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A way to understand thermalization in an isolated system is to interpret it as an increase in
entanglement between subsystems. Here we test this idea through a combination of analytical and
Krylov-subspace based numerical methods applied to a quantum gas of bosons. We find that the
entanglement entropy of a subsystem is rapidly generated at the initial state of the evolution, to
quickly approach the thermal value. Our results also provide an accurate numerical test of the
Eigenstate Thermalization Hypothesis (ETH), according to which a single energy eigenstate of an
isolated system behaves in certain respects as a thermal state. In the context of quantum black
holes, we propose that the ETH is a quantum version of the classical no-hair theorem.

PACS numbers:

A basic tenet of thermodynamics is that macroscopic
isolated systems evolve towards a final state of maximum
entropy. (Applied to the entire universe this is sometimes
called the “heat death of the universe.”) On the other
hand, quantum mechanics predicts that an initial pure
state evolves into another pure state; since pure states
have zero entropy, no entropy can ever be generated. The
problem of how to reconcile these apparently conflicting
views has been greatly sharpened recently by the degree
to which it is now possible to isolate and manipulate
quantum systems in cold-atom experiments [1, 2].

To understand the problem more concretely, consider
a quantum system with Hamiltonian H, Hilbert space of
dimension N and energy eigenstates |Eν〉. Take an initial

state |ψ0〉 =
∑N
ν=1 cν |Eν〉 with a narrow spread in energy

∆E around a mean value E. At later times the state is
given by

|ψ(t)〉 = e−iHt|ψ0〉 =

N∑
ν=1

cνe
−iEνt|Eν〉. (1)

Consider an observable Â associated with a subsystem—
a small part of the full isolated system. According to
thermodynamics, the time-dependent expectation value

〈ψ(t)|Â|ψ(t)〉 =

N∑
ν,ν′=1

c∗ν′cνe
−i(Eν−Eν′ )t 〈Eν′ |Â|Eν〉, (2)

should reach, after an appropriate thermalization time
tth, a constant value independent of the initial state and
given by the thermal expectation value, as computed in
the subsystem. The basic idea is that this happens be-
cause the phases e−i(Eν−Eν′ )t that are initially (t = 0)
all equal, at later times (t � tth) become incoherent
leading to a cancellation of the time dependent terms.
More precisely, the Eigenstate Thermalization Hypoth-
esis (ETH) put forward by Deutsch and Srednicki [3–7]
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states that the off-diagonal matrix elements, 〈Eν′ |Â|Eν〉
for ν 6= ν′, are small (of order 1/

√
N) and the diagonal

matrix elements are (to order 1/
√
N) smooth functions

of the energy, meaning that 〈Eν |Â|Eν〉 = A(Eν) are ap-
proximately equal for all eigenstates |Eν〉 within the nar-
row spread of energy ∆E. Under these conditions,

〈ψ(t)|Â|ψ(t)〉
∣∣∣
t�tth

'
N∑
ν=1

|cν |2A(Eν) ' A(E) , (3)

independently of the initial state |ψ0〉.
Given the importance of the ETH, it is essential to test

it numerically. However, since the corrections of order
1/
√
N have to be negligible, a direct test requires diago-

nalization of a large (N ×N) Hamiltonian matrix. This
is a difficult task, although recently important progress
in this direction has been reported [8–11]. In addition to
systems representing cold atoms (for a review, see [12]),
motivation for this line of work comes from models of
quantum computation, where individual qubits can ther-
malize due to interactions even if the whole system is
perfectly isolated [13]. Other, perhaps less expected, area
that has been a focus of recent attention [14–16], where
understanding the precise mechanism of thermalization
is required, is the physics of black holes, in particular,
the properties of the Hawking radiation. In fact, the
AdS/CFT correspondence [17–19] relates thermalization
of a quantum isolated system to the formation of black
holes in quantum gravity, a process for which there is no
clear theoretical description. In particular in [20] it has
been argued that an arrow of time appears in the field
theory side of the correspondence by using arguments
similar to ETH.

While the ETH readily explains the independence of
averages for local observables of time (at large times), as
well as their independence of the initial state, it still re-
mains to connect it to more conventional measures of
thermalization, such as the growth of entropy. Here
we establish this connection for a model system, a two-
dimensional lattice gas of bosons with hard-core repulsion
and an additional nearest-neighbor repulsive interaction.
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FIG. 1: The type of lattice used in our numerical computa-
tions. A gas of bosons is initially contained in region A and
expands into regions A + B.

L Ns Nb N

5 34 3 5,984

4 25 5 53,130

6 45 5 1,221,759

8 73 5 15,020,334

TABLE I: Various values of the parameters considered: size
L, number of sites Ns, number of bosons Nb, and total size
of the Hilbert space N .

The Hamiltonian is

H = J1
∑
〈i,j〉

(aia
†
j + a†iaj) + 2J0

∑
〈i,j〉

ninj , (4)

where the sum is over pairs of near neighbors and, for
concreteness, we take J1 = −1, J0 = 1

4 . The shape of the
lattice is shown in Fig. 1, and the parameters are listed
in Table I.

We start our study by showing that various local ob-
servables satisfy a somewhat weakened version of the
ETH, namely, the ETH in the Krylov subspace, the lat-
ter obtained by applying powers of the Hamiltonian to
the initial state |ψ0〉. A Krylov subspace of a relatively
modest size allows us to follow the evolution well beyond
the thermalization time, for systems that are much larger
than those accessible to complete diagonalization. If the
ETH is true in the full Hilbert space, it must also be true
in the Krylov subspace (although, of course, not the other
way around). So, our method provides an accurate test
of the original ETH, pertaining to systems much larger
than those previously considered.

For the system under consideration, the energy is
bounded both from below and from above. Therefore,

the series

|ψ(t)〉 = e−iHt|ψ0〉 =

∞∑
p=0

(−i)p

p!
Hp |ψ0〉 (5)

is absolutely convergent and, to any desired finite pre-
cision, can be truncated at a finite number n of terms.
This shows that only the Krylov subspace

Kn = {Hp|ψ0〉, p = 0 . . . n− 1} (6)

is required to follow the evolution [21]. For fixed pre-
cision, the larger the time we wish to access, the larger
the dimension n of the Krylov subspace that needs to be
considered. Since tth depends only weakly on the linear
size L, to reach t = tth it is typically enough to con-
sider n that is vastly smaller that the total size N of the
Hilbert space. Defining Pn as the projector onto Kn we
can approximate |ψ(t)〉 ' Pn|ψ(t)〉 and

〈ψ(t)|Â|ψ(t)〉 '
n∑

`,`′=1

c̃∗`′ c̃` e
−i(Ẽ`−Ẽ`′ )t 〈Ẽ`′ |Â|Ẽ`〉 (7)

where the so-called Ritz vectors |Ẽ`〉 are the eigenstates

of the projected Hamiltonian H̃ = PnHPn. Applying to
eq. (7) the same reasoning as we did above to eq. (2), we
conclude that the ETH should also apply to the matrix
elements 〈Ẽ`′ |Â|Ẽ`〉 (of the observable Â in the Ritz ba-

sis), at least as long as the difference |Ẽ` − Ẽ`′ | is much
larger than 1/tmax, where tmax is the largest time that
the Krylov subspace with a given n allows us to access.

Numerically we considered a Krylov subspace of di-
mension n = 1241. For operators Â, we took the oc-
cupation numbers ni of various lattice sites and also the
occupation numbers ñk of single particle eigenstates. The
single particle eigenstates are the eigenstates |εk〉 of the
Hamiltonian (4) when only one particle is present. In
that way, the Hamiltonian (4) can be equally written as
H =

∑
k εkñk + 2J0

∑
〈i,j〉 ninj . The ñk are not local

observables but should also thermalize in weakly inter-
acting or sufficiently dilute systems. In Fig. 2 we display
the mean values of such operators as functions of the Ritz
energy, for systems with dimensions of the total Hilbert
spaces varying from N ∼ 6, 000 to N ∼ 1.5 × 107 (see
Table 1). It is clear that the functions become smoother
as N becomes larger, in agreement with the ETH. Per-
haps it is useful to clarify that these are mean values
in the quantum sense. A single measurement should, of
course, result in an integer value of ni or ñk. Although
they are not plotted here, the off-diagonal matrix ele-
ments can be computed and are found to become smaller
as N increases. Finally, we checked, for a selection of
Ritz states, that the single particle occupation numbers
ñk followed an approximate Bose-Einstein distribution,
namely they are thermal. All this put together provides
strong numerical evidence for the validity of the ETH in
the present system.
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(a) ni(Ẽ`) (b) ñk(Ẽ`)

FIG. 2: (Color online) Left: Mean values 〈Ẽ`|ni|Ẽ`〉 for two different sites as functions of the energy eigenvalue Ẽ` in a fixed
dimension n = 1241 Krylov subspace. The lighter colored dots correspond to a site in region A and the darker (blue) dots
to a site in region B. The values of ni are larger for region A since the initial state has all the bosons there. Right: the same
for two different single particle state occupation numbers, the lighter colored curve for the lowest energy state and the darker
(blue) curve for an excited state, which is occupied only when the total energy is large enough. The dimension of the full
Hilbert space N increases from bottom to top, the plots clearly showing that the functions become smoother as a result.

Diagonalization of the reduced Hamiltonian was done
using the Lanczos method in which the Hamiltonian be-
comes tridiagonal. The resulting matrix is equivalent to
the one of a tight-binding Hamiltonian for a particle hop-
ping on a one-dimensional chain with site and bond dis-
order. This analogy allows us to apply results pertaining
to Anderson localization phenomena to understand some
properties of the Ritz states. In particular, the states at
the edges of the spectrum, for which Lanczos iterations
have already converged, correspond to localized states in
the Anderson problem, and the states in the middle of
the band, for which 〈Ẽ`|Â|Ẽ`〉 varies smoothly, to the
extended states.

Following the time evolution via (7) shows that the
occupation numbers ni thermalize, that is, become to
a good accuracy time-independent at sufficiently large
times. We now show how thermalization can be under-
stood as a consequence of generation of a large entangle-
ment entropy between subsystems. Dividing the system
in fig.1 into subsystem A, the 3 × 3 block, and subsys-
tem B (the large block), we consider the entanglement
entropy given by SAB(t) = −tr(ρA ln ρA), where ρA is
the density matrix associated with subsystem A. Numeri-
cally, we consider an initial state with all bosons in region
A and compute SAB(t); the result is plotted in Fig. 3b.
The overall shape of the curve with the entropy rising
and then decreasing is similar to that discussed by Page
[22] in relation to the entropy generation in black hole
formation and evaporation. That the entanglement en-
tropy thermalizes suggests that it should also obey the
ETH, a fact that is made evident in Fig. 3a.

The behavior of SAB(t) at t → 0 can be understood
analytically. The density matrix can be Taylor expanded
as

ρA(t) = ρA(0) + tpρ
(p)
A + . . . (8)

where p is an integer and ρ
(p)
A is traceless. From the defi-

nition of the entropy, combined with perturbation theory
to compute the eigenvalues of ρA(t), it follows that

SAB(t) = 〈ψA(0)|ρ(p)A |ψA(0)〉tp ln tp + . . . (9)

where |ψA(0)〉 is the initial state of subsystem A. This is
a quite generic result. For the system and initial state
we considered, a simple calculation shows that p = 2,
in good agreement with the numerical result. At later
times, the growth of entropy stops since the entanglement
entropy is bounded by the thermal entropy; the latter is
defined as the entropy of the canonical ensemble at the
temperature and chemical potential corresponding to the
average energy and particle number of the subsystem.
Further, as more and more bosons leave the small box,
the available thermal entropy decreases and so does the
entanglement entropy as can be seen in the plot.

The asymptotic value SAB(t � tth) is close to the
thermodynamics entropy, as expected [23, 24]. A sur-
prising result from the numerics, however, is that the
entanglement entropy becomes quite close to the ther-
mal entropy much earlier than the thermalization time
tth of the entire system (tth corresponding roughly to the
largest times in the plot). Thus, by streaming particles
into vacuum, subsystem A quickly reaches a mixed state
close to thermodynamic equilibrium. This explains why
local observables behave thermally and thus provides the
sought after connection between thermalization of local
observables, as envisioned by the ETH, and the growth
of entropy.

We conclude with a comment on an application of
the ETH to quantum gravity. As previously mentioned,
black hole formation can be seen as a thermalization pro-
cess. In classical gravity, the metric settles, indepen-
dently of the initial state, to a time-independent value
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(a) S(Ẽ`) (b) S(t)

FIG. 3: Left: Entanglement entropy SAB(Ẽ`) as a function of the (Ritz) energy eigenvalue Ẽ` in a fixed dimension n = 1241
Krylov subspace. Right: Entanglement entropy (lower curve) and thermal entropy (upper curve) as functions of time. Inset:
Initial growth of the entanglement entropy. At short times, the numerical result (monotonically increasing curve) matches
the result of the series expansion.

characterized by a few conserved numbers (total energy,
angular momentum, charge). This is known as the no-
hair theorem [25]. If we accept the ETH as the general
reason for thermalization in quantum systems, we are
led to the conclusion that the quantum counterpart of
the no-hair theorem is the statement that the metric is
an operator obeying the ETH. Thus, we propose a no-
hair=ETH equivalence, which asserts that the metric
has the same average and the same few-point correlations
functions in all energy eigenstates with close-by values
of energy (charge and angular momentum). This point
of view is consistent with the idea that quantizing the
metric is not the right way to identify the microscopic
degrees of freedom that describe a black hole, any more
than quantizing sound waves is sufficient for discovery of
the molecular nature of matter [26].

In summary, by using Krylov subspace techniques, we

have extended numerical tests of the ETH to systems
much larger than those amenable to direct diagonaliza-
tion. We have also provided evidence that thermalization
of isolated systems, even those in individual pure states,
can be understood at the level of subsystems in terms of
a rapid growth of the entanglement entropy. The close
parallel between the ETH and the no-hair theorem of
classical gravity suggests an application of these ideas to
quantum physics of black holes.
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