαβ(rij) + 2F
′

α(ρ
e
αn
) fαβ(rij) + F

′′

α (ρ
e
αn
) fαβ(rij)

2. (2)

It is noted that in general ψαnβ(rij) 6= ψβnα(rij) when α 6= β. The equality holds only when

the two sites have the same symmetry, hence a certain amount of chemical information due

to site-dependent electron density is included even at the pair interaction level. In Fig. 1,

the effective pair potential corresponding to the MKOSYP potential is plotted both for the

pure material and for the CuZr(B2) structure.

Solid lines represent the interactions in the CuZr(B2) structure, while dashed lines repre-

sent Cu-Cu interactions in pure Cu-fcc and Zr-Zr interactions in pure Zr-bcc. In the effective

pair potential approximation, the total potential energy can be written as,

Etot =
∑

αn

(

Fα(ρ
e
αn
)− ρeαn

F
′

α(ρ
e
αn
)
)

xαn
+

1

2

∑

i,j

ψαnβn(rij), (3)

where xαn
is the fraction of atoms of type αn. The summation over αn is carried out only

over the asymmetric sites of both species in a unit cell.
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Figure 1. (Color online) Effective pair potentials for Cu-Cu, Cu-Zr and Zr-Zr interactions calculated

using the MKOSYP potential [25] The dashed lines represent the Cu-Cu interactions in fcc Cu

(black) and Zr-Zr interactions in bcc Zr (blue). Solid lines represent the pair interactions in the

CuZr(B2) structure.

The next step in our calculation is the division of the effective pair potential into a

reference and a perturbative potential. We follow the Weeks-Chandler-Anderson (WCA)

approach [15, 16] to the perturbation theory with some modifications for solid phases. Ac-

cording to the WCA approach, the division point for the reference (ψrαnβ
) and the perturba-

tive (ψpαnβ
) potentials is set to r = λαnβ, which is the minimum of the effective pair potential.

Thus we write

ψrαnβ(r) =







ψαnβ(r)− ϕαnβ(r) r ≤ λαnβ

0 r > λαnβ

, (4)

ψpαnβ
(r) =







ϕαnβ(r) r ≤ λαnβ

ψαnβ(r) r > λαnβ

, (5)

where ϕ = ψ(λ)− (r − λ)ψ′(r)|r=λ .

Next the reference potential is mapped to an additive HS system with appropriate HS
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diameters. The HS potential is given by

ψHSαβ (r) =







+∞, r < dαβ(T )

0, r ≥ dαβ(T )
. (6)

Effective temperature-dependent HS diameters (dαβ(T )) in the liquid phase are calculated

by numerically solving [30]

Iαβ =

ˆ

∞

0

yαβ(r)(exp[ψ
r
αβ(r)/kBT ]− exp[ψHSαβ (r)/kBT ]) dr = 0, (7)

where yαβ(r) are the cavity functions, kB is the Boltzmann constant, and T is the tempera-

ture. We follow the iterative method described in Ref. [24] instead of solving eq. 7 directly

for the HS diameters of the liquid phase.

For simple closed packed crystal structures (fcc and hcp), it is reasonable to approximate

HS diameters as that of the corresponding liquid [24] owing to the similarities in their

structures. However, this is not the case when considering complex crystal structures. For

complex crystal structures, we found that a first order approximation to eq. 7 also yields an

excellent agreement with the simulation results of crystalline metals. Namely, HS diameters

in crystals can be approximated following Barker and Henderson [31] as

dBαnβ =

ˆ λαnβ

0

(

1− e−ψαnβ(r)/kBT
)

dr. (8)

HS diameters of crystalline metals calculated in this manner depend on both temperature

and density. This is due to the underlying density dependence of the effective pair potential

derived from the EAM potential. An average HS diameter for each species (dCuCu and dZrZr)

is next obtained by averaging over the asymmetric sites of each species:

dCuCu = 1
NCu

∑NCu

n=1 d
B
CunCu

; dZrZr =
1
NZr

∑NZr

n=1 d
B
ZrnZr

, (9)

where NCu and NZr are the number of asymmetric sites of Cu and Zr in a given unit cell.

The additive condition of HS diameters can be imposed by adjusting the parameters λαnβ

(α 6= β) so that dCuZr = dZrCu = (dCuCu + dZrZr) /2 [24, 30].

The resulting mapped HS system may then be treated by methods developed in the

context of classical density functional theory (DFT) ( see Appendix A). We compute the

excess Helmholtz free energy (F ex
HS) using the white-bear version of the fundamental measure

theory (FMT) functional [11, 13]. For a given atomic packing fraction, F ex
HS only depends
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on the diameter ratio defined by dCuCu/dZrZr (< 1). The kinetic energy contribution to the

free energy of an HS system is accounted for by the ideal gas component:

F ID
HS =

ˆ

dr
∑

α

ρ(r)xα(ln(Λ
3
αρ(r)xα)− 1), (10)

where ρ(r) is the density of the solid, Λα = h/
√
2πmαkBT is the de Broglie wavelength of

species α, m is the mass. The integration is carried out over a unit cell of the crystalline

solid. The net free energy of the HS system can be written as

FHS = kBT
(

F ex
HS + F ID

HS

)

. (11)

The contribution of the perturbative potential to the free energy can be calculated using

the first order perturbative correction as follows:

FPT = 2πρ
∑

αn,β

xαn
xβ

ˆ

gHSαnβ(r)ψ
p
αnβ

(r) r2 dr. (12)

Within a mean-field approximation, the two-particle distribution function may be written

as a product of single particle density functions, so that ρ2(r1, r2) = ρ1(r1)ρ2(r2). With this

simplification, the radial distribution function of species 2 with respect to species 1 can be

expressed as

g12(r) =
1

4πV ρ1ρ2

ˆ

dΩ

ˆ

d~r1ρ1(~r1)ρ2(~r2 + ~r). (13)

In this approximation, the first peak of the radial distribution function is known to overes-

timate its true value. Previous work has focused on correcting the pair correlation near the

contact radius in simple solids (fcc) [32] and binary solid solutions [33]. These corrections are

however limited to simple systems, and additional complications arise when implemented

in complex systems. Thus in this work we are limited to the mean field pair correlation

function. Moreover, we notice that the contribution of such an approximation to the free

energy is relatively small. This is due to the flatness of the perturbative potential (accord-

ing to the WCA) near the contact radius where the deviation of the first peak is larger.

Within the density functional formalism, the single particle density function is described as

a summation of Gaussians located at each atomic site, i.e. ρβ(r) = (σβ/π)
3/2

∑

Ri
e−σβ(~r−

~Ri).

Assuming this density profile and fixing the location of the atom at site αn, it can be shown

that

gHSαnβ(r) =
1

4πρxβr

(σβ
2π

)1/2 ∑

Ri

e−σβ(r−Ri)
2/2 − e−σβ(r+Ri)

2/2

Ri

. (14)
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The net Helmholtz free energy of the crystalline solid is given by a summation of three

components as

F (T, ρ) = F1body + FHS + FPT , (15)

where F1body(ρ) =
∑

αn

(

Fα(ρ
e
αn
)− ρeαn

F
′

α(ρ
e
αn
)
)

xαn
is the one-body term which is the first

part in the right hand side of the equation (3).

III. RESULTS

The DFT calculation was carried out in dimensionless units in which the length is scaled

by the HS diameter of the larger species (in this case Zr) and the energy is measured in units

of kBT . Having mapped the reference potential into an HS system we can define atomic

packing fractions as η = π/6 ρ(xCud
3
CuCu

+ xZrd
3
ZrZr

) which is useful in distinguishing be-

tween the solid and liquid phases. We have previously used the FMT functional to calculate

the free energy of binary HS crystals [34]. The calculated excess free energy of AB13, AB2

and AB-like structures are in good agreement with the results from simulations. For the

Cu-Zr system we studied the HS models of five binary crystals: Cu5Zr(C15b), Cu51Zr14(β),

Cu10Zr7(φ), CuZr(B2) and CuZr2 (C11b). The fundamental measure functional gives well-

behaved minima for four HS crystal complexes in the two dimensional Gaussian space clearly

representing a solid phase. However, we noted that the FMT functional fails to give a stable

minimum for the structure Cu10Zr7(φ). (More details on the HS calculation can be found

in our companion paper [34].) Therefore in this work we continue with perturbation calcu-

lations only for three binary crystals – namely, Cu51Zr14(β), CuZr(B2) and CuZr2(C11b), as

these three binary crystals together with the pure Cu-fcc and Zr-bcc cover more than 90%

of the melting curve for this system.

For completeness, we also studied the pure Zr bcc structure following our perturbative

approach. However, anomalous behavior of the HS bcc structure using the DFT prevents

us from obtaining Gaussian parameters or HS free energies, in contrast to previous reports

[35–37]. Therefore, in our calculations both the Gaussian parameters and the free energies

were obtained from simulation results [38].

Given a thermodynamically stable HS reference system, we can perform the perturbation

calculations. The Helmholtz free energy is a function of both temperature and the atomic

density (Eq. 15). At a given temperature, we minimized F (ρ, T ) to obtain the relaxed
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Crystal ρs(Theory) ηs(Theory) ρs(Exp.) Tm (Theory) Tm (MD) Tm (Exp.)

Cu(fcc) 0.0840 0.548 0.0850 1260 K 1355 K 1360 K

Cu51Zr14(β) 0.0695 0.554 0.0716[39] 810 K 1050 K 1375 K

CuZr(B2) 0.0574 0.595 0.0577[40] 1204 K 1327 K 1210 K

CuZr2(C11b) 0.0513 0.605 0.0518[41] 1060 K 1276 K

Zr(bcc) 0.0430 0.560 1891 K 2100 K 2125 K

Zr(hcp) 0.0435 0.568 2090 K 2110 K

Table I. Optimized structure parameters and the predicted melting temperatures compared with

experimental data and molecular dynamics simulations. The number density ρs (in units of Å−3)

and packing fraction η are given for conditions that minimize F (ρ, T ) at 1200 K except for pure

Zr. Data for Zr-(bcc and hcp) are taken at 1800 K. The theory and the MD simulation data in this

table were produced only using the MKOSYP potential.

structures. The minimization was carried out at finite temperatures by only permitting the

lattice constants (a, b and c) to vary; a full minimization of the structure was only done

at 0 K. All finite-temperature calculations are done so as to preserve the lattice symmetry

of the structures. For the CuZr, Cu-fcc, and Zr-bcc structures, we set a = b = c. For the

other structures, aspect ratios were initially set to the following values: Cu51Zr14, a = b

and c/a = 0.7355 ; CuZr2, a = b and c/a = 3.472; Zr-hcp, a = b and c/a = 1.6211. We

found that the optimal aspect ratios are very close to the above set values with negligible

correction to the free energy. With the above constraints the minimization is carried out

only as a function of the atomic number density ρs = N/V , where N is the number of

atoms in a unit cell and V is the volume. In Fig. 2, the Helmholtz free energy is plotted

as a function of number density ρs for all three binary crystals studied. The two curves for

each structure correspond to the two EAM potentials considered in this calculation. For

all structures, we observe a minimum slightly below the experimentally reported number

density (see Table I). In table I we tabulate the number densities of the relaxed structures

calculated at T = 1200 K using the MKOSYP potential. For pure Zr (hcp and bcc) crystals

the densities were measured at T = 1800 K.

For all crystal structures the relaxed structure was determined at packing fractions η >

0.54 and at temperatures below the targeted melting values (see Table I). The variation of
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Figure 2. (Color online) The Helmholtz free energy F (T, ρ) plotted as a function of atomic number

density (ρ = N/V ) for three binary crystals in the Cu-Zr system: (a) Cu51Zr14, (b) CuZr and

(c) CuZr2. The minimum of each curve corresponds to the relaxed structure at that temperature.

Connected blue circles represent results for the MKOSYP potential and connected red squares

represent the results for the CMS potential.

η with crystal composition of Zr shows a reciprocal effect to the number density toward the

glass forming region. More precisely, we observed that the atoms in CuZr and CuZr2 are

more closely packed compare to the other monatomic crystals and also the studied Cu51Zr14

structure. This can be attributed to the contrast of the diameter ratio, about 0.79, for this

binary system.

In Fig. 3 the Helmholtz free energy is plotted as a function of temperature. The filled

symbols are calculated from the present theoretical approach using the MKOSYP potential

and open symbols are results obtained in ref. [28] from molecular dynamics simulations

using the same potential in which the Einstein crystal is taken as a reference system. For

one component crystals (Cu-fcc and Zr-hcp) the agreement between the two calculations is

excellent. For CuZr and CuZr2 the difference between the results is about 1% and 0.5%,

respectively. However, inaccuracy on the order of 1% could be crucial when determining the
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Figure 3. (Color online) Comparison between the theoretically calculated Helmholtz free energy, F

(eV/atom), and MD simulation. The filled symbols connected by solid lines are from our perturba-

tion calculations using the MKOSYP potential. The open symbols connected by dashed lines refer

to MD simulation results using the same EAM potential [28].

melting temperature. The effect on the melting temperature can be minimized by treating

the liquid in the same theoretical framework. To do so, we utilize the empirical Mansoori-

Carnahan-Starling-Leland (MCSL) equation of state [14], which is the liquid limit of the

FMT functional, to treat HS liquid mixtures. The liquid phase calculation was carried out

in a similar manner as the procedure described in ref. [18, 24].

More insight into the free energy and its temperature dependence can be obtained by

analyzing the behavior of the three contributions to the excess free energy (see eq. 15).

Fig. 4 shows the relative contribution of HS reference system (circles), the perturbative

terms (triangles), and the one-body terms (squares) to the total free energy, as a function

of temperature. For the six crystal structures studied in this work, similar behavior was

observed in these three contributions as functions of the density and temperature. The one-

body term F1body(ρ) comprises about 60% of the free energy and decreases with increasing

ρs. The perturbative correction (FPT ) accounts for the second-largest contribution to the

free energy, and increases with increasing ρs. The smallest contribution is associated with
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Figure 4. (Color online) Contributions to the Helmholtz free energy from the HS reference system

(dashed lines), the perturbative correction (solid lines) and the one body term (dotted dashed line)

determined by Eq. 15 as a function of temperature.

the HS reference system. For most of the structures studied, this contribution comprises

about 10% of the total, whereas that of FPT is about 30%. Nonetheless, it is clear that the

contribution from the HS reference system contributes substantially to the overall tempera-

ture dependence, and therefore an accurate determination of this term is important. In the

context of the perturbation approach, the HS reference contribution provides the entropic

contribution to the free energy, and hence varies strongly with temperature.

The coexistence temperatures of single-species solids (Cu and Zr) with a liquid mixture

of Cu(1−xl)Zrxl can be determined by matching the chemical potentials in two phases at

zero pressure. The coexistence of binary crystals with a liquid mixture can be obtained by

imposing the following equilibrium condition:

(µL
Cu

+ nµL
Zr
)/(1 + n) = GCrystal

Cu1−nZrn
, (16)

where µL
Cu

and µL
Zr

are the chemical potential of Cu and Zr in a liquid of composition xl. We

carried out the matching graphically as illustrated in Fig. 5. The dashed line represents

the Gibbs free energy (right hand side of the eq. 16) of the CuZr(B2) structure. The solid

lines represent the left hand side of eq. 16 at different liquid compositions(xl). The crossing
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Figure 5. (Color online) Gibbs free energy at zero pressure for crystalline CuZr (B2) (dashed line)

and the left hand side of the eq.16 for liquid mixture(solid lines). The crossing points of the above

two lines gives the coexistence temperature at the corresponding xzr.

points of these two lines give the melting temperature. It should be noted that the slopes

of these two curves are so close that a small discrepancy of the free energy would results

in a considerable deviation of the melting temperatures. As a rough estimate, about 1%

discrepancy in the free energy would change the melting temperature by 10% of its predicted

value.

The above procedure was extended to other crystal structures to trace out the melting

curve as depicted in Fig. 6. Both potentials well reproduce the variation of the melting

curve for CuZr(B2) structure as a function of xZr . With increasing Zr concentration in the

liquid near xZr ≈ 0.66 CuZr2 structure appears as a stable phase. However the melting curve

lies about 170 K below the experimental prediction. Upon further increasing xZr above 0.74,

we notice that the Zr(bcc) phase stabilizes but with relatively low melting temperature.

This behavior qualitatively matches the high temperature variation of the melting curve of

the Cu-Zr system. On the Cu-rich side of the phase diagram, Cu51Zr14 is the dominant

structure, giving a peak at T = 1390 K and xZr = 0.2154. However, both potentials provide

a low melting temperature for this structure (open left triangles connected by thin dashed
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temperature obtained from the MD simulations.

line in Fig.6).

To gain further understanding of the melting curve, we carried out MD simulations with

the MKOSYP potential. For Cu-fcc and Zr-bcc, melting temperatures are about 1355 K and

2100 K respectively. These are almost the same as the experimental values. The melting

temperature of CuZr(B2) determined from MD simulations is about 1330 K which over-

estimates the experimental value of 1200 K. In general the discrepancy of our theoretical

prediction is less than 10% below the simulated melting temperature on above three points.

In supporting our theoretical prediction, the simulated melting temperature of Cu51Zr14,

1050 K is considerably lower than the experimental value (1390 K). The theoretical predic-

tion is about 810K at xZr = 0.2154.

IV. DISCUSSION AND CONCLUSIONS

Calculating the melting curve from simulations is a computationally intensive task. In

particular, to obtain the melting curve for a liquid composition that is different from the

solid one using simulations is especially challenging. Furthermore, simulations of supercooled

14



liquid phases present additional challenges. For these situations applying a free energy route

based upon reliable theoretical methods to estimate the melting curve has several advantages.

In this work we demonstrate that the DFT approach using a recently developed FMT

functional in combination with perturbation theory can be successfully applied to binary

systems with complex solid phases. The calculated Helmholtz free energies and melting

curves of three dominating binary crystals: Cu51Zr14, CuZr , CuZr2 and three monatomic

crystals: Cu(fcc), Zr(hcp) and Zr(bcc), validate the current approach.

The agreement between simulation results and the experimental phase diagram is promis-

ing. The projected error in the free energy is less than 1% for binary crystals and negligible

for monatomic crystals (Cu-fcc and Zr-hcp) when compared with simulations. Nonetheless,

even greater precision is required to estimate the melting temperature with precision. Given

the above uncertainty in the free energy calculations 10 − 20% discrepancy is possible be-

tween simulated and theoretical values for the melting temperature. Comparison between

theoretical melting points and values obtained directly from MD simulation confirms the

importance of greater precision needed for theoretical calculations of free energies.

The majority of the error in the free energy when computed following this approach is

likely associated with the one-body term (see eq. 15) since the one-body term comprises

about 60% of the total. Error in this contribution would probably arise as a result of the

procedure required to map the EAM potential to an effective pair potential. Error due to the

HS contribution would contribute disproportionately to the variation in the free energy with

temperature. In the case considered in this work, the contribution to the total free energy

is small (12%). The second largest contribution to the free energy, comprising about 30%

of the total, is associated with the perturbative correction. An improved approach to treat

the attractive interaction will be essential to improve the overall accuracy of this method.

The low melting temperature for Cu51Zr14 obtained in this work could be an artifact

of the EAM potential. These potentials are developed to match experimental properties

only in a certain window around the glass forming compositions, with xZr ≈ 0.5, and

Cu51Zr14 evidently falls outside of this window. However, the theoretical approach presented

here may equally well applies to interaction potentials based on direct quantum mechanical

computations, and this direction will be the subject of future research.
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Appendix A: Fundamental Measure Theory

The density functional theory for many body classical systems follows the Mermin theo-

rem. Given the grand canonical ensemble there exists a functional of single particle density
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distributions ρi(~r) such that,

Ω[ρ1, ρ2, · · · · · · , ρv] = F [ρ1, ρ2, · · · · · · , ρν ] +
ν

∑

i=1

ˆ

d3rρi(~r)
(

V ext
i (~r)− µi

)

, (A1)

where V ext
i (~r) is the external potential and µi is the chemical potential of species i. The

functional describing the Helmholtz free energy F [ρ1, ρ2, · · · · · · , ρν ] is independent of the

external potential. The equilibrium density distributions ρ0i (~r) and the grand potential can

be obtained by the variational principle,

δΩ[ρ1, ρ2, · · · · · · , ρν ]
δρi (ρi(~r)=ρ0i (~r))

= 0. (A2)

When studying a crystalline phase, the density profile is assumed to be of a Gaussian

form centered at each lattice site. The density profile of species i in a multi-component

system can be expressed as,

ρi(~r) =
(αi
π

)3/2 ∑

~ri

e−αi(~r−~ri)2 , (A3)

where α is the Gaussian parameter and ~ri is the location of species i. The summation

covers all the sites occupied by species i. The system is scaled with respect to the diameter

of the largest species (dA) and the diameter ratio is defined as σ = dB/dA. Then the

minimization of the free energy functional is performed with respect to the dimensionless

Gaussian parameters, αid
2
A.

The Helmholtz free energy functional of a mixture of ν species can be split into two parts:

βF [ρ1, ρ2, · · · · · · , ρν ] =
ν

∑

i=1

ˆ

d3~r
(

ln(ρi(~r)Λ
3
i )− 1

)

ρi(~r) + βFex[ρ1, ρ2, · · · · · · , ρν ], (A4)

where Λi is the de-Broglie wavelength of species i and β = 1/kBT . The first part in the right

hand side of the above equation gives the contribution due to the non-interacting particles

and the later is the excess free energy.

In the fundamental measure theory, the hard sphere interaction contribution to the excess

free energy functional can be expressed in terms of weighted densities as[8, 9],

βFex[{ρi}] =
ˆ

d3~r′
3

∑

j=1

Φj(η(~r), ni(~r), ~vi(~r), Ti(~r)), (A5)
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where the 2 scalar (ηi(~r) and ni(~r)), a vector (vi(~r)) and a tensor (Ti(~r)) weighted densities[12,

13] are defined as the following:

η(~r) =
v

∑

i=1

ˆ

d3~r′ρi(~r
′)Θ(Ri − |~r − ~r′|), (A6)

ni(~r) =
1

4πR2
i

ˆ

d3~r′ρi(~r
′)δ(Ri − |~r − ~r′|), (A7)

~vi(~r) =
1

4πR2
i

ˆ

d3~r′ρi(~r
′)δ(Ri − |~r − ~r′|)(~r − ~r′)

Ri

, (A8)

T m,n
i (~r) =

1

4πR2
i

ˆ

d3~r′ρi(~r
′)δ(Ri − |~r − ~r′|)(~r − ~r′)m(~r − ~r′)n

R2
i

, (A9)

where T m,n
i (~r), (m,n = 1, 2, 3), are the tensor components. The function Θ(x) is the

Heavyside step function and δ(x) is the Dirac’s delta function. The Ri is the hard sphere

radius of species i. In the WB version of FMT the functional Φi are

Φ1[ρ] = −
ˆ

d3~r ln[1− η(~r)]

ν
∑

i=1

ni(~r), (A10)

Φ2[ρ] = 2π
ν

∑

i,j=1

RiRj(Ri +Rj)

ˆ

d3~r
ni(~r)nj(~r)− ~vi(~r).~vj(~r)

(1− η(~r))
, (A11)

and

Φ3[ρ] = 12π2

ν
∑

i,j,k=1

R2
iR

2
jR

2
k

ˆ

d3~rϕijk(~r)f3(η(~r)), (A12)

where

ϕijk(~r) = ~vi.Tj . ~vk − nj~vi. ~vk − Tr [TiTjTk] + njTr [TiTk] , (A13)

and

f3(η) =
2

3η

(

η

(1− η)2
+ ln (1− η)

)

. (A14)
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