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We study models with three coupled vector fields characterized by O(N1) ⊕ O(N2) ⊕ O(N3)
symmetry. Using the nonperturbative functional renormalization group, we derive β functions for the
couplings and anomalous dimensions in d dimensions. Specializing to the case of three dimensions,
we explore interacting fixed points that generalize the O(N) Wilson-Fisher fixed point. We find
a symmetry-enhanced isotropic fixed point, a large class of fixed points with partial symmetry
enhancement, as well as partially and fully decoupled fixed point solutions. We discuss their stability
properties for all values of N1, N2, and N3, emphasizing important differences to the related two-
field models. For small numbers of field components we find no stable fixed point solutions, and we
argue that this can be attributed to the presence of a large class of possible (mixed) couplings in
the three-field and multi-field models. Furthermore, we contrast different mechanisms for stability
interchange between fixed points in the case of the two- and three-field models, which generically
proceed through fixed-point collisions.

PACS numbers: 64.60.Kw, 64.60.ae, 11.10.Gh

I. INTRODUCTION

The N -vector model with O(N) group symmetry plays
an important role in the understanding of crucial aspects
of renormalization group (RG) flows: In four dimensions,
it exhibits a Landau pole and corresponds to a trivial the-
ory [1–4]. In other words, as an interacting model it is
only valid over a finite range of scales, thus constituting
an effective low-energy theory. This could affect the pos-
sible range of validity of the standard model of particle
physics [5–10] and could also play a role in cosmology as,
e.g., many inflationary models probably share this fea-
ture. On the other hand, in three dimensions the theory
exhibits an important example of an interacting RG fixed
point [11, 12]. Such fixed points are crucial in the under-
standing of scaling and universality in critical phenomena
[13–15] and, more recently, have been of considerable in-
terest, e.g., in the problem of the ultraviolet (UV) com-
pletion of gravity [16, 17]. On a more technical level,
well-known examples as, e.g., the infrared (IR) attrac-
tive Wilson-Fisher fixed point (FP) in the O(N) model
may provide an important benchmark test for nonper-
turbative methods, which one may then apply to other
problems of interest (see, e.g., Ref. [18]).

Extending the O(N1) vector model by a coupling to an-
other O(N2) symmetric vector field leads to complex dy-
namics that has been discussed extensively in the context
of multicritical phenomena and systems with competing
order parameters [19–24]. Such a theory is characterized
by an O(N1)⊕O(N2) symmetry which admits a number
of interacting (IR attractive) FPs. These travel through
the coupling space of the model as the numbers of field
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components N1 and N2 are varied. At particular values
of N1 and N2, two of these FPs can collide and exchange
their stability properties, cf. Fig. 1. In this context, an IR
stable FP is defined as featuring only two positive critical
exponents, as this corresponds to the number of relevant
couplings that need to be tuned in order to approach
the FP. When two FPs collide, a FP with three positive
critical exponents trades one of them for a negative ex-
ponent, while the second FP picks up the additional rele-
vant direction and becomes unstable. As a consequence,
it turns out that for every combination of N1 and N2

there is exactly one stable FP. Of course, this statement
assumes that one considers renormalization group trajec-
tories within a single domain of attraction. In general,
the parameter/coupling space of the model will allow for
separate domains, where different FPs might exist, and
may or may not be stable.
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FIG. 1. We show a sketch of the value of the third largest
critical exponent, θ3, of three different FPs (solid, dotted,
and dashed lines) in the O(N1)⊕O(N2) model at fixed N1 as
a function of N2. The regime where a FP is stable is indicated
by the labels FP1, FP2 and FP3. As the coordinates of two
different FPs coincide at N∗2 and at N∗∗2 , these FPs exchange
their stability properties, and θ3 changes its sign if evaluated
beyond the stable regime. An explicit calculation showing
this situation can be found in Ref. [25].

In this work, we will for the first time provide a com-
prehensive analysis of a model with a coupling to an ad-
ditional field, with a resulting O(N1) ⊕ O(N2) ⊕ O(N3)
symmetry. Note that the O(N1)⊕O(N2) symmetry acts
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trivially on the third vector, and similarly the first two
fields transform as singlets under the O(N3) symmetry.
At first, one might expect that this model will exhibit
very similar behavior to that already encountered in the
case of the two-field models, and feature a single sta-
ble FP with three relevant directions at every value of
(N1, N2, N3). In this study, we present evidence for a
rather different behavior, where FPs exhibit a large num-
ber of relevant eigendirections in a given range of values
for the number of field components. This leads to the
absence of stable FP solutions in a part of the param-
eter space. In the following, we will argue that this is
a generic feature of multi-field models and is due to a
significantly increased number of possible mixed inter-
actions compared to the single-field or two-field models.
This behavior is akin to the absence of FPs in the low-
energy effective models for phases of strongly-interacting
matter [26, 27], or frustrated spin systems [28, 29]. In
both cases, one observes the absence of stable FP solu-
tions beyond some critical number of field components,
indicative of a first order phase transition (see, e.g., Ref.
[30]).

The presence of competing orders can change the na-
ture of a continuous transition or even drive it to be first
order. Although there are numerous examples in the lit-
erature, this is probably best illustrated using the exam-
ple of the two-field model [19–24]. Already at the mean-
field level one observes a suppression of the coexistence
region in the presence of a strong repulsive interaction
between the two competing fields [31]. If the coupling
assumes a critical value, the coexistence region vanishes
and the second-order lines merge to a first order transi-
tion. This dramatic change in the phase diagram marks
a change in the universality class of the adjacent multi-
critical point. Fluctuations will favor either one of these
scenarios (corresponding to a tetracritical or bicritical
point) as long as the associated fixed point is within its
domain of attraction.1 Multi-field models feature a differ-
ent possibility: Fluctuation-mediated interactions might
not only affect the universality class of the multicritical
point, but might even render it unstable, thus allowing
no IR convergent RG trajectory. The difference between
two- and multi-field models lies in the distinct RG flow
topologies and mechanisms of stability trading between
different fixed points, which leads to the absence of a
stable fixed point. We will investigate these properties
in detail in the following sections, as well as the general
behavior of systems with a large number of interacting
sectors.

The main motivation for this study is to gain an im-
proved understanding of generalized Wilson-Fisher uni-
versality classes (multicritical points) and to understand

1 This is not the case if the interactions are sufficiently strong and
the the total number of field components N = N1 +N2 is larger
than some critical value. Then, instead of a multicritical point
one observes a genuine first order transition in the phase diagram
of the model.

how these might show up in the phase diagram of sys-
tems with multiple order parameters. Previous work,
in the context of systems with two competing order pa-
rameters, has led to the understanding that the effect of
fluctuations plays an important role to address the sta-
bility of a particular continuous transition [19–24]. The
SO(5) theory of high-Tc superconductivity [23, 32] pro-
vides one example, where fluctuations of the order pa-
rameters are seen to alter the stability properties of the
associated fixed point and rule out such a theory as an
effective IR description in the region where both order
parameters become critical. On the other hand, it has
been pointed out that the interplay of two competing or-
der parameters might explain the presence of first order
transitions or spatially inhomogeneous phases that ex-
hibit finite wavevector ordering near quantum criticality
[31]. Here, we argue that first order transition might be a
generic scenario for systems that feature a large number
of competing phases.

The outline of this paper is as follows: In Sec. II
we present the model under consideration in detail. In
Sec. III we then explain the results of our study, dis-
cussing numerical results and scaling relations for several
different FPs. In the Appendix we present the renormal-
ization group flow equations for these models in d dimen-
sions, both in a local potential approximation (LPA) and
including anomalous dimensions. Sections II and III are
self-contained, and can be read without referring to the
technical details of our study.

II. MODEL

We consider a model with three different bosonic fields,
φ1, φ2, and φ3, with N1, N2, and N3 field components, re-
spectively. We derive the β functions from the nonpertur-
bative functional flow equation for the (Euclidean) scale
dependent effective action Γk [33], (see Appendix for de-
tails, and reviews, e.g., Ref. [34–40]). This method has
been shown to yield results in very good agreement with
those obtained from the ε-expansion and lattice simula-
tions in the case of the O(N) Wilson-Fisher FP, see, e.g.,
Ref. [41–44] and the O(N1)⊕O(N2) FPs [25]. To leading
order in the derivative expansion [45] our ansatz for Γk
reads

Γk =

∫
ddx

(
3∑
I=1

ZI (∂µφI)
2

+ Uk(φ1, φ2, φ3)

)
, (1)

where φaI , a = 1, . . . , NI , and φ2
I ≡ φaIφ

a
I . Here, we have

introduced the scale dependent effective potential

Uk =
∑
l,m,n

λ̄l,m,n
l!m!n!

(ρ̄I − κ̄1)
l
(ρ̄2 − κ̄2)

m
(ρ̄3 − κ̄3)

n
, (2)

which we have written in terms of the invariants ρ̄I =
1
2φ

2
I , thereby making the O(N1)⊕ O(N2)⊕ O(N3) sym-

metry manifest. The parameter k defines an infrared mo-
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mentum cutoff scale, on which the parameters and cou-
plings depend. For brevity we do not indicate the scale
dependence explicitly, i.e., λ̄l,m,n = λ̄l,m,n(k). Similarly,
scale dependent wavefunction renormalization factors are
simply denoted by ZI . We expand the scale dependent ef-
fective potential Uk around (possibly) nonvanishing scale
dependent minima for the fields, κ̄I .

For the identification of scaling solutions, we introduce
dimensionless renormalized couplings, given by

uk = Ukk
−d ,

κI = ZIk
2−dκ̄I ,

ρI = ZIk
2−dρ̄I ,

λl,m,n = λ̄l,m,nZ
−l
1 Z−m2 Z−n3 k−d+(l+m+n)(d−2) . (3)

We truncate the coupling space to a finite-dimensional
subspace of the form Eqs. (1) and (2), which includes all
relevant operators, i.e., those with a positive critical ex-
ponent at the FP of interest. Including field monomials
up to order 4, 6, and 8, defines the local potential ap-
proximation, LPA 4/4 + η, LPA 6/6 + η, and the LPA
8/8+η, respectively (depending on the inclusion of a scale
dependent wavefunction renormalization, ∂tZI 6= 0).

In order to distinguish physically meaningful from spu-
rious FPs arising within a given truncation, we demand
that a FP can be continued to higher orders in the trun-
cation, and universal quantities, e.g., critical exponents,
show signs of convergence. Further, corrections to canon-
ical scaling should not be too large, as otherwise we
would not expect our truncation to be reliable. More-

over, we demand that all eigenvalues of
(

∂2uk

∂ρI∂ρJ

)∣∣∣
ρI=κI

are non-negative. If this condition is violated, the expan-
sion point for the effective potential does not correspond
to its true minimum, and critical exponents evaluated
around this point will show poor convergence properties.

The parameter ∆ ≡ det
(

∂2uk

∂ρI∂ρJ

)∣∣∣
ρI=κI

serves to sepa-

rate the space of couplings into different (not necessarily
bounded) domains of attraction. Within such a domain
there exists at most one IR stable FP, characterized by
the strength of correlations [46]. In the following, we
will be interested specifically in IR scaling solutions in
the ∆ ≥ 0 domain, corresponding to a minimum of the
effective potential.

With these preliminaries and definitions we now turn
to analyze the fixed-point structure of this model.

III. FIXED-POINT ANALYSIS

For generic multi-field models with
⊕

I O(NI) symme-
try, a number of FPs and their stability properties can
be deduced from the existence of the O(N) Wilson-Fisher
FP. These FPs are typically characterized by an enhance-
ment of symmetry.

The isotropic fixed point (IFP) shows maximal symme-
try enhancement: All couplings at a given order in the

fields take the same value, i.e., in the three-field model
we have λl,m,n|l+m+n=2 ≡ λ2, and similarly for higher

order couplings. It is characterized by O(N) symmetry,
where N ≡

∑
NI . Accordingly, it features additional

massless Goldstone modes, even in the case of an un-
derlying discrete symmetry, e.g., with Z2 ⊕ Z2 ⊕ Z2

symmetry.

The decoupled fixed point (DFP) is characterized by
vanishing couplings between different sectors of the
theory. In a model with three fields this implies
λl,m,n = 0 if l,m 6= 0, l, n 6= 0, or m,n 6= 0. The
values of the couplings in each sector approach those
of the corresponding O(NI) Wilson-Fisher FP. How-
ever, while the action at that FP is fully decoupled,
critical exponents that relate to mixed couplings are
nontrivial.

The decoupled isotropic fixed point (DIFP) occurs for
the first time in a model with three fields: It is char-
acterized by a partial enhancement of symmetry, as
two fields remain fully coupled and the couplings in
those sectors become degenerate. Simultaneously, the
third field decouples completely and its couplings ap-
proach the corresponding values of the Wilson-Fisher
FP. There exist three realizations of this FP, as any
of the three sectors can be the one to decouple. For
generic multi-field models, a set of different DIFPs ex-
ists, where any number of the fields decouple, and the
couplings in the remaining sectors show a symmetry
enhancement.

We may additionally infer the existence of another class
of FPs from the knowledge of the anisotropic scaling
solution in the two-field model with O(N1) ⊕ O(N2)
symmetry. In general, any FP of the two-field model
can be extended to the three-field model as a partially
decoupled FP, where the third field decouples from the
other two and the fixed-point values of its couplings
are given by those of the Wilson-Fisher fixed point.
In particular, this applies to the biconical fixed-point
solution in the two-field model, which we identify as
the decoupled biconical fixed point (DBFP).

In analogy to the two-field case, we will refer to a FP in
the three-field model as stable, if it features three relevant
directions. This terminology relates to the requirement
that these three parameters need to be tuned to reach
the multicritical point.

Our model, cf. Eqs. (1) and (2), contains nine running
couplings in the potential when we take into account
all operators up to fourth order in the fields, that is,
the associated parameters κI and couplings λl,m,n with
l +m+ n = 2. They give rise to the nine largest critical
exponents of the model2. Going to higher orders in the

2 These can be calculated from the stability matrix

Θi,j =
∂βgi
∂gj

∣∣∣∣
FP

. (4)
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FIG. 2. This illustration of the two-dimensional subspace
of the two-field coupling space shows that the Wilson-Fisher
theory space is a one-dimensional subspace, corresponding to
the λ2,0 = λ0,2 line. The critical exponent along this direction
corresponds to the largest Wilson-Fisher critical exponent.
Another eigendirection of the stability matrix does not respect
the enhanced symmetry of the FP.

expansion of the effective potential, the number of run-
ning couplings λl,m,n increases. Accordingly, the number
of critical exponents will increase, but those subleading
critical exponents will be irrelevant. The leading order
critical exponents will typically receive corrections from
the additional higher-order couplings and will therefore
vary with the order of the truncation.

A. Isotropic fixed point

To determine the critical exponents at the IFP in
multi-field models, it is crucial to realize that a subset
of those is determined by the O(N) Wilson-Fisher expo-
nents. These correspond to the directions in theory space
which respect that full symmetry, i.e., those directions
that span the Wilson-Fisher theory space. Additional
directions in the full theory space break (a subgroup)
of the enhanced O(N) symmetry, and their associated
critical exponents are therefore not associated with the
Wilson-Fisher critical exponents, see Fig. 2.

It accordingly follows, that of the nine largest critical
exponents at the IFP, two are determined by the scal-
ing exponents of the O(N) Wilson-Fisher FP. Among
the additional critical exponents, one can observe a de-
generacy, which can be understood from the following
considerations:

Sufficiently close to d = 4, i.e., in the vicinity of the
noninteracting fixed point, the relevant perturbations at
the Wilson-Fisher FP are determined by the spin-l rep-
resentations of the O(N) symmetry group [47] (see also

Here, the gi label all the (dimensionless renormalized) run-
ning couplings/parameters and βgi define the corresponding beta
functions. The critical exponents are then given by:

θi ∈ −spec(Θ) . (5)

Ref. [23]). Here, we will assume that such a classifi-
cation of perturbations also holds for arbitrary dimen-
sions, and only operators up to quartic order need to
be taken into account. Defining the N -component field
Φ = (φ1, φ2, φ3), we find the following eigendirections of
the stability matrix at the IFP in the three-field model:

A scalar quadratic perturbation at the IFP ∼ m2Φ2,
where P2,0 = Φ2, defines the critical exponent ν re-
lated to the divergence of the correlation length, i.e.,
[m2] = 1

ν . This critical exponent is thus always posi-
tive, corresponding to one relevant direction.

From the quadratic perturbation P ab2,2 = ΦaΦb −
1
N δ

abΦ2 in the spin-1 representation of the O(N) sym-
metry group, we can construct an O(N) invariant op-
erator by a suitable contraction of indices where, e.g.,
P2,2 = φ2

I −
NI

N Φ2, I = 1, 2, 3. Then, the perturba-
tion ∼ vP2,2 defines the critical exponent y2,2 = [v] =
d − [P2,2]. For the three-field model, two independent
operators of that form can be constructed. Thus the
corresponding critical exponent shows a two-fold de-
generacy in the scaling spectrum. We emphasize that
these critical exponents are identical to those evalu-
ated for the O(N) symmetric IFP in the two-field or
anisotropic N -vector models, see, e.g., Ref. [23–25, 48].
These exponents are always positive, adding two fur-
ther relevant directions at the FP.

A scalar quartic perturbation ∼ uΦ4, where P4,0 = Φ4,
which is irrelevant at the IFP and defines the Wegner
critical exponent ω, yields a negative critical exponent,
i.e., [u] = y4,0 = −ω.

A quartic operator in the spin-1 representation of the
O(N) symmetry group: P ab4,2 = Φ2P ab2,2 can be con-
tracted to define the exponent y4,2 = d− [P4,2], which
is also given by the value calculated in the two-field
model and shows a two-fold degeneracy in the three-
field case.

A quartic perturbation in the spin-2 representation of
the O(N) symmetry group is given by

P abcd4,4 = ΦaΦbΦcΦd − 1

N + 4
Φ2
(
ΦaΦbδcd + p(a, b, c, d)

)
+

1

(N + 2)(N + 4)
(Φ2)2

(
δabδcd + p(a, b, c, d)

)
.

(6)

Note, that p(a, b, c, d) denotes inequivalent permuta-
tion of the indices on the preceding operator, e.g.,
ΦaΦbδcd → ΦcΦdδab + . . . or δabδcd → δacδbd + . . .
The corresponding perturbation defines the critical ex-
ponent y4,4 = d − [P4,4], which becomes negative for
N = 3, cf. Fig. 3. This critical exponent with three-
fold degeneracy is again determined by the two-field
model, see, e.g., Ref. [23, 25].
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N =
∑
NI θ1 = θ2 = y2,2 θ3 = 1

ν
θ4 = θ5 = θ6 = y4,4 θ7 = θ8 = y4,2 θ9 = −ω

3 1.790 1.362 0.086 -0.380 -0.756

4 1.818 1.292 0.196 -0.324 -0.775

5 1.842 1.240 0.289 -0.283 -0.797

TABLE I. Critical indices for the IFP in LPA 12 including anomalous dimensions. Our notation corresponds to the one
introduced in Ref. [25].
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FIG. 3. (Color online) We show the fourth-largest critical ex-
ponent at the IFP as a function of N1, with N2 = N3 = 1
(upper panel) and as a function of N1 = N2 = N3 (lower
panel), with the LPA 4 result (green circles), LPA 6 (blue
squares) and LPA 8 (red diamonds). The LPA clearly con-
verges rapidly. As this exponent is positive beyond the LPA
4 and shows a three-fold degeneracy, the IFP is characterized
by a total of six relevant directions.

Our explicit numerical results within the LPA up to
8th order of the three-field model confirm this picture.
We may therefore directly exploit the LPA to order 12 in-
cluding anomalous dimensions within the two-field model
to obtain the corresponding exponents. Note that a com-
parable computation in the full three-field model is quite
demanding due to large number of couplings between dif-
ferent sectors of the model. Using our results for the
two-field case, see Ref. [25], we can accordingly deter-
mine the nine largest critical exponents of the model, cf.
Tab. I. In general the IFP shows a large number of rele-
vant parameters that require tuning to approach the FP.
In fact, the IFP is unstable for any integer combination
of field components (N1, N2, N3). It is clear that this
pattern will persist to generic multi-field models where
additional fields are coupled to the system – for each ad-
ditional sector the number of relevant directions at the
IFP increases (at least) by three.

N1 N2 N3 θ1 θ2 θ3 θ4 θ5 θ6

1 1 1 1.571 1.571 1.571 0.142 0.142 0.142

2 1 1 1.459 1.571 1.571 0.030 0.030 0.142

3 1 1 1.367 1.571 1.571 -0.062 -0.062 0.142

4 1 1 1.296 1.571 1.571 -0.133 -0.133 0.142

2 2 1 1.459 1.459 1.571 -0.082 0.030 0.030

3 2 1 1.367 1.459 1.571 -0.174 -0.062 0.030

4 2 1 1.296 1.459 1.571 -0.245 -0.133 0.030

3 3 1 1.367 1.367 1.571 -0.266 -0.062 -0.062

2 2 2 1.459 1.459 1.459 -0.082 -0.082 -0.082

3 2 2 1.367 1.459 1.459 -0.174 -0.174 -0.082

TABLE II. We list the six largest critical exponents as a func-
tion of N1, N2, N3 at the DFP, employing results from the
LPA 12 including anomalous dimensions from [25] and using
the scaling relations Eqs. (7) – (9).

B. Decoupled fixed point

At the DFP, the nonvanishing couplings, i.e., the mass
parameters and self-couplings lead to one relevant and
one irrelevant direction in each sector. The associated
critical exponents are those of the corresponding O(NI)
Wilson-Fisher FP. While the mixed couplings such as
λ1,1,0 vanish at the FP, the corresponding critical ex-
ponents are nontrivial. This follows, as the FP is an
interacting FP, and these residual interactions affect
scaling dimensions of operators even if the correspond-
ing coupling vanishes. In other words, contributions
∼ λ1,1,0λ2,0,0 in the β functions yield nonvanishing en-
tries in the stability matrix even if λ1,1,0 = λ1,0,1 = . . . =
0.

At the DFP, the eigendirections corresponding to the
six largest critical exponents can be determined using a
scaling relation: The quartic couplings λ1,1,0, λ1,0,1, and
λ0,1,1 correspond to eigendirections of the FP with criti-
cal exponents

θ4 =
1

ν1
+

1

ν2
− d , (7)

θ5 =
1

ν1
+

1

ν3
− d , (8)

θ6 =
1

ν2
+

1

ν3
− d , (9)
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LPA 8

N1 N2 N3 θ1 θ2 θ3 θ4 θ5 θ6

1 1 1 1.537 1.537 1.537 0.067 0.067 0.067

2 1 1 1.399 1.537 1.537 -0.057 -0.057 0.067

3 2 1 1.306 1.399 1.537 -0.275 -0.150 -0.057

∆θ4 ∆θ5 ∆θ6

1 1 1 0.007 0.007 0.007

2 1 1 -0.007 -0.007 0.007

3 2 1 -0.020 -0.007 -0.007

LPA 8+η

N1 N2 N3 θ1 θ2 θ3 θ4 θ5 θ6

1 1 1 1.564 1.564 1.564 0.080 0.080 0.080

2 1 1 1.447 1.564 1.564 -0.028 -0.028 0.080

3 2 1 1.359 1.447 1.564 -0.220 -0.112 -0.028

∆θ4 ∆θ5 ∆θ6

1 1 1 0.047 0.047 0.047

2 1 1 0.038 0.038 0.047

3 2 1 0.027 0.035 0.038

TABLE III. We list the six largest critical exponents as a
function of N1, N2, N3 at the DFP, within the LPA 8 and
LPA 8 with anomalous dimensions (LPA 8+η). We do not
exploit the scaling relations, but instead evaluate all critical
exponents explicitly from the β functions at the DFP. We
check the scaling relation explicitly and give the deviation to
this order of the truncation. The inclusion of the anomalous
dimensions leads to a slightly larger violation of the scaling
relation.

where νI = 1
θI

, I = 1, 2, 3. These scaling relations can

be motivated as follows [21, 49]: At the DFP, the decou-
pling of the three sectors implies [φ2

Iφ
2
J ] = [φ2

I ] + [φ2
J ].

Furthermore, the scaling dimensions of φ2
I are – due to

the decoupling – determined by the Wilson-Fisher criti-
cal exponents, such that [φ2

I ] = − 1
νI

+ d. The relations

Eqs. (7) – (9) follow directly.

We observe that the violation of the scaling relation is
slightly larger when anomalous dimensions are taken into
account. This is not necessarily surprising, as the main
effect of a running wavefunction renormalization is not
to give a sizable improvement in the value of the critical
exponents, but instead to provide a first reasonable esti-
mate of the value of η itself. We expect that an enlarge-
ment of our truncation, including a field-dependent wave-
function renormalization (or, in other words, momentum-
dependent interaction terms), will improve the situation.

Accordingly the stability of this FP can be determined
completely from a knowledge of the Wilson-Fisher FP.
Employing a LPA to order 12, including anomalous di-
mensions, we arrive at the results given in Tab. II, cf.
Ref. [25]. Our results obtained within the LPA 8 for the
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FIG. 4. (Color online) We show the fourth-largest critical
exponent at the DFP as a function of N1 = N2 = N3, with
the LPA 4 result (green circles), LPA 6 (blue squares) and
LPA 8 (red diamonds). The LPA clearly converges rapidly.

three-field model show reasonable agreement with results
deduced from the scaling relations, cf. Fig. 4. In fact,
we may check the quantitative accuracy of the scaling
relations explicitly, without referencing the results from
the O(N) model. We simply calculate the deviations
∆θ4 = θ1 + θ2 − d − θ4, ∆θ5 = θ1 + θ3 − d − θ5, and
∆θ6 = θ2 + θ3 − d − θ6, shown in Tab. III for the given
data sets.

Our explicit numerical results in LPA 8 deviate from
the results inferred from the LPA 12 in the two-field
model in some cases. There, we expect that an enlarged
truncation in the three-field model will give results in full
agreement with those deduced from the two-field case. As
the number of couplings grows very substantially with the
truncation, such an explicit check is beyond the scope of
this work. Where LPA 8 and LPA 12 +η results deviate,
the latter are more trustworthy.

C. Decoupled isotropic fixed point

For three interacting fields, we observe a new FP, where
only one of the fields decouples, while the other two sec-
tors show an enhancement of symmetry. For the follow-
ing discussion, we will assume that it is the φ1-sector that
decouples, while the remaining sectors have a O(N2+N3)
symmetry. Two other possible DIFPs exist, for which one
of the other subsectors decouples, respectively.

Clearly, one positive critical exponent is inherited
from the O(N1) symmetric and another one from the
O(N2 + N3) symmetric Wilson-Fisher scaling spectrum.
Two critical exponents that are relevant for the stability
properties of this FP follow from the critical exponents
of the spin-1 and spin-2 perturbations of the two-field
isotropic O(N2 +N3) FP, i.e., y2,2 and y4,4. While y2,2 is
always positive, y4,4 becomes positive for N2 + N3 > 2.
We therefore conclude, that the DIFP can only be stable
for N2 = N3 = 1.

There are two further exponents that we need to con-
sider to establish the stability of the DIFP solution.
Both follow from a scaling relation exploiting the decou-
pling of the 1-sector: At the FP, the operators O1 =
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N1 N2 N3 θ1 θ2 θ3 θ4 θ5 θ6

1 1 1 1.765 1.571 1.459 0.336 -0.042 0.030

2 1 1 1.765 1.459 1.459 0.224 -0.042 -0.092

3 1 1 1.765 1.367 1.459 0.132 -0.042 -0.174

4 1 1 1.765 1.296 1.459 0.061 -0.042 -0.245

5 1 1 1.765 1.242 1.459 0.007 -0.042 -0.299

6 1 1 1.765 1.203 1.459 -0.032 -0.042 -0.338

TABLE IV. Critical exponents at the DIFP, using the LPA
12 including anomalous dimensions, and employing the above
scaling relations.

φ2
1(φ2

2 + φ2
3) and O2 = φ2

1

(
φ2

2 − N2

N2+N3
(φ2

2 + φ2
3)
)

corre-

spond to eigendirections of the stability matrix. As we
know from the Wilson-Fisher FP that the scaling dimen-
sion [φ2

I ] = − 1
νI

+ d, we deduce that

[O1] = − 1

ν1
− 1

ν2+3
+ 2d, (10)

and accordingly the corresponding critical exponent is
given by

θ6 =
1

ν1
+

1

ν2+3
− d . (11)

Similarly, we deduce for the second operator that the
corresponding critical exponent is given by

θ4 =
1

ν1
+ y2,2 − d , (12)

where y2,2 is the scaling dimension of the coupling be-

longing to φ2
2 − N2

N2+N3
(φ2

2 + φ2
3) in the two-field case, cf.

Ref. [25]. The first relation is the one that arises for a
two-field DFP, and gives a negative critical exponent (for
values of N1 > 1).

At fixed N2 = N3 = 1, it is the critical exponent θ4

that decides about the stability of the FP. Using results
from the two-field case (LPA 12 including an anomalous
dimension, cf. Ref. [25]) to obtain θ1 = y2,2, θ2 = 1

ν1
, and

θ3 = 1
ν2+3

, we arrive at the results shown in Tab. IV. The

DIFP is the stable FP for N1 ≥ 6 and N2 = N3 = 1.
Note that the derivation of the scaling relations is

based on the assumption that the operators correspond-
ing to these couplings are eigenoperators of the stability
matrix. This property is, to the best of our knowledge, an
assumption in d = 3 [23], and is usually not true within
a truncation of the RG flow. Nevertheless, the stability
properties are not incompatible with explicit numerical
results within the LPA 8, where the transition to stability
occurs already at N1 = 5. Explicitly, the critical expo-
nents in LPA 8 at N1 = 5 and N2 = N3 = 1 read θ1 =
1.783, θ2 = 1.193, θ3 = 1.399, θ4 = −0.024, θ5 = −0.027
and θ6 = −0.395.

D. Decoupled biconical fixed point

N1 N2 N3 θ1 θ2 θ3 θ4 θ5 θ6

1 1.2 1 1.753 1.381 1.537 0.285 -0.075 -0.005

1 1.4 1 1.535 1.448 1.537 0.105 -0.015 -0.010

1 1.5 1 1.537 1.462 1.537 0.068 0.001 -0.001

1 1.2 2 1.753 1.381 1.399 0.161 -0.200 -0.005

1 1.4 2 1.535 1.448 1.399 -0.020 -0.140 -0.010

1 1.5 2 1.537 1.462 1.399 -0.057 -0.124 -0.001

1.2 1 5 1.753 1.381 1.193 -0.051 -0.413 -0.005

1.5 1 5 1.537 1.462 1.193 -0.270 -0.338 -0.001

TABLE V. Critical exponents at the DBFP in the LPA 8.
Critical exponents emphasized in bold font correspond to
those of the two-field BFP, while those in italic arise in the
sector with O(N3) group symmetry. Here, we list the DBFP
for values of the field components NI , where it is characterized
by ∆ > 0 (see text).

Beyond the isotropic and decoupled FP solutions, the
two-field models feature another scaling solution, which
is the biconical FP [23, 24, 50]. It is stable only in
a restricted parameter region of these models, where
∆2-field

∣∣
BFP

= λ2,0λ0,2−λ2
1,1 > 0, as it transfers the sta-

bility from the IFP to the DFP. Certainly, this FP should
similarly manifest itself in the three-field case. While one
of the three sectors decouples, the two remaining sectors
should feature nondegenerate couplings, and we expect
that in a given range of the parameter space such a de-
coupled BFP will be stable.

To obtain as precise results as possible, we should make
use of all methods available to us. In fact, results ob-
tained using an ε-expansion around d = 4 in the two-
field case, allow us to infer the stability of the decoupled
biconical fixed point in the three field case in one im-
portant instance: From Refs. [23, 24], we know that
the biconical FP is stable for N1 = 1, N2 = 2 in two-field
models (and similarly when the sectors are interchanged).
Combined with the pattern in Tab. V for the additional
critical exponents in the three-field model, we conjecture
that the DBFP is stable for N1 = 1, N2 = 2, N3 ≥ 2
(up to a permutation of the three sectors). To calcu-
late the corresponding critical exponents directly in the
three-field model, we expect that an extended truncation
will be necessary, taking into account a field-dependent
wavefunction renormalization.

E. Search for further stable fixed points

We summarize our results obtained so far in Fig. 5.
The figure shows the stable FP solution for the corre-
sponding values of field components, (N1, N2, N3). Ap-
parently, no stable FP exists in the range N1 < 6,



8

1
2

3
4

5
6N1

1 2 3 4 5 6
N2

1

2

3

4

5

6

N3

FIG. 5. (Color online) We show the stable DIFP (large blue
dots), the stable DFP (small orange dots) and points without
a stable FP (small gray dots) using the LPA 12+η results.
We also include points where the DBFP is conjectured to be
stable (middle-sized green dots).

N2 = N3 = 1 (up to a permutation of the sectors)
that can be derived from the known scaling solutions in
the one- and two-field models. This motivates an inde-
pendent analysis of fully coupled FPs in the three-field
model, which we describe in the following sections.

1. Stability trading between stable FPs

Generally, the β functions are non-polynomial func-
tions of a large number of couplings in the multi-field
models. In the local potential type approximations the
number of parameters and couplings increases from 9 to
34 if the order of the truncation is changed from 4 to 8.
Thus, finding FPs in the multi-field models becomes a
highly nontrivial search for zeros of the β functions in a
high-dimensional parameter space. In the following, we
consider strategies to identify new FP solutions using a
simple example. Consider the following β function which
is expanded in terms of the coupling g (assuming that
higher than quadratic terms are zero):

βg = g(c+ g), (13)

where c is a function of the parameters of the model (e.g.,
dimensionality, number of field components, etc.) and
possibly other couplings in a given truncation of the the-
ory. Note that such a form captures the essential proper-
ties of typical fixed points, as it allows both for a trivial
Gaussian FP and a nontrivial interacting FP, as a func-
tion of the parameter c. The critical exponent at a fixed
point is given by

θ = − ∂βg
∂g

∣∣∣∣
FP

= −c− 2g|FP . (14)

Assuming that it is the exponent θ which decides about
the stability of the FP, we may distinguish the follow-
ing scenarios: For c < 0, the interacting FP at g = −c
is infrared stable, whereas the Gaussian FP is unstable.
As the parameter c increases towards positive values (as
a function of, e.g., NI) the two FPs will approach each
other. At c = 0, both FPs collide and exchange their
stability properties. Moving apart again for c > 0, the
interacting FP has become the unstable one, whereas the
noninteracting FP is stable, cf. Fig. 6. This simple ex-
ample demonstrates that FPs will typically change their
stability when they collide, as was also observed in Ref.
[25] in the two-field model with O(N1)⊕O(N2) symme-
try.

g

bg

GFP NGFP 

FIG. 6. To illustrate the mechanism how stability proper-
ties are exchanged between FPs, we examine the β-function
β = g(c + g) for varying parameter c describing the position
of the nontrivial FP. As the FPs pass by one another, the
local derivatives θ = −β′(g) exchange their sign indicating an
interchange of their IR stability properties.

Inspired by the above stability-trading mechanism we
may devise a strategy to identify new FP solutions. Our
search for FPs will concentrate on the vicinity of points
in coupling space, where a known FP loses its stability.

2. Fully coupled fixed points in the three-field model

It turns out that the three-field model works in a differ-
ent way from the mechanism described above, which ap-
plies in the two-field case: Within the LPA 4, we observe
that the IFP, DFP, and DIFP have partially overlap-
ping stability regions. No similar behavior occurs in two-
field models, where stability regions of different FPs al-
ways touch, but never overlap, due to the above stability-
trading mechanism. However, this changes dramatically
as we include anomalous dimensions: While the IFP in-
habits the same points, the DIFP is now only stable for
N1 ≥ 4, N2 = N3 = 1 etc. Extensive numerical searches
did not reveal a stable FP for N1 = 3, N2 = N3 = 1, and
similarly for the cases where the sectors are interchanged.
A similar result holds for higher orders of the LPA: As
there is a larger number of independent operators that
serve as a basis for the LPA, and thus potentially rele-
vant directions in the three-field model, the stability ex-



9

DBFP3 

-0.1
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0.0

0.1
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FIG. 7. We plot λ1,0,1, λ0,1,1, and λ1,1,0 as a function of NI
for the three DBFPs. At NI = 1.244 they each pass through
the origin of that coordinate system, where the DFP sits.
For NI > 1.244, the three BFPs move away from each other
towards more negative values of the mixed couplings.

change mechanism may not be captured by the simple
model considered above. To elucidate the differences in
the three-field model, we will focus on results obtained
within the LPA to 8th order.
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FIG. 8. We plot the fifth-largest critical exponent at the
DBFPs (blue points of increasing value) and the correspond-
ing critical exponent at the DFP (red points of decreas-
ing value) as a function of NI (upper panel). Below, we
show the coordinates of the couplings λ2,0,0 and λ0,2,0 at the
DBFP (blue diamonds and black squares) and the couplings
λ2,0,0 = λ0,2,0 = λ0,0,2 at the DFP (red dots) in the vicinity
of the collision point.

As a first example, let us consider the point N1 =
N2 = N3 ≈ 1.25. Here, the DFP is stable, but gains
three additional relevant directions around N1 = N2 =
N3 ≈ 1.244. As within the two-field model, this point
is marked by a collision with a decoupled biconical FP
(DBFP). The main difference is that within a three-field

model, three generalizations of the BFP exist, cf. Sec.
III D. For NI = 1.25, I = 1, 2, 3, all of these FPs feature
five relevant directions. Toward smaller NI , all three
DBFPs approach the DFP, and simultaneously collide
with it at NI ≈ 1.244. At this point, the DFP gains
one relevant direction from each of the three DBFPs,
which subsequently feature only four relevant exponents,
cf. Fig. 7 and Fig. 8. Thus this FP loses stability in a
fixed-point collision. The central difference to the two-
field case lies in the fact that the symmetry of the model
which forces the DFP to collide with three other FPs
simultaneously (for N1 = N2 = N3 there is an exchange
symmetry N1 ↔ N2 ↔ N3). As each of them starts
off with five relevant directions, the collision does not
produce a stable FP for NI ≤ 1.24, but instead leaves
behind three FPs with four relevant directions each.

As a second example of new behavior in three-field
models, we consider the point where the DBFP collides
with the DIFP in the LPA 8. We fix N2 = 1 and N3 = 4:
Then the DBFP has five positive critical exponents at
N1 = 1. Going to larger values of N1, it collides with
the DIFP at N1 ≈ 1.6. During this collision, the DIFP
becomes unstable, and the DBFP gains one negative crit-
ical exponent, cf. Fig. 9. Similar to the previous scenario,
this FP collision is not sufficient to make the DBFP sta-
ble. Following the DBFP to even larger values of N1, it
undergoes another collision, this time being hit by two
other FPs simultaneously. This is a novel feature that is
not observed in simple two-field models. Starting in the
region N1 < 1.2, these FPs do not seem to exist for real
values of the couplings – at least no sign of them showed
up in extensive numerical searches. They can be thought
of as being created at the collision. Following this colli-
sion, they quickly move away from the collision point for
increasing values of N1. Each of the newly created FPs
features four relevant critical exponents, while the DBFP
is stable, cf. Fig. 10. Both new FPs are anisotropic, and
define a new universality class that occurs for the first
time if three fields are coupled, cf. Tab. VI.

Due to the complicated dynamics of FPs in the param-
eter space of three-field models, it seems that these mod-
els do not necessarily feature a stable FP solution for all
values of the model parameters. One might now wonder,
why FPs of three-field models show such a disproportion-
ate increase in the number of relevant directions for small
values of NI . While the Wilson-Fisher FP has one rele-
vant direction, and two-field models always feature FPs
with only two relevant directions, three-field models show
FPs with more than three relevant directions. We con-
jecture that this is related to the fact that the transition
from a two-field to a three-field model implies the exis-
tence of more than one additional new class of operators:
While the transition from one to two fields only adds
the mixed interactions ∼

(
φ2

1

)m (
φ2

2

)n
, the transition to

three-field models features three different classes of mixed
interactions ∼

(
φ2
I

)m (
φ2
J

)n
, I, J = 1, 2, 3, in addition to

the new three-field couplings∼
(
φ2

1

)l (
φ2

2

)m (
φ2

3

)n
. These

seem to play a particularly important role for small NI
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FIG. 9. (Color online) Here, we show the couplings λ2,0,0,
λ0,2,0, and λ1,1,0 at the DBFP (blue circles, purple squares,
cyan diamonds) and λ2,0,0 = λ0,2,0 = λ1,1,0 (red triangles)
at the DIFP (uppermost panel). We show the fourth- and
fifth-largest critical exponent (middle panel) at the DBFP as
a function of N1 for N2 = 1, N3 = 4. Around N1 ≈ 1.16,
the three couplings are clearly degenerate, as expected for a
collision with the DIFP. At the same point, the fourth critical
exponent crosses zero and becomes negative. Simultaneously,
the fifth critical exponent at the DIFP (lower panel) crosses
zero and becomes positive.

and imply that the IR scaling properties cannot be ac-
counted for by only three free relevant parameters. Note
that this does not imply that the corresponding addi-
tional couplings need to become relevant. Since these op-
erators do not necessarily correspond to eigendirections
of the RG, they may mix with other operators, and yield
corrections to the scaling spectrum.

Applying our results to determine the properties of
possible multicritical points in phase diagrams for sys-
tems with three competing order parameters, we may
conclude that models with small NI will typically fea-
ture a first order, rather than a second order (multicrit-
ical) transition. In particular, this applies to the phe-
nomenologically relevant model of three interacting Z2-
Ising fields, i.e., Z2 ⊕ Z2 ⊕ Z2 symmetry.
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FIG. 10. Here, we show the couplings λ1,0,1 and λ0,1,1 at the
two anisotropic FPs. As a function of N1 they converge to-
wards zero, which is where the DBFP is sitting. The collision
occurs at N1 ≈ 1.2, which is where the fifth critical exponent
of these two FPs (which numerically is nearly the same for
both) approaches zero.

N1 N2 N3 λ2,0,0 λ0,2,0 λ0,0,2 λ1,1,0 λ1,0,1 λ0,1,1 λ1,1,1

2 2 2 6.2 6.4 6.4 1.8 1.8 -2.2 -2.6

2 1 2 6.5 7.5 6.7 1.2 0.5 -2.1 -1.4

2 1 3 6.2 7.0 5.8 3.2 0.7 -1.8 -2.2

2 1 4 6.0 6.5 5.1 4.6 0.6 -1.3 -1.6

θ1 θ2 θ3 θ4 θ5 θ6

2 2 2 1.70 1.33 1.29 0.20 -0.17 -0.24

2 1 2 1.62 1.40 1.35 0.08 -0.05 -0.23

2 1 3 1.71 1.34 1.28 0.15 -0.10 -0.30

2 1 4 1.77 1.32 1.23 0.16 -0.07 -0.35

TABLE VI. We list selected FP values and critical exponents
of the first anisotropic FP in the LPA 8, restricting ourselves
to couplings at fourth order in the fields, and additionally
giving the value of the coupling associated with the three-
field operator ∼ φ2

1φ
2
2φ

2
3.

IV. SUMMARY AND CONCLUSIONS

Here, we present a renormalization group study of IR
stable FP solutions in three-field models with O(N1) ⊕
O(N2) ⊕ O(N3) symmetry. Our main results regard-
ing the existence of stable FPs are summarized in
Fig. 5. Models in this class exhibit FPs which general-
ize the Wilson-Fisher FP, falling into three distinct cat-
egories, each characterized by the degree of symmetry-
enhancement. We find a decoupled FP, a partially
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isotropic, and a fully isotropic FP solution. Their scaling
spectrum can be deduced partially by considering per-
turbations around the single- and two-field models with
O(N) and O(N1) ⊕ O(N2) symmetry, respectively. We
proceed by deriving scaling relations between different
critical exponents to discover the stability properties of
nontrivial FPs in the three-field case. Apart from the
generalized Wilson-Fisher scaling solutions, we identify
a decoupled biconical FP whose scaling properties are
partly inherited from the BFP in the O(N1) ⊕ O(N2)
symmetric model. As a main result of this work, we find
that these FPs all show a significantly larger number of
relevant critical exponents than in the two-field case, in
the region of small N1, N2, N3. We tentatively connect
this result to the existence of a large number of mixed
interactions, and further conjecture, that similar results
will hold for models with n > 3 interacting fields.

Summarizing our results, we find no IR stable FP
for small number of fields (N1 < 6, N2 = N3 = 1,
up to permutations of the fields) in d = 3 dimensions.
This result is certainly unexpected, as there is no ev-
idence for similar behavior in coupled two-field models.
While, in principle, we cannot exclude the possibility that
stable FPs exist in that region of parameter space, we
find no evidence for their existence in extensive numeri-
cal searches for FPs of the nonperturbative β functions.
The identification of FPs in the three-three field mod-
els with O(N1) ⊕ O(N2) ⊕ O(N3) is in general a diffi-
cult problem, since the search has to proceed through a
high-dimensional coupling space. Nevertheless, the un-
derstanding of basic stability transitions between differ-
ent FPs serves as a guiding principle to single out pos-
sible candidates for nontrivial FPs. Quite generally, in
coupled-field models, stability seems to be inherited from
single mergers or collisions of different FPs. Searches
around such stability transition points have not yielded
any FP that carries over the stability properties from the
IFP (stable at small, noninteger values of NI < 1) to the
decoupled FP. This indicates that the dynamics of FPs in
O(N1)⊕O(N2)⊕O(N3) symmetric three-field, or general⊕

I O(NI) symmetric multi-field models is very different
from that encountered in the simpler O(N1)⊕O(N2)-type
models.

From these results, we may conclude that models with
phenomenological relevance as, e.g., the Z2 ⊕ Z2 ⊕ Z2

symmetric model will not feature a multicritical point
in its phase diagram. Certainly, it is challenging to find
three parameters that are accessible experimentally, and
may be tuned to the multicritical point. This would be
necessary to quantify the scaling behavior close to the
corresponding FP, or show the absence of such a transi-
tion. Nevertheless, it is conceivable that in the context
of ultracold atomic systems such a control of the system
might be achievable [51].

Finally, let us comment on the general applicability of
our results to other systems of interest. The renormal-
ization group flow equations are derived for general d Eu-
clidean dimensions and can be applied to d = 2, relevant

for critical behavior of low-dimensional condensed-matter
systems, and d = 4, for multi-field models of inflation, as
well as possible extensions of the Higgs sector of the stan-
dard model. We leave this for future work.
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Appendix A: Functional renormalization group

The nonperturbative functional renormalization group
[33–38] defines a functional flow for the scale dependent
effective action Γk, which interpolates between the mi-
croscopic action S defined at some ultraviolet cutoff scale
k = Λ and the full effective action Γk→0 = Γ, when the
renormalization group parameter k is removed. It is given
by

∂tΓk =
1

2
Tr

∫
ddq

(2π)d

(
Γ

(2)
k (q) +Rk(q)

)−1

∂tRk(q) ,

(A1)
where the logarithmic scale derivative is written in
terms of the parameter t = ln(k/Λ), and the sec-

ond functional derivative Γ
(2)
k (p, q) = δ2Γk

δχ(−p)δχ(q) , and

Γ(2)(q)(2π)dδ(d)(p − q) ≡ Γ(2)(p, q). Here, χ denotes
the complete field content of our model and the trace
Tr a summation over internal degrees of freedom, i.e.,
both fields and field components. The regulator func-
tion Rk implements a mass-like cutoff and regulates
the infrared divergences. We take RIJ(q) = RI(q)δIJ ,
I, J = 1, 2, 3, while the momentum dependence is given
by RI(q) = ZI(k

2 − q2)θ(k2 − q2), where the wavefunc-
tion renormalization is scale dependent. This choice is
referred to as the optimized regulator [52] which allows
us to derive fully analytic expressions for the nonpertur-
bative β functions, and is thus a convenient choice to
identify possible scaling solutions.

Appendix B: Scale dependent effective potential

We derive the renormalization group flow equation for
the effective potential by plugging our ansatz Eq. (2) into
the flow equation (A1) and projecting the right-hand-side
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onto a constant field configuration:

∂tuk = −duk +
∑
I

(d− 2 + ηI)ρI∂ρIuk

+ 2vd
∑
I

{
(NI − 1)l

(I)
0 (∂ρIuk)

+ l
(I)
R

({
∂ρJuk + 2ρJ∂

2
ρJuk

}
, {4ρJρK∂ρJ∂ρKuk}

)}
.

(B1)

Here, v−1
d = 2d+1π

d
2 Γ
(
d
2

)
arises from the volume inte-

gration, and the anomalous dimensions are defined as
ηI = −∂t lnZI . In the following the notation follows Sec.

II. The threshold functions l
(I)
0 and l

(I)
R (see, e.g., [53])

define the diagrammatic contributions to the renormal-
ization group flow of the scale dependent effective poten-
tial, where the upper index indicates the corresponding
sector. Using an optimized regulator function [52] the
threshold functions take the following form:

l
(I)
0 (wI) =

2

d

(
1− ηI

d+ 2

)
1

1 + wI
, (B2)

l
(1)
R ({wI}, {δ2

I,J}) =
2

d

(
1− η1

d+ 2

)
(1 + w2) (1 + w3)− δ2

2,3

2δ1,2δ1,3δ2,3 − δ2
1,2 (1 + w3)− δ2

1,3 (1 + w2)− δ2
2,3 (1 + w1) +

∏
J (1 + wJ)

, (B3)

l
(2)
R ({wI}, {δ2

I,J}) =
2

d

(
1− η2

d+ 2

)
(1 + w1) (1 + w3)− δ2

1,3

2δ1,2δ1,3δ2,3 − δ2
1,2 (1 + w3)− δ2

1,3 (1 + w2)− δ2
2,3 (1 + w1) +

∏
J (1 + wJ)

, (B4)

l
(3)
R ({wI}, {δ2

I,J}) =
2

d

(
1− η3

d+ 2

)
(1 + w1) (1 + w2)− δ2

1,2

2δ1,2δ1,3δ2,3 − δ2
1,2 (1 + w3)− δ2

1,3 (1 + w2)− δ2
2,3 (1 + w1) +

∏
J (1 + wJ)

. (B5)

Note, that the nature of the interactions is such, that only the radial modes l
(I)
R are affected by the couplings, e.g.,

δ2
1,2 = 4κ1κ2λ

2
1,1,0, and equivalent couplings between the remaining sectors. One may easily check that in the limit of

vanishing couplings, δ1,3 → 0 and δ2,3 → 0, the radial contributions l
(I)
R in the (1, 2) sectors reduce to the threshold

functions that were already derived in the two-field model [25]:

l
(I)
0 (wI) =

2

d

(
1− ηI

d+ 2

)
1

1 + wI
, (B6)

l
(1)
R ({wI}, {δ2

I,J}) =
2

d

(
1− η1

d+ 2

)
1 + w2

(1 + w1) (1 + w2)− δ2
1,2

, (B7)

l
(2)
R ({wI}, {δ2

I,J}) =
2

d

(
1− η2

d+ 2

)
1 + w1

(1 + w1) (1 + w2)− δ2
1,2

. (B8)

From (B1) the flow equations for the couplings are derived by the differentiation with respect to the fields and
successive projection onto a nonvanishing constant background field configuration ρI = κI , defined by the minimum
of the effective potential. For some FPs it might be necessary to employ an expansion point where one or multiple of
the κI is vanishing. In this case βκ3

≡ 0. For a detailed discussion of this issue, we refer to Ref. [25].
We obtain the β functions for the couplings λl,m,n, l +m+ n ≥ 2:

βλl,m,n
=

(
∂l+m+n

∂ρl1∂ρ
m
2 ∂ρ

n
3

∂tuk + βκ1

∂(l+1)+m+nuk

∂ρl+1
1 ∂ρm2 ∂ρ

n
3

+ βκ2

∂l+(m+1)+nuk

∂ρl1∂ρ
m+1
2 ∂ρn3

+ βκ3

∂l+m+(n+1)uk

∂ρl1∂ρ
m
2 ∂ρ

n+1
3

)∣∣∣∣
ρI=κI

, (B9)

where βλl,m,n
≡ ∂tλl,m,n. The β functions for the scale

dependent dimensionless field expectation values κI , I =
1, 2, 3, are given by

βκ1
= ∆−1 {−∆2,3∂ρ1∂tuk

+ (λ1,1,0λ0,0,2 − λ1,0,1λ0,1,1) ∂ρ2∂tuk

+ (λ1,0,1λ0,2,0 − λ1,1,0λ0,1,1) ∂ρ3∂tuk}|ρI=κI
,

(B10)

βκ2
= ∆−1 {−∆1,3∂ρ2∂tuk

+ (λ2,0,0λ0,1,1 − λ1,1,0λ1,0,1) ∂ρ3∂tuk

+ (λ0,0,2λ1,1,0 − λ1,0,1λ0,1,1) ∂ρ1∂tuk}|ρI=κI
,

(B11)

βκ3 = ∆−1 {−∆1,2∂ρ3∂tuk

+ (λ2,0,0λ0,1,1 − λ1,1,0λ1,0,1) ∂ρ2∂tuk

+ (λ0,2,0λ1,0,1 − λ1,1,0λ0,1,1) ∂ρ1∂tuk}|ρI=κI
.

(B12)
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Here, we have defined the coupling parameter

∆1,2 = λ2,0,0λ0,2,0 − λ2
1,1,0 , (B13)

and equivalently ∆1,3 and ∆2,3 (defined from the remain-
ing quartic couplings in the three-field model), as well as
the parameter

∆ = −2 (λ2,0,0λ0,2,0λ0,0,2 − λ1,1,0λ1,0,1λ0,1,1)

+ λ0,0,2∆1,2 + λ0,2,0∆1,3 + λ2,0,0∆2,3 . (B14)

These parameters quantify the symmetry enhancement
properties of the system. In particular, for certain sym-
metry enhanced FPs, these quantities vanish exactly.

Appendix C: Wavefunction renormalization and
anomalous dimensions

To determine the scale dependence of the field inde-
pendent renormalization factor ZI from the functional

flow equation (A1) we perform a projection of the flow

onto operators of the type ∼ (∂µφI)
2
. This yields the

scale dependence of the coefficient for the corresponding
operator in the effective action. We have

∂tZI =
(2π)d

δ(d)(0)
lim
Q→0

∂

∂Q2

δ2

δϕI(−Q)δϕI(Q)
∂tΓk , (C1)

where the functional derivatives are taken with respect
to the Nambu-Goldstone (NG) degrees of freedom ϕI in
the I-sector. Note, there is no summation implied over
the I-index. For details of the derivation in the context
of the O(N) vector model, we refer to [34, 54].

The anomalous dimensions are defined via the scaling
contribution to the wavefunction renormalization, i.e.,
ηI = −∂ lnZI , and take the following form in the three-
field model:

η1 =
16vd
d

Ξ−1
{
κ2λ

2
1,1,0 + κ3λ

2
1,0,1 + κ1 (λ2,0,0 + 2κ2∆1,2 + 2κ3∆1,3 + 4κ2κ3∆)

2

+ 4κ2κ3 (∆2,3 (λ2,0,0 + κ2∆1,2 + κ3∆1,3)−∆ (1 + κ2λ0,2,0 + κ3λ0,0,2))} , (C2)

η2 =
16vd
d

Ξ−1
{
κ1λ

2
1,1,0 + κ3λ

2
0,1,1 + κ2 (λ0,2,0 + 2κ1∆1,2 + 2κ3∆2,3 + 4κ1κ3∆)

2

+ 4κ1κ3 (∆1,3 (λ0,2,0 + κ1∆1,2 + κ3∆2,3)−∆ (1 + λ2,0,0κ1 + λ0,0,2κ3))} , (C3)

η3 =
16vd
d

Ξ−1
{
κ1λ

2
1,0,1 + κ2λ

2
0,1,1 + κ3 (λ0,0,2 + 2κ1∆1,3 + 2κ2∆2,3 + 4κ1κ2∆)

2

+ 4κ1κ2 (∆1,2 (λ0,0,2 + κ1∆1,3 + κ2∆2,3)−∆ (1 + λ2,0,0κ1 + λ0,2,0κ2))} , (C4)

where the prefactor in the above expressions is defined as:

Ξ =
(

1 + 2
∑
I

λIκI + 4
∑
I<J

κIκJ∆I,J + 8κ1κ2κ3∆
)2

.

(C5)

Note, that Eqs. (C2) – (C4) reduce to the two-field results in the limit δ2
1,3 = δ2

2,3 = 0 (cf. Appendix B)

η1 =
16vd
d

κ2λ
2
1,1 + κ1 (λ2,0 + 2κ2∆1,2)

2

(1 + 2κ1λ2,0 + 2κ2λ0,2 + 4κ1κ2∆1,2)
2 , (C6)

η2 =
16vd
d

κ1λ
2
1,1 + κ2 (λ0,2 + 2κ1∆1,2)

2

(1 + 2κ1λ2,0 + 2κ2λ0,2 + 4κ1κ2∆1,2)
2 , (C7)

where we have written λ1,1 ≡ λ1,1,0, etc., as the 3-sector effectively decouples in this case. From here, it is easy
to identify the decoupling and symmetry enhancement scenarios for the spectrum of anomalous dimensions, by
considering the proper limits of the couplings between different sectors. These results for the two-field case are
equivalent to the anomalous dimensions given in Refs. [55, 56].
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