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We consider simple systems driven multiplicatively by white shot-noise, which appear in the modeling of the
dynamics of soil nutrients and contaminants. The dynamics of these systems is analysed in two ways: solving a
hierarchy of linear ordinary differential equations for the moments, which gives a time scale of convergence of
the stationary pdf; and characterizing the crossing properties, such as the mean first-passage time and the mean
frequency of level crossing. These results are readily applicable to the study of geophysical systems, such as the
problem of accumulation of salt in the root zone, i.e. soil salinization.

PACS numbers: 02.50.-r, 05.40.-a, 89.60.-k

I. INTRODUCTION

Stochastic differential equations (SDEs) are used to model
a diverse range of systems subjected to random fluctuations,
from particle fluctuations in statistical physics [1], birth and
death processes in population dynamics [2], and hydrocli-
matic variability in environmental sciences [3]. The most pop-
ular type of stochastic process incorporated into SDEs is a
continuous white noise with zero mean and unit variance, that
characterizes the Wiener process. This gives rise to diffusion-
type processes which have been extensively studied [4–6].
However, there is a plethora of problems in physics, engi-
neering and environmental sciences [7–9], where the fluctu-
ations are intense and concentrated in time. In such cases the
stochastic forcing term is better represented as a jump process,
most commonly by a marked Poisson process. The resulting
generalized Langevin equation (GLE) is an SDE with white
jump noise ξ (t),

dx

dt
= f (x)+ g(x)ξ (t), (1)

where f (x) and g(x) are deterministic functions.
While the additive jump case g(x) = 1 has been investigated

in the context of virtual waiting-time processes [10–12], eco-
hydrology [13–15] and actuarial sciences [16, 17], the case of
multiplicative (state-dependent) jumps, i.e. when g depends
on x, has been less studied (see however [18–22]). In particu-
lar, Eq. (1) does not define a stochastic process x(t) unless an
interpretation for the stochastic term g(x)ξ (t) is given [23].
According to the Itô interpretation, the value of x just be-
fore the jump should be used in the function g(x), while the
Stratonovich interpretation takes the mean of the values of x

before and after the jump. This “mid-point selection rule” of
the Stratonovich interpretation is related to the approximation
of a colored noise with finite autocorrelation time by a white
noise [22]. Because the “real noise” relevant to the applica-
tions in this work has a typical time scale much shorter than
the time scales associated with the dynamics determined by
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f (x), we interpret Eq. (1) in the Stratonovich sense, with the
advantage that the usual rules of calculus are mantained.

The white shot-noise,

ξλ ,γ(t) =
N(t)

∑
i

hi δ (t − ti), (2)

is the formal derivative of a marked Poisson process, whose
random marks hi are chosen to be drawn from an exponential
distribution, ρ(h) = γ exp(−γh), where γ−1 is the mean of
the marks and N(t) is a Poisson counting process with mean
frequency λ . The master equation, which describes the evolu-
tion of the probability density function (pdf), associated with
Eq. (1), is given by [20, 21]

∂ p(x, t)

∂ t
=−

∂

∂x

[

f (x)p(x, t)
]

−λ p(x, t)

+λ γ

∫ ∞

−∞

exp
[

− γ
(

η(x)−η(u)
)]

|g(x)|
p(u, t)du,

(3)

where η(x) =
∫ x du/g(u).

Even for steady state, it is difficult to solve Eq. (3) in gen-
eral. The goal of this paper is to give a probabilistic descrip-
tion of Eq. (1), for linear deterministic functions f and g.
Here, in addition to a steady-state description of the pdf, we
derive a hierarchy of linear ordinary differential equations for
the transient dynamics of the moments, which yields a typical
time scale for the convergence of the pdf. We also character-
ize the crossing properties of critical thresholds, both the mean
first-passage time and the mean frequency of level crossing.

The results of this paper can be readily used in applications.
Our motivation is the problem of primary salinization, namely
the natural accumulation of salt in the soil root zone. Three
main processes contribute to this phenomenon: the approx-
imately constant input of salt by dry deposition, whose rate
can vary by an order of magnitude depending on the prox-
imity to the sea; plant uptake of salt dissolved in soil water;
and intense rainfall events that can cause the leakage of wa-
ter to deeper layers of the soil, leaching salt out of the root
zone. Because of their short duration compared to the time
scales related to dry deposition and plant uptake, the leaching
events can be approximated by multiplicative negative jumps,
because the amount of salt leached is proportional to its con-
centration in the soil water. Understanding the dynamics of
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primary salinization is key in choosing suitable crops in rain-
fed agriculture, and especially relevant to desertification pro-
cess in drylands in face of climate change. More generally, the
model presented below can describe the dynamics of other im-
portant soil nutrients, such as nitrates and sulfates, as well as
contaminants.

The paper is structured as follows. Sec. II presents a min-
imal SDE that describes the salt mass balance in the root
zone. Sec. III shows steady-state solutions for the probability
density function (pdf) of the model, Sec. IV derives dynam-
ical equations for the moments of the state variable, Sec. V
discusses crossing properties of the random variable x, and
Sec. VI considers applications of the results to the problem of
primary salinization. Finally, we present the conclusions in
Sec. VII.

II. THE MODEL

A minimal model to describe the salt mass balance in the
root zone is [24, 25]

dx

dt
= a− bx− cxξλ ,γ(t), (4)

where x is the salt mass (in grams per squared meter), a repre-
sents a constant input flux of salt by dry deposition (in grams
per squared meter per day), bx denotes the uptake of salt by
plants (b in day−1), and the parameter c (cm−1day−1) is linked
to the physical properties of the soil, such as porosity and hy-
draulic conductivity. The dimensions of λ and γ are day−1

and cm−1, respectively. This model, whose application will
be described in Sec. VI, does not take into account secondary
salinization, caused by human intervention, most commonly
through irrigation.

The deterministic part of Eq. (4), namely, dx/dt = a− bx,
has one stable fixed point x⋆ = a/b. Because of the nega-
tive sign of the stochastic term, the dynamics of a trajectory
that starts at x0 > x⋆ is strictly decaying, and once it crosses
x⋆ through a jump event, it stays confined in the the range
0 < x < a/b. Figure 1 shows two typical trajectories, starting
from above and below x⋆.

Transforming (4) according to

x =
a

b
χ , t =

1

b
τ, γ = c γ̃, λ = b λ̃ , (5)

yields the dimensionless equation

dχ

dτ
= 1− χ − χξλ̃ ,γ̃(τ), (6)

which is more amenable to analysis. The corresponding mas-
ter equation is

∂ pχ(χ , t)

∂τ
=−

∂

∂ χ

[

(1− χ)pχ(χ ,τ)
]

− λ̃ pχ(χ ,τ)

+ λ̃ γ̃χ γ̃−1
∫ ∞

χ
u−γ̃ pχ(u,τ)du.

(7)
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FIG. 1. Two trajectories of Equation (4), with initial conditions
above and below x⋆ = a/b. Parameters: a = b = c = 1, λ = 1.5,
γ = 2.0.

In the next three sections we will characterize Eqs. (6) and (7),
showing the steady-state solution, the dynamics of the mo-
ments and the crossing properties of x.

The numerical results presented throughout this paper
were implemented using the Monte Carlo method for cal-
culating the height h of the random jump ξ (t), drawn
from the distribution ρ(h). The multiplicative impulse size
xξ (t), in the Stratonovich interpretation, then reads xξ (t) =
η−1 [η(x)+ h]− x [21, Eq. (14)]. Time was discretized using
small ∆t and approximating the probability of a jump event at
each time step a λ ∆t. Finally, the Euler method was used for
numeric integration.

III. STEADY-STATE SOLUTION

Using the fact that the Stratonovich interpretation of the
GLE maintains the normal rules of calculus [2], we transform
the state variable according to χ = ey, so that Eq. (6) becomes
an SDE with an additive jump term:

dy

dτ
= e−y − 1− ξλ̃,γ̃ (τ). (8)

The steady-state pdf py(y) of the process above is the beta
exponential distribution [26, 27], and its derivation is shown
in appendix A. Using the derived distribution for χ

pχ(χ) = py(y)

∣

∣

∣

∣

dy

dχ

∣

∣

∣

∣

=
py(y)

χ
(9)

we find

pχ(χ) =
χ γ̃ (1− χ)λ̃−1

B
(

γ̃ + 1, λ̃
) , (10)

where B is the Beta function with shape parameters γ̃ + 1

and λ̃ .
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Going back to the physical variables and parameters we
have

px(x) =
a−

γ
c −

λ
b b

γ
c +1

B

(

γ
c
+ 1, λ

b

)x
γ
c (a− bx)

λ
b −1 , (11)

and the kth raw moment of x is given by

〈xk〉=
k−1

∏
j=0

a [γ + c(1+ j)]

λ c+ b [γ + c(1+ j)]
, (12)

or in a recursive form

〈xk〉=
a(γ + kc)

λ c+ b(γ + kc)
〈xk−1〉. (13)

The distribution has a mode if γ
c
> 0 and λ > b, given by

mode [px(x)] =
γb

λ c+ b(γ − c)
. (14)

Figure 2 summarizes the findings above. Panel (a) shows
the parameter space λ/c versus γ/b, where the filled shapes
depict the probability density function px(x) calculated at the
grid points. Above the black full line λ/b = 1 all distribu-
tions are unimodal, i.e., they have a finite maximum, whereas
the distributions below it have no mode, because the pdf di-
verges for χ = 1. The black dashed line represents the curve
λ/b = γ/b+ 1. Along this line distributions have their mean
at x = 0.5. To the right (left) of the dashed line, the mean of
the distributions is at the right (left) of the center. Panel (b)
shows the probability density function px(x) calculated for
three points in the parameter space. The dashed and dotted
lines show the location of the mode and mean, respectively.
In the limit a → 0 the pdf px(x) becomes a Dirac delta, and
in the limit b → 0 it becomes a gamma distribution (which in
turn becomes a Gaussian for large γ/c).

IV. DYNAMICS OF THE MOMENTS

It is possible to obtain a system of equations which hierar-
chically describes the temporal dynamics of the moments of
the state variable x. Appendix B shows the detailed derivation
of the recursive relation

∂ µ ′
k

∂τ
= k µ ′

k−1 − k
1

ck

µ ′
k, (15)

where the raw moments µ ′
k are defined as

µ ′
k =

∫

χk pχdχ , (16)

and

ck =
γ̃ + k

γ̃ + λ̃ + k
. (17)

In steady-state, Eq. (15) yields the same recursion formula
shown in Eq. (13) after a rescaling according to Eq. (5). Using
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FIG. 2. (Color online) Probability distribution function of x, accord-
ing to Eq. (11). Panel (a). Colored shapes represent px(x) calculated
at the grid points of parameter space λ/b versus γ/c. Panel (b).
Blowup of px(x) calculated for three values of (γ/c,λ/b): (3.0,1 .5)
in red (black), (0.5,1 .5) in orange (dark gray) and (0.5,2.5) in
yellow (light gray). The red (black) dashed and dotted lines
show the location of the mode and the mean, respectively, for
(γ/c = 3.0,λ/b =1 .5).

the fact that µ ′
0 =1 , we can calculate iteratively the solution

of Eq. (15) for the raw moment of order n as

µ ′
n(τ) =

n

∏
j=1

c j +
n

∑
j=1

dn, j e
− τ

c j/ j . (18)

The first three moments read

µ ′
1 (τ) = c1 + d1 ,1 e

− τ
c1 , (19a)

µ ′
2(τ) = c1c2 + d2,1 e

− τ
c1 + d2,2 e

− τ
c2/2 , (19b)

µ ′
3(τ) = c1c2c3 + d3,1 e

− τ
c1 + d3,2 e

− τ
c2/2 + d3,2 e

− τ
c3/3 , (19c)

where

d1,1 = m1 − c1, d2,1 =
2c1c2 (m1 − c1)

2c1 − c2
,

d2,2 =
c1c2 (c2 − 2m1)

2c1 − c2
+m2, d3,1 =

6c2
1c2c3 (m1 − c1)

(2c1 − c2)(3c1 − c3)

d3,2 =
3c2c3

[

c1

(

−2c2m1 + c2
2 + 2m2

)

− c2m2

]

(2c1 − c2)(3c2 − 2c3)
,

d3,3 =
c2c3 {c1 [2c3 (c3 − 3m1)+ 9m2]− 3c3m2}

(3c2 − 2c3) (c3 − 3c1)
+m3,
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and mi denotes the initial condition of µ ′
i . The successive

terms added in Eq. (18) have decreasing time scales, because
c j+1

j+1 <
c j

j
. Their effect on the dynamics is shown in panel (a)

in Fig. 3, where all normalized raw moments saturate in com-
parable time scales, but highter moments grow slower for rel-
atively small times. This means that for time scales of about 4
or 5 times c1 (the largest time scale), all the moments are only
a few percent off their steady-state values. Panel (b) shows so-
lutions for the mean, standard deviation, skewness and excess
kurtosis, where analytical and numerical solutions agree well.

0.0

0.5

1 .0

µ′
n

n

∏
j=1

c j

n =1

n = 6

(a)

0 1 2 3 4
t

−2

−1

0

1

2

mean

standard deviation
skewness

excess kurtosis
(b)

FIG. 3. (Color online) Panel (a): Evolution of the first six normal-
ized raw moments of χ . The curves for n = 1 ,2,3 are according
to Eqs. (19). Panel (b): Evolution of the mean, standard deviation,
skewness and excess kurtosis. Dashed lines denote analytical solu-
tions, and full lines denote numerical solutions, calculated from an
ensemble of ten thousand simulations. Parameters: a = b = c =1,
γ = 3.5, λ =1 .5, mi = 0.

V. CROSSING PROPERTIES

Physical systems can have critical thresholds that, when
crossed for the first time, produce qualitative changes in the
system’s behavior. In the context of salinization, the crossing
of a threshold could mean that the salt concentration has risen
to a critical value for which plants have their yield severely
impaired [28, 29], or conversely that remediation processes
were successful in bringing the salinity below acceptable lev-
els [24].

The mean first-passage time (MFPT) of processes driven
by a marked Poisson noise has been analysed before [30–33].
For our purposes here, we will use Masoliver’s procedure [30,
Equations (5.8)-(5.11)] to calculate the mean time it takes for
the random variable x to cross a certain threshold xc, starting
from x0. For that we first transform (6) according to χ = e−z

to obtain an SDE with positive additive jumps:

dz

dτ
=1− ez+ ξλ̃ ,γ̃(τ). (20)

Since there is no rescaling of time τ , the mean first-passage
time 〈T 〉z0,zc for the random variable z is equal to the mean
first-passage time 〈T 〉χ0,χc for the random variable χ , where
zi =− ln(χi).

We consider two possible scenarios in terms of the physi-
cal variable x, as depicted in Fig. 4. The first is shown in the
lower part of panel (a): starting at x0 < x⋆, all trajectories are
bounded between 0 < x < x⋆ = a/b, and they are calculated
until they cross an upper boundary at xc. The second scenario
is shown in the upper part: starting at x0 > x⋆, all trajecto-
ries decay in time, and they are calculated until they cross the
lower boundary at xc = x⋆. Panels (b) and (c) show both the
analytical and numerical MFPT as a function of x0, for the first
and second scenarios, respectively. The integrals involved in
the calculation were computed numerically.
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FIG. 4. (Color online) Panel (a): Simulations of trajectories as func-
tion of time, according to Eq. (4). In green (blue), all trajectories
start at x0 = 0.2 (x0 =1 .8) and are calculated until they reach the up-
per (lower) threshold xc = 0.8 (xc =1 .0). Panels (b) and (c): Mean
first-passage time as function of starting point x0, for processes with
crossing thresholds xc = 0.8 and xc =1 .0, respectively. Full lines de-
note analytical results, and hollow circles denote numerical simula-
tions carried out for ensembles of ten thousand runs. Panel (d): Suc-
cessive upcrossings of the threshold xc. Panel (e): mean frequency of
upcrossing ν as a function of the critical crossing threshold xc. The
full line denotes analytical result shown in Eq. (21), and hollow cir-
cles denote numerical simulations carried out for ensembles of five
thousand runs. Parameters: a = b = c =1, panels (a)-(c): γ =1 .0,
λ = 2.0, panels (d)-(e) γ = 2.0, λ = 2.0.
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The mean first-passage time can be easily verified when the
starting point tends to the threshold value. In the first scenario,
the MFPT tends to zero when x0 → x−c , and in the second
scenario, when x0 → x+c = x⋆, the MFPT tends to the inverse
of the mean frequency, i.e. λ−1 , because crossings can only
occur through jump events.

Another crossing problem of interest is the level crossing
of a same threshold in steady-state conditions. In steady state,
px(xc)dx can be understood both as the probability of finding
the system in the range r = [xc,xc +dx], and as the proportion
of time the system spends in this same range. Because nega-
tive jumps in Eq. (4) are instantaneous, the infinitesimal time
dt spends around xc is due only to upcrossings, which are gov-
erned by the deterministic equation dx/dt = f (x) = a− bx,
yielding dt = dx/ f (xc). Assume now that all consecutive
crossings intervals can be represented by a mean time T (see
Fig. 4(d) for an illustration). Then, the infinitesimal time dt

divided by T is the proportion of time the system spends to
cross range r, namely px(xc)dx. In other words, the inverse of
T , or the mean frequency of crossing xc is

ν(xc) = px(xc) f (xc). (21)

The reasoning used to derive the above expression assumes
only that the stochastic process is in steady state. It has been
used for a process with additive noise [14, 34, 35] but is
equally applicable to that with multiplicative noise. Panel (d)
in Fig. 4 shows a typical scenario of upcrossings of a thresh-
old xc, and panel (e) shows the analytical result in Eq. (21),
compared with the numerical results.

VI. APPLICATIONS

A description of soil nutrients or contaminants (salt in our
case) in the root zone should involve the coupled balance
equations for the soil water and solute. However, under suit-
able assumptions, valid when focusing on long time scales,
one can eliminate the soil water equation [24], and embed the
soil water controls into the parameters of Eq. (4).

The parameters a, b, c, λ and γ contain several of the sys-
tem’s physical properties. The parameter c, for instance, has
an inverse dependence on the soil moisture threshold for deep
leakage. A low threshold (high values of c) means that the
soil is easily saturated by water, and most rain events will
produce deep leakage, which takes the solute from the root
zone to deeper layers. On the other hand, γ−1 represents the
mean depth of water leakage as result of rain events. Higher
mean depths (lower values of γ) mean that most rain events
will induce deep leakage. It is reasonable, therefore, that c

and γ should have inverse influence on the steady-state equa-
tion (11), which can be seen in panel (a) of Fig. 2: both low
values of γ and high values of c bring down the solute’s mean
mass. We consider now one possible application of Eq. (4).

The case of primary salinization without plant uptake of
salt can be modeled by taking the limit b → 0 in Eq. (4). The
steady-state solution was obtained by Suweis et al. [25], in
the form of a gamma distribution. Using the transformations
x = aχ , t = τ , γ = cγ̃ and λ = λ̃ , we obtain the dimensionless

equation dχ/dτ = f (χ)+ g(χ)ξλ̃ ,γ̃ (τ), where f (χ) =1 and

g(χ) =−χ . The results obtained in Sections III-V are read-
ily applicable to this system. In order to obtain the steady-
state pdf we take the limit b → 0 in Eq. (11). First we rewrite
Eq. (11) as

px(x) =
a−

γ
c−1

Γ
( γ

c
+1

)

Γ
(

λ
b
+ γ

c
+1

)

Γ
(

λ
b

)

·
(

λ
b

)
γ
c +1

x
γ
c

(

1−
x

a/b

) λ
b
−1

,

(22)
where Γ is the gamma function. Using the known limits

lim
z→∞

Γ(z+α)

Γ(z)zα
=1 , lim

z→∞

(

1−
αx

z

)z

= eαx, (23)

it is easy to see that

lim
b→0

px(x) = pg(x) =
(λ/a)

γ
c +1

Γ
( γ

c
+1

) x
γ
c e−

λ
a x, (24)

which is the gamma distribution with shape γ/c+1 and rate
λ/a. Figure 5(a) shows three beta distributions px(x) as in
Eq. (11) for decreasing values of b (thin lines) and the gamma
distribution pg(x) as in Eq. (24) (thick line).

The dynamics of the moments can be calculated as done in
Section IV using f (χ) =1 . This yields the same results as in
Eqs. (15) and (18), but with the iteration constant ck redefined
as ck → gk =(γ̃+k)/λ̃ . The results shown in Fig. 5(b) provide
a characterization of the time scales involved in soil salinity
buildup.

We took the same physical parameters used by Suweis et al.

[25] in order to model the dynamics of salt in a sandy-loam
soil, in a semi-arid climate (yearly precipitation of about 650
mm), subjected to dry (aerosol) deposition of salt. Panel 5(b)
shows several realizations of the dynamics of the salt mass,
starting from zero salinization. The thick black line denotes
the dynamics of the mean soil salinity, according to Eq. (19a),
and the two red lines delimit the distance of one standard de-
viation from the mean. According to the parameters used, the
largest typical time scale for the dynamics of the moments is
g1 ≃ 2.56 years, which means that for t ∼10 years the mean
differs from its steady-state value by only 2%. The steady-
state pdf of the process is shown in Fig. 5(c), the line de-
notes the analytical solution pg(x), and the histogram repre-
sents simulations.

Using the crossing properties and transient moments we can
now investigate the constrains that the salt dynamics described
in Fig. 5(b) can pose on the growth of crops. Because plants
are sensitive to salt concentration, and not to salt mass, we
need to know the amount of water in the soil in order to con-
vert the root zone salinity to its equivalent salt mass. This was
computed using a soil moisture minimalist model [15], result-
ing in a mean soil moisture s̄ = 56 l/m2 for this type of climate
and soil.

We calculated the MFPT as a function of critical salinity
thresholds, from an initial mass of 0.718 g/m2. Analytical
and numerical results are shown in Fig. 5(d) by the black line
and circles, respectively. For example, the salinity threshold
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level [36] for pepper (Capsicum annuum) and sweet potato
(Ipomoea batatas) is 54 g/m−2, while for tomato (Lycop-

ersicon esculentum) and cucumber (Cucumis sativus) is 90
g/m−2 [37]. For these values the MFPT is approximately 7
and 80 years, respectively, suggesting the time frames when
these crops can be grown with little risk of salinization, be-
fore remediating measures need to be taken in order to reduce
the soil salinity, or a less sensitive crop needs to be chosen.

From Eq. (19a) the time tc for the mean to cross a given
threshold xc reads

tc = g1 ln

(

g1 − m1

g1− χc

)

=
γ/c+1

λ
ln





1− cλ x0
a(c+γ)

1− cλ xc

a(c+γ)



 , (25)

where x0 is the mean’s initial value, and xc, x0 are required
to be both above or below the mean’s steady-state value
x̄ = a(γ/c+1 )/λ . The dashed green line in Fig. 5(d) denotes
tc, also from an initial mass of 0.718 g/m2. First tc is very
close to the MFPT, but as the threshold approaches the mean’s
steady-state value it diverges. For salinity levels below x̄, tc is
a good approximation of the MFPT, and it is much easier to
calculate.

VII. CONCLUSION

We presented here a stochastic differential equation driven
by multiplicative Poisson noise with exponentially distributed
jumps. This equation is applicable in the problem of leaching
of soil nutrients and contaminants.

The long term dynamics of x is confined between zero and
x⋆, described by a Beta distribution. The study of the dynam-
ics of the moments revealed a time scale for the convergence
of the pdf, while the analysis of crossing properties yielded
time scales associated with the crossing of critical thresholds.
The characterization of these time scales is the main result of
this paper: they are readily applicable to various geophysical
systems, and provide useful information in processes like the
accumulation of salt in the root zone.

The model presented here could be refined in order to pro-
duce a more realistic description of leaching of soil nutri-
ents and contaminants. One extension would be including the
solute’s influence on the soil water dynamics, which would
mean that the parameter c is a function of x. For instance,
a high relative concentration of sodium cations in the soil
(condition called sodicity) alters the soil physical properties,
greatly decreasing its hydraulic conductivity [38]. Another
modification would be the expansion of the model to include
the effects of human intervention through irrigation, espe-
cially with regard to the use of saline water and the risks of
secondary salinization. This modification would require an
additional equation for the water dynamics, coupled to that
of the salt mass dynamics. Future research will address these
points, developing a stochastic model for the integrated dy-
namics of water and solutes in the soil.
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FIG. 5. (Color online) Panel (a): The pdf px(x) for decreasing val-
ues of the parameter b (day−1 ), and the pdf pg(x) (thick line). Panel
(b): The thin gray lines denote the simulated dynamics of the salt
mass, while the analytical dynamics for the mean salinity is shown
in black, enclosed by one standard deviation in red dashed lines.
Panel (c): The steady-state pdf pg(x) is denoted by the black line,
and the histogram shows numerical results. Panel (d): Crossing
time as function of salinity threshold. The black line and circles
correspond to analytical and numerical calculations of the MFPT,
the green dashed line denotes the time tc for the mean to cross the
threshold, according to Eq. (25), and the vertical dotted lines indicate
the two salinity threshold levels considered, for pepper and tomato.
Parameters: a = 0.054 g m−2 day−1 , c = 9.26×10−2cm−1 day−1 ,
γ = 0.93 cm−1 and λ =1 .18×10−2 day−1 .
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Appendix A: Steady-state pdf

The master equation associated with equation (8) can be
derived using Eq. (3) with fy(y) = e−y −1 and gy(y) =−1.
Assuming steady-state, we are left with

−
d

dy

[

fy(y)py(y)
]

− λ̃ py(y)+ λ̃ γ̃eγ̃y

∫ ∞

y
e−γ̃u py(u)du = 0.

(A1)
Multiplying the equation above by e−γ̃y, then differentiating it
with respect to y, and finally integrating once gives

γ fy(y)py(y)−
d

dy

[

fy(y)py(y)
]

− λ̃ py(y) = constant. (A2)

Taking the limit y → ∞, the whole left-hand side of the
equation above vanishes, therefore the integration constant
is also zero. Integrating equation (A2) and substituting
fy(y) = e−y −1 gives after some manipulation

py(y) =Cey(γ̃+1) (1 − ey)λ̃−1 . (A3)

The pdf py(y) is called the beta exponential distribution [26,
27], and upon transformation back to the variable χ , according
to χ = ey, we have

pχ(χ) =Cχ γ̃ (1 − χ)λ̃−1 , (A4)

which is the beta distribution. By requiring that
∫

pχ(χ)dχ =1 we have that C = 1/B(1 + γ̃ , λ̃ ), where B is
the Beta function.

Appendix B: Moments dynamics

Applying the operator

L [ f (χ)]≡

∫ ∞

0
χk f (χ)dχ (B1)

on Eq. (7), we can achieve an expression for the evolution of
the raw moment of order k, defined as µ ′

k =
∫

χk pχdχ . The

left-hand side gives

∫ ∞

0
χk ∂ pχ(χ , t)

∂τ
dχ =

∂ µ ′
k

∂τ
, (B2)

while the first term on the right-hand side becomes

−

∫ ∞

0
χk ∂

∂ χ

[

(1 − χ)pχ(χ ,τ)
]

dχ =

−

∫ ∞

0

[

χk ∂ pχ(χ ,τ)

∂ χ
− χk pχ(χ ,τ)− χk+1 ∂ pχ(χ ,τ)

∂ χ

]

dχ ,

(B3)

which upon integration by parts yields

−

∫ ∞

0
χk ∂

∂ χ

[

(1 − χ)pχ(χ ,τ)
]

dχ = k µ ′
k−1 − k µ ′

k. (B4)

The second term on the right-hand side of Eq. (7) becomes
simply −λ̃ µ ′

k. In order to calculate the last term we start by
defining

F(χ) = λ̃ γ̃χ γ̃+k

∫ ∞

χ
u−γ̃ pχ(u,τ)du, (B5)

which differentiated gives

dF

dχ
= λ̃ γ̃ (γ̃ + k)χ γ̃+k−1

∫ ∞

χ
u−γ̃ pχ(u,τ)du

− λ̃ γ̃χ γ̃+kχ−γ̃ pχ(χ ,τ).

(B6)

Multiplying the equation above by (γ̃ + k)−1 and then inte-
grating with respect to χ gives

∫ ∞

0
dχλ̃ γ̃χ γ̃+k−1

∫ ∞

χ
u−γ̃ pχ(u,τ)du =

λ̃ γ̃

γ̃ + k
µ ′

k. (B7)

Finally, putting all the terms together, a recursive relation for
the dynamics of the moment of order k can be obtained as

∂ µ ′
k

∂τ
= k µ ′

k−1 − k
1

ck

µ ′
k, (B8)

where

ck =
γ̃ + k

γ̃ + λ̃ + k
. (B9)
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