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The rate of convergence in extreme value statistics is non-universal and can be arbitrarily slow.
Further, the relative error can be unbounded in the tail of the approximation, leading to difficulty
in extrapolating the extreme value fit beyond the available data. We introduce the T method,
and show that by using simple nonlinear transformations the extreme value approximation can be
rendered rapidly convergent in the bulk, and asymptotic in the tail, thus fixing both issues. The
transformations are often parameterized by just one parameter which can be estimated numerically.
The classical extreme value method is shown to be a special case of the proposed method. We
demonstrate that vastly improved results can be obtained with almost no extra cost.

PACS numbers: 02.50.-r

Extreme value statistics provides a universal statistical
description of rare events. Such events dictate the fate
of a vast variety of phenomena spanning science, engi-
neering, and humanities alike. Examples include hydrol-
ogy and one-hundred-year floods [1–3], climatology [4, 5],
ground states of random energy model [6] and directed
polymers [7], catastrophic fracture [8–11], novelty detec-
tion [12], stock price fluctuations [13, 14], risk manage-
ment [15, 16], large insurance claims [17, 18] and so on.
The field of extreme value statistics is based on a mathe-
matical theorem [19–22] which states that (with mild re-
strictions) the distribution of maximum or minimum of
a large set of uncorrelated random variables approaches
a universal form. Thus, the same universal theory can
be used to model the statistics of large floods, large in-
surance claims, low energy states of disordered systems,
or large cracks in a bridge. Unfortunately, this universal-
ity breaks down in two related ways. Firstly, the rate of
convergence to the universal extreme value form is non-
universal, and can be arbitrarily slow [23–26]. Secondly,
the mathematical theorem guarantees only uniform con-
vergence, thus the relative error in the tail of the distri-
bution is also non-universal and can be unbounded [27].
In spite of the vast applicability of extreme value statis-
tics and extensive research on the subject, no method is
available to overcome these issues. In this paper we pro-
pose the first method that gives a universal guarantee on
the rate of convergence as well as on the relative error in
the tail.

The non-universal behavior in convergence has impor-
tant practical consequences that are seldom discussed
outside of specialized mathematical literature. In several
applications such as hydrology or reliability engineering,
the amount of data available is rather small. For in-
stance, in hydrology even a century of data collection
leads to a mere hundred observations of the flood level at
a given geographical location. Similarly in reliability en-
gineering, conducting long and/or repeated experiments
can be extremely time and resource intensive. In such
cases statistical inference about the extremes needs to
be made on the basis of a small dataset. Clearly, slow
convergence to the limit form can lead to large statistical

errors. Further, by the very nature of the subject, rare
events are often outside the range of the available data
(think predicting a so-called ‘thousand year flood’ based
on a century worth of data). Thus, extrapolation needs
to made in the tail of the distribution, where the relative
error is non-universal, and can be extremely large. It is
clear that the issue of non-universal rate of convergence
and error of extrapolation must be examined carefully.

We demonstrate the non-universal behavior in extreme
value statistics and the associated issues with a simple
example. Consider an (admittedly contrived) industrial
process that grinds out metallic disks whose area, A, is
distributed exponentially, so that P (A < a) = 1 − e−a.
Two analysts are given 100 boxes, each containing 10
such disks. They are asked to approximate the proba-
bility distribution of the radii of largest disk in each of
the boxes. The first analyst (say, Bob) simply measures
the radius of the largest disk in each box, and fits these
100 observation to an extreme value form, perhaps us-
ing maximum likelihood estimation. The second analyst
(say, Alice) decides to take a different route. She mea-
sures the areas of the largest disk in each box, and fits
this data to an extreme value distribution. Then she
can predict the probability of the radii by using a simple
transformation. Both Bob and Alice report their find-
ings (figure 1), and the employers who know the exact
distribution fire Bob. What went so wrong for Bob?

A great deal of insight about convergence issues in ex-
treme value statistics can be gained by analyzing this
simple example. However, in order to appreciate the is-
sues involved we need to briefly recollect the standard
results of extreme value theory (details in Refs. [20–22],

and [28]). Let X̃ be a random variable with a cumulative

distribution function (cdf) F (·), thus P (X̃ < x) = F (x).

Let Xn = max(X̃1, . . . , X̃n) be the maximum of n in-
dependent and identically distributed (iid) random vari-
ables drawn from distribution F (·). The distribution
of Xn is then given by P (Xn < x) = F (x)n. Theo-
rems in extreme value statistics state that under mild
restrictions F (anx + bn)

n → Gγ(x), where Gγ(x) =

exp{−(1+γx)−1/γ} is the universal extreme value distri-
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FIG. 1. (Color online) Comparison of the exact and estimated
probability of the radius of the largest of 10 disks being greater
than r. Bob’s estimate (thick blue line), based on the extreme
value theory, largely underestimate the probability of observ-
ing disks with large radii, while Alice’s estimate (thin red
line), based on treating area as the primary random variable,
and transforming back the results to get probability of radii,
works much better.

bution [19, 21, 22]. The exact value of γ, an, bn depends
on the details of F (·), but the form of Gγ(·) is universal.
The cases γ =, >, < 0 correspond to the Gumbel (or
type I), the Fréchet (or type II), and the Weibull (or type
III) distributions, respectively. Thus, Gγ((x − bn)/an)
can be used as an approximation for F (x)n. In prac-
tical applications γ, an, bn are treated as parameters
to be fit to data, and are typically estimated by using
maximum likelihood estimation (MLE). Predictions are
made by extrapolating the obtained fit. The success of
the extreme value theory is due to its stark simplicity.
In any application where the statistics are dominated by
rare events, one can use a simple analytical form for the
distribution function that is parameterized by just three
free parameters.

Let us now analyze the Alice-Bob example. Let
P10(A < a), P10(R < r) be the probabilities that the
area, radius of the largest disk in the box of 10 disks
are lesser than a, r, respectively. Clearly, P10(A < a) =

(1 − e−a)10 and P10(R < r) = (1 − e−πr2)10. It is also
clear that the tail of radius distribution, P10(R < r),
decays faster than exponentially for large r, thus any
extreme value distribution, Gγ(r), will not be able to
model it accurately. On the other hand, the tail of
the area distribution, P10(A < a) ∼ 1 − 10e−a, de-
cays exponentially, and can be modeled accurately by
G0(a − log 10) = exp(−10e−a) ∼ 1 − 10e−a. Thus,
there is an inherent advantage to working with A as
the random variable being fit to extreme value distri-
butions, even though A and R are simply related by
A = πR2. This is an example of non-universal behav-
ior in extreme value statistics. After a fit has been ob-
tained for A, the probability for R can be obtained easily

by transforming back via P10(R < r) = P10(A < πr2).
Figure 1 shows a comparison of Bob’s and Alice’s esti-
mates and the exact result. Since there were 100 boxes,
the empirical data was available at a probability level of
1 − P = 10−2. Up to this level both estimates agree
reasonably with the exact result. However, at r = 1.91,
the exact result is 1 − P10(R < r) = 10−4, Bob’s esti-
mate is 1 − PB(r) = 4.5 × 10−7, and Alice’s estimate is
1 − PA(r) = 7.3 × 10−5. Thus, Alice’s estimate is off
by about 25%, while Bob’s is off by more than two or-
ders of magnitude. Indeed, considerable advantage can
be gained by working with a suitable nonlinear trans-
formation of the data. The challenge is to identify the
correct transformation, and this is precisely what the
method to be proposed in this letter does. We call the
proposed method the T method (‘T’ for Transformation
based method).
The insight gained from the above example can be for-

malized. However, in order to facilitate the discussion
we need to introduce two widely used notions of con-
vergence in extreme value statistics. The absolute error
of approximation is often characterized by the following
asymptotic expansion for large n,

F (anx+ bn)
n −Gγ(x) ∼ W (n)G′

γ(x)Ĥγ [Gγ(x)], (1)

where the exact form of the function Ĥ(·) is somewhat
complicated [23]. Such expansions are called Edgeworth-
type expansions, and are used widely in mathematical
statistics [23, 29]. In the above expansion, the rate of con-
vergence is governed by the F (·)-dependent non-universal
function W (·) [23]. The decay of W (n) for large n can be
arbitrarily slow (or arbitrarily fast) depending on F (·).
For example, W (n) = 0 identically if F (x) = Gγ(x),
W (n) ∼ −1/2n if F (x) = 1 − e−x (the standard expo-

nential distribution), and W (n) ∼ −1/2 log(n/
√
2π) if

F (x) =
∫ x

−∞
e−t2/2/

√
2πdt (the standard normal distri-

bution) (supplemental section 4). Thus, the rate of con-
vergence can range from infinitely fast to logarithmically
slow (or worse). The logarithmic rate of convergence is
obviously a cause of concern in practice. Refs. [24, 25]
show that the convergence can sometimes be improved
by considering penultimate approximations, but the rate
still remains logarithmic in several cases of interest. We
will show that by using the proposed T method the rate
of convergence can be improved considerably. The T
method provides a guaranteed 1/n convergence as op-
posed to 1/ logn or slower in worse case for classical ex-
treme value statistics.
A second measure of convergence is needed because

the Edgeworth expansion characterizes the absolute er-
ror, and is not a good measure of the relative error be-
tween F (anx + bn)

n and Gγ(x) in the upper (or lower)
tail. The relative error can be dominated by the higher
order terms that are ignored in the Edgeworth expansion.
The relative error in the tail is important for extrapolat-
ing the results beyond the available data. In such cases,
the quality of the upper tail of the approximation is mea-
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sured by the ratio [27]

L(x) ≡ (1− F (anx+ bn)
n)/(1−Gγ(x)). (2)

Ideally L(x) should stay close to 1. However, practically
it can differ significantly from its ideal value of 1 for x
close to x+ ≡ supx{x : F (x) < 1} at fixed n. This behav-
ior is characterized by studying the range of x at a given
n for which L(x) is close to 1 [27]; the bigger the range,
the better the approximation. As before, the behavior
is non-universal and a variety of outcomes are possible
depending on the details of F (x). L(x) approaches its
ideal value of 1 for the exponential distribution, while
it decays to 0 rather quickly for the normal distribution
(supplemental section 5). This behavior can lead to par-
ticularly severe errors and uncertainty when the fit to the
extreme value approximation is extrapolated beyond the
available data (as in the Alice-Bob example). As men-
tioned earlier, such extrapolation is carried out routinely
in extreme value analysis. We will show how this dif-
ficulty can be overcome by using the T method which
guarantees that L(x) → 1.
It is sometimes indicated in the literature that the slow

rate of convergence is limited to the cases where γ = 0,
i.e. the Gumbel (type I) distribution. This is incorrect
(supplemental section 14). However, it is true that out
of the most commonly used distributions, the cases with
γ = 0 are more prone to such issues. We shall restrict
our discussion to such case from here onwards. However,
our method is equally applicable to other cases.
The essential insight gained from the Alice-Bob ex-

ample was that it can be advantageous if we apply a
suitable nonlinear transformation to the data, instead
of working with the raw data itself. Suppose that we
have data vectorX, where eachX[i] = max(X̃1, . . . , X̃n),

and X̃i are iid random variables drawn from an under-
lying distribution F (·). What is the optimal choice for

a transformed variable Ỹ = T̂ (X̃)? Clearly, if we choose

T̂ (·) = G−1
0 (F (·)), then the distribution of Ỹ becomes

P (Ỹ < y) = G0(y), and the transformed data Y is de-
scribed perfectly by an extreme value distribution with
linear rescaling, P (Y[i] < y) = G0((y − bn)/an), where
an = 1, bn = logn. The distribution of X can now be
recovered exactly as P (X[i] < x) = G0((T̂ (x) − bn)/an).
Thus, working with a suitably transformed variable com-
pletely suppresses the systematic errors of the extreme
value approximation in the sense of Eqs. 1, 2. However,
there is a slight problem with this scheme: it demands
that to construct T̂ (·) we know F (·), which if we knew, we
could calculate the distribution of X (= F (·)n) exactly
without this elaborate scheme anyway!
The problem can be made more tractable by observing

that since the large (or small) observations that dominate
the extreme value statistics are described by the tail of
the distribution F (·), it is not necessary to know F (·)
in full detail to construct a reasonable transformation.
It is intuitive that the first few terms in the asymptotic
expansion of F (·) must suffice. We will show that just

the leading term in the expansion is sufficient to arrive at
an excellent approximation. Let F (x) ∼ 1 −∑

∞

i=0 fi(x)
be an asymptotic expansion for large x (or for x near
x+ if the distribution F (·) has bounded support), where
the gauge functions fi(·) are monotonic. Then the trans-

formation Ỹ = T (X̃) = − log f0(X̃) has the following
properties

F (T−1(anx+ bn))
n −G0(x) ∼

1

2n
G′

0(x)Ĥ0[G0(x)], (3)

(1− F (T−1(anx+ bn))
n)/(1−G0(x)) → 1, (4)

where, an = 1, bn = logn, Ĥ0[G0(x)] = e−x + x− 1 (the
proofs are simple, see supplemental section 7). Thus, ir-
respective of the details of F (·), we have guaranteed that
the absolute error converges as 1/n, and the relative er-
ror in the tail vanishes. This is a significant improvement
over the classical extreme value statistics, where there
is no guarantee on either of these behaviors. Clearly,
G0((T (x)− bn)/an) is a good approximation for F (x)n.
The proposed method, which we call the T method, is

now clear. We parameterize the transformation T (x) =
− log f0(x) by a parameter β. For several common distri-
butions, the forms T (x) = xβ , (log(x))β are suitable (see
supplemental section 13 for a discussion of how to chose
T (x) based on the data). Then we have a parameter vec-
tor θ = (β, an, bn), and a model G0((T (X|β) − bn)/an).
Given data vector X the parameter vector θ can be esti-
mated via the maximum likelihood method by maximiz-
ing the following likelihood function

L(θ|X) =
∑

i

log ∂Xi
G0((T (Xi|β)− bn)/an). (5)

Thus, the T method is no more complicated or com-
putationally taxing than the classical extreme value
statistics where one maximizes the likelihood function∑

i log ∂Xi
Gγ((Xi − bn)/an) to estimate the parameter

vector (γ, an, bn).
We test the proposed method on data generated from

the normal and the lognormal distribution, as well as
from simulations of height of Brownian excursions [30],
and strengths of local load sharing fiber bundles [9, 31]
(details of these models can be found in the cited refer-
ences and supplemental section 11). The fiber bundle is
a widely used model of fracture, while the Brownian ex-
cursion finds applications in stochastic processes, graph
theory [32], and theory of fluctuating interfaces [33].
In the supplemental section 9 we demonstrate applica-
tions to a meteorological data set (the Venice sea level
data [34, 35]), and in section 9 to data drawn from expo-
nential distribution. The applicability of extreme value
statistics to such a wide variety of phenomena again
shows its universal nature. In all the cases we have stud-
ied so far, the T method presents an improvement over
the classical method.
We generate random samples X of size 100.

For the normal and lognormal case each X[i] =
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FIG. 2. (Color online) Comparison of the classical extreme
value approximation with the T method for (a) normal dis-
tribution, (b) lognormal distribution, (c) height of a Brown-
ian excursion [30], and (d) strength of a fiber bundle [9, 31].
The main graph shows the QQ plot, i.e. model versus empir-
ical (or exact, in the normal and lognormal case) inverse cdf,
while the upper x-axis shows the appropriate exceedance cor-
responding to the quantile on the main x-axis. The dashed
black line is a guide to the eye and shows the ideal result.
The solid lines show the quantiles averaged over 1000 Monte
Carlo runs, where the thick blue line is used for the extreme
value theory, while the thin red line is used for the T method.
The errorbars show the 2-standard deviation range. In each
Monte Carlo run the model fit to a sample of size m = 100,
and the fit is extrapolated to a probability level of 10−5 or
lower. It is clear that the T method yields better predic-
tions and less variance even when extrapolated well beyond
the range of the available data. Note the differences in the
fiber bundle (case (d)) because bundle strengths are modeled
as minima, as opposed to maxima in the other three cases.

max(X̃1, . . . , X̃n), n = 100, and X̃i are drawn from nor-
mal and the lognormal distributions, respectively. For
the case Brownian excursions, X̃i are heights of excur-
sions less than 106 steps long (without this condition the
excursions can extend indefinitely). For the fiber bun-
dle X[i] is the strength of a bundle consisting of 1000
fibers. The strength of the bundle is dictated by the
strength of its weakest flaw, thus this is a case where we
study the minima of random variables (the formulation
remains almost unchanged, supplemental section 10). We
estimate the parameter vector θ = (β, an, bn) by using
MLE (Eq. 5) with T (x|β) = xβ for normal, (log(x))β

for lognormal and excursion heights, and x−β for bundle
strengths. The fits to datasets of size 100 are then ex-

trapolated to a probability level (or reliability level, in
case of fiber bundle strength) of 10−5 or lower. The re-
sult of the extrapolation is compared to exact results in
normal and lognormal case, and to high precision numer-
ical results for the case of fiber bundles and excursions.
Figure 2 shows a favorable comparison of the results ob-
tained by the T method with the classical extreme value
approximation. It is clear that the suggested method
out-performs the classical extreme value approximation
with the same number of parameters.
The classical formulation of the extreme value statis-

tics is limited to iid random variables, and as such, so is
the T method. One future direction would be to extend
the T method to stationary sequences, where the classical
formulation is applicable under mild restrictions [36, 37].
Our understanding of the non-stationary and strongly
correlated random variables is limited. The few available
analytical solutions seem to indicate that there is no uni-
versality (and thus no general method) for the case of
non-stationary and strongly correlated variables [7, 38].
One possible direction for the correlated case would be
build on the filtering methods [39] that generate indepen-
dent extremes from dependent observations.
In summary, we have suggested a simple method,

which we call the T method, to alleviate the problem of
slow convergence of classical extreme value approxima-
tions. The method works by estimating a simple nonlin-
ear transformation that defines a new random variable
that has better convergence properties in the extreme
value sense. Some previous authors have studied rates of
convergence in nonlinear scaling in extreme value statis-
tics (see Refs. [40, 41]). Their results are rather remark-
able, however, their focus has been on studying W (n) for
specific transformations (power transformation, for ex-
ample) rather than constructing numerical methods of
wide applicability. In this sense the proposed T method
is complementary to their results. The T method was
applied successfully to distributions in the domain of at-
traction of the Gumbel (type I) distribution. We hope
that application of our method will lead to more reliable
estimates of probabilities of extremes in a large number
of applications.
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M. Droz, Phys. Rev. E 81, 041135 (Apr 2010).
[27] C. W. Anderson, Journal of the Royal Statistical Society.

Series B (Methodological) 40, 197 (1978).
[28] See Supplemental Material at [URL] for relevant intro-

ductory material on extreme value theory, and details of
the proofs presented in this paper.

[29] P. Hall, The bootstrap and Edgeworth expansion

(Springer, 1992).
[30] K. Chung, Arkiv for Matematik 14, 155 (1976).
[31] P. M. Duxbury and P. L. Leath, Phys. Rev. B 49, 12676

(May 1994).
[32] D. Aldous, The Annals of Probability 25, pp. 812 (1997).
[33] S. Majumdar and A. Comtet, Journal of Statistical

Physics 119, 777 (2005).
[34] R. L. Smith, Journal of Hydrology 86, 27 (1986).
[35] P. Pirazzoli, Acqua Aria 10, 1023 (1982).
[36] M. Leadbetter, Zeitschrift fr Wahrscheinlichkeitstheorie

und Verwandte Gebiete 28, 289 (1974).
[37] S. Coles, J. Heffernan, and J. Tawn, Extremes 2, 339

(1999), ISSN 1386-1999.
[38] D. S. Dean and S. N. Majumdar, Phys. Rev. E 64, 046121

(Sep 2001).
[39] J. A. Tawn, Journal of Hydrology 101, 227 (1988).
[40] E. Pantcheva, in Stability Problems for Stochastic Mod-

els, Lecture Notes in Mathematics, Vol. 1155, edited by
V. V. Kalashnikov and V. M. Zolotarev (Springer Berlin
Heidelberg, 1985) pp. 284–309.

[41] H. M. Barakat, E. M. Nigm., and M. E. El-Adll, Statis-
tical Papers 51, 149 (2010).


