
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Theory of self-oscillation and mode locking in a longitudinal
photoacoustic resonator

Ziyao Tang, Han Jung Park, Roger M. Diebold, and Gerald J. Diebold
Phys. Rev. E 90, 043204 — Published 22 October 2014

DOI: 10.1103/PhysRevE.90.043204

http://dx.doi.org/10.1103/PhysRevE.90.043204


Theory of self-oscillation and mode-locking in a longitudinal photoacoustic resonator

Ziyao Tang1, Han Jung Park1, Roger Diebold2, and Gerald J. Diebold1
1Department of Chemistry,Brown University, Providence, RI, USA, 02912 and

2Department of Engineering and Applied Physics,

Harvard University, Cambridge, MA, USA, 02138

The wave equation for pressure that governs generation of the photoacoustic effect pos-
sesses a forcing term proportional to the time derivative of the energy delivered to the gas
per unit volume and time. A positive pressure fluctuation, with its accompanying density
increase, thus increases the optical absorption and provides a positive feedback mechanism
for sound generation. A theory for self-oscillation in a one-dimensional resonator is given.
Expressions for the photoacoustic pressure are derived for the cases of highly and weakly
absorbing gases that indicate mode-locked sound generation. Experiments with CO2 lasers
are reported where evidence of the self-generation effect was sought.
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INTRODUCTION

The photoacoustic effect[1–3], which refers to the
production of sound by absorption of optical radiation,
generally is produced as a result of thermal expansion
following the optical deposition of energy. When heat
conduction and viscous effects are ignored, the photoa-
coustic pressure p is governed by the wave equation[4]
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where c is the sound speed, β is the thermal expansion
coefficient, CP is the specific heat capacity, t is the time
and H is the heating function, which describes the en-
ergy per unit volume and time delivered by the optical
source to the absorbing medium. It is evident from
the form of the forcing term in Eq. 1 that sound can be
generated by any optical source that provides constant
heat deposition but which varies in space[1, 5, 6]; or, as
in, for example, trace gas detection, for any source that
is invariant in space, but which varies in time[7]. It has
been recognized by Kolomenskii and Maznev[8] that
since an increase in pressure in a propagating acous-
tic wave is accompanied by a corresponding increase
in density, when an optical beam with a wavelength
corresponding to an absorption of the gas is present,
the density increase leads to an increase in optical ab-
sorption and a further pressure increase, so that am-
plification of the wave is possible–even for the case of a
continuous optical beam whose intensity varies neither
in time nor in space.

Here, the generation of longitudinal acoustic waves
by a continuous laser beam directed into a resonator is

considered based on the amplification inherent in the
mechanism of sound production by the photoacoustic
effect. The theory is formulated for a one-dimensional
resonator with plane parallel surfaces, one of which
acts as a window for the entrance of a continuous laser
beam that is absorbed by an inviscid gas. In the region
near the entrance window, where a pressure antinode
exists, any pressure increase in a standing wave re-
sults in an increased density of absorbers and hence
additional energy deposition relative to gas in the cell
at the ambient pressure. Correspondingly, when the
pressure decreases near the window on the next half
cycle of the acoustic standing wave, a smaller amount
of energy is deposited relative to gas at ambient pres-
sure. The result is a reinforcement of the pressure
amplitude of the standing wave, or, equivalently, an
amplification of the standing wave.

Consider a laser beam with a uniform intensity I0
directed into a cell containing a gas with a density ρ
with an optical absorption coefficient per unit density
α̂, .as depicted in Fig. 1. The heating function can be
written as

H(x, t) = α̂(ρ+ δ)I(x, t), (2)

where δ is the acoustic density and I is the optical
beam intensity. From linear acoustics [9, 10], the den-
sity and pressure are related by the relation δ = p/c2,
which, when substituted with Eq. 2 into Eq. 1, gives
for a one-dimensional resonator
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FIG. 1: Diagram of a photoacoustic cell for producing self-
oscillation in a gas. The radiation enters from the left at a
coordinate z = 0. In some experiments the microphone was
mounted at the exit window; in others it was as shown.

where beam intensity is taken to be absorbed exponen-
tially in space, with an absorption coefficient ᾱ given
by ᾱ = α̂ρ; that is, the effect of a change in pressure the
exponential function has been taken to be negligible.

The generation of the acoustic signal in the res-
onator, with the assumptions noted above, is governed
by Eq. 3, which is a partial differential equation in
space and time. In the Section II, the properties of
sound generation as governed by Eq. 3 are discussed
for a strongly absorbing gas, which shows a mode cou-
pling effect. Section III gives a frequency domain,
series solution to Eq. 3 where the amplification effect
is described for the general case of an absorption coef-
ficient of arbitrary magnitude. A solution is given for
a weakly absorbing using the series solution. Section
IV discusses experiments carried out with CO2 lasers
irradiating cells filled with SF6, and Section V, the Dis-
cussion Section, gives an overview of the self-oscillation
effect.

SOLUTION FOR A STRONGLY ABSORBING

MEDIUM

When the absorption of the gas become high, it is
possible to approximate the exponential factor in Eq.
3 through use of the relation

e−λf(z) =
lim λ→∞

δ(z − z0)

∫

e−λf(z′)dz′, (4)

where δ(z) is the Dirac delta function. With this
approximation, and taking the pressure to vary as

p̃(z) exp(−iωt) Eq. 3, becomes

∂2p̃

∂z2
+ k2p̃ =

iωβI0
ρc2CP

p̃(0)δ(0). (5)

A Green’s function for the resonator that has boundary
conditions such that the acceleration in the acoustic
wave ∇p/ρ is zero at z = 0 and L can be found[11] to
be

GA(z, z
′) =

1

sin kL

{

cos kz cos k(z′ − L) z < z′

cos kz′ cos k(z − L) z > z′
. (6)

The Green’s function solution to a Helmholtz equation
of the form of Eq. 5 with a source function S(z) is
given by

p̃ =

∫

G(z, z′)S(z′)dz′. (7)

The integration of the Green’s function over the source
term in Eq. 5 is trivial as the integral

∫ L
0 cos kz′δ(z′)dz′

is unity; thus, the time domain acoustic pressure be-
comes
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(9)
where

Γ̂ =
βI0
cρCP

.

Each term in the series given by Eq. 9 can be evaluated
as a delta function so that Eq. 9 becomes

p(t) = p̃(0)Γ̂

∞
∑

n=0

[δ(t −
z + (2nL)

c
)

+ δ(t+
z − (2n+ 2)L

c
)]. (10)

Since on every reflection of the acoustic pulse at the
entrance window the pressure is augmented by a factor
of Γ, Eq. 10 must be modified to give

p(t) = p̃(0)

∞
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c
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which shows a series of pressure transients that increase
with each pass through the resonator. The delta func-
tions travel within the boundaries of the cell and are
considered to exist within the photoacoustic cell only.
Initially, the right-going delta function, corresponding
to n = 0, leaves the left window at z = 0 where the
laser beam enters, travels inside the cell to the point
z = L, and exits, at which time, the left-going delta
function launched at z = 2L arrives at z = L, and
propagates inside the cell. When this latter pulse
reaches the point z = 0 the right-going pulse from the
n = 1 term enters the cell. When all of the terms are
considered, a traveling delta function pulse that prop-
agates continuously back and forth inside the cell is
described.

SERIES EXPANSION SOLUTION

When Eq. 3 is written so that all quantities vary is
exp(−iωt), the wave equation for pressure becomes

∂2p̃

∂z2
+ k2p̃ = Γe−αz p̃, (12)

where

Γ =
iωαβI0
ρc2CP

.

A series expansion solution for the pressure can be ob-
tained by considering the right hand side of Eq. 12 to
be of order ε, and expanding the pressure in a series of
functions fj as

p = εf1 + ε2f2 + ε3f3 + ... (13)

Substitution of Eq. 13 into Eq. 12 and equating terms
with identical powers of ε gives each fj as solutions to

f ′′
1 + k2f1 = 0
f ′′
2 + k2f2 = Γ f1e

−ᾱz

f ′′
3 + k2f3 = Γ f2e

−ᾱz

f ′′
j + k2fj = Γ fj−1e

−ᾱz for arbitrary j.

(14)

The solution for the first of these that satisfies the
boundary conditions at the ends of the cell would
be a superposition of the eigenmodes of the cavity,

p =
∑

p̃n cos knz, where kn = nπ/L.

Consider the solution of Eqs. 14 for a single eigen-
mode p̃m cos kmz. The solution for f2 from the second

of Eqs. 14 can be found using a Green’s function of
the form

GB(z, z
′) =

2

L

∑

n

cos knz cos knz
′

k2 − k2n
(15)

to give a first approximation to the photoacoustic pres-
sure as

p = pm[cos kmz +
2

L
Γ
∑

n,m

cos knz

k2 − k2n
Inm], (16)

where

Inm =

∫ L

0
cos knz cos kmz e−αzdz. (17)

Although the integral in Eq. 16 can be evaluated an-
alytically, solutions to the subsequent equations for f3
or higher result in complicated, lengthy expressions.

Weakly absorbing gas

For the case where the absorption coefficient is
small, the exponential function in the expression for
Inm can be approximated as unity so that Inm =
Lδnm/2, where δnm is the Kroneker delta function.
The solution for f2 using Eq. 7 with GB gives

f2 = pmΓ
cos kmz

k2 − k2m
. (18)

Using f2 as a source, according to the third of Eqs. 14
gives

f3 = pmΓ2 cos kmz

(k2 − k2m)2
. (19)

It is not difficult to show that for the general term fq
the solution is

fq = pmΓq−1 cos kmz

(k2 − k2m)q−1
. (20)

The series given by Eq. 13 is of the form of of a power
series 1 + x + x2 + x3 + ... = (1 − x)−1, where x =
Γ/(k2 − k2m); thus, the series can be summed to give
the acoustic pressure as

p̃ = p̃m cos kmz

(

k2 − k2m
k2 − k2m − Γ

)

. (21)
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If Eq. 21 is Fourier transformed into the time domain,
the photoacoustic pressure becomes

p(z, t) =
p̃m cos kmz

2π

∫

∞

−∞

ω2
− (ckm)2

(ω − ω−)(ω − ω+)
e−iωtdω.

(22)
The poles in Eq. 22 are found for small Γω to be

ω± =
iΓω

2
± ckm,

where

Γω =
ᾱβI0
ρCP

.

It is convenient to write Eq. 22 using the operator
−[d2/dt2 + (ckm)2], which reduces the numerator in
fraction in the integral to unity. As both poles lie
in the lower half complex ω plane, the integration is
straightforward giving

p(z, t) =
p̃m cos kmz

ckm

[

d2

dt2
+ (ckm)2

]

×

sin[ckm(1−
Γ̄2

(2ckm)2
)1/2t] e

Γ̄
2
t. (23)

On evaluating Eq. 23 to first order in Γω, the photoa-
coustic pressure is found to be

p(z, t) = p̃me
Γω

2
t cos kmz cos ckmt, (24)

which describes a standing wave growing in amplitude
at a rate Γω/2 in time.

EXPERIMENTS

Experiments seeking evidence for the generation of
sound by absorption of continuous laser radiation were
conducted over a period of time using four different
CO2 lasers. The 10.6µm beams from the lasers were
directed into several different resonators whose lengths
were 11 cm, 17 cm, or 37 cm long, with inside diame-
ters of 12.5mm or smaller. The cells were filled in
different experiments with various mixtures of SF6 in
N2 with mole fractions of 0.05, 0.08, 0.09 and 1. Note
that the largest signals were expected at approximately
90% SF6 owing to a heat conduction effect where opti-
cally thick gases transmit heat to the entrance window
of the photoacoustic cells resulting in acoustic signal
diminution, as has been previously reported[12]. The

acoustic signals were recorded with a condenser micro-
phone (B & K Inc., Model 4130) whose output was
viewed on a digitizing oscilloscope.

In all of the experiments carried out, there was lit-
tle difficulty in seeing an acoustic signal at either the
fundamental or one of the overtones of the longitudi-
nal resonance frequency of the cell as long as the laser
power exceeded roughly 0.2W . The difficulty in as-
certaining that self-oscillation was in fact taking place
was that oscillation could be excited by transients that
arose from plasma oscillations in the laser, or, more
typically, from small small voltage spikes that were
generated by the power supply, which gave transient
power fluctuations on the laser outputs. Even with
power supplies based on full wave rectification of 60Hz
high voltage, transients were found at the line fre-
quency which arise from non-ideal behavior of the high
voltage diodes in the voltage rectifier circuit. When
transients in the laser power are generated in this way,
it is easy to distinguish between self-oscillation and
sound generation by transients by triggering the os-
cilloscope on the line voltage, and signal averaging the
microphone waveform. A clear sign that the sound
does not arise from self-oscillation is that the ampli-
tude of averaged signal even though it appears at a
longitudinal resonance of the cell averages to a finite
amplitude synchronous with the line frequency. Self-
oscillation will not be synchronous with the line fre-
quency and the waveform should decay zero after mul-
tiple averages.

In order to reduce the amplitudes of the transients
in the power supply for the flowing gas laser (Advanced
Kinetics Inc., Model MIRL 50), a single stage RC cir-
cuit using high voltage capacitors was used. As this
proved to be only marginally successful in reduction
of the transients, a feedback circuit employing a liquid
nitrogen cooled HgCdTe infrared detector was used to
stabilize the power supply through the laser’s external
voltage control unit. As this proved inadequate for
suppressing the transients, a sealed CO2 laser (Par-
allax Tech Inc.) powered with a high voltage supply
(Unipower Inc. Model BRC-30-25P-PX50) that em-
ployed a switching supply to provide the high voltage
was used. Although no transients at the switching
frequency of 40 kHz were detected, again, 60Hz tran-
sients were found on the laser output. To further sta-
bilize the power supply, an Agilent Inc. Model 6035A
supply with a ripple specified as less than 0.05% was
used to replace the first stage of dc power generation
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that fed the switching circuit in the laser power sup-
ply. This modification of the laser power supply re-
sulted in transients on the laser output on the order
of 3% of the continuous output power. Later, for even
better stability, the Agilent supply was replaced by 15
lead acid storage batteries wired in series that gave the
180 V required by the switching circuit. Additionally,
a feedback circuit comprising an acousto-optic modu-
lator and a HgCdTe infrared detector was employed
to reduce the amplitude of the transients and stabilize
the laser power further.

With the last modification of the laser power sup-
ply, experiments were carried out at powers up to a
maximum of 6W, where no detectable transients on
the laser output were found, as determined by the
HgCdTe detector. However, no self-oscillation at this
power level was found with any of the resonators filled
with SF6-N2mixtures that ranged over the percentages
noted above..

Discussion

At this point, the experiments reported here can
only be used to put a bound on the power necessary
to generate self-oscillation. It is possible that a highly
stable laser with higher output power, or possibly the
employment of a spherical resonator, which can be ex-
pected to have a higher quality factor than a cylindri-
cal resonator, would uncover the self-oscillation. The
remarkable capability of the photoacoustic effect for
trace detection at the sub ppm level serves as a strong
indicator of a corresponding high sensitivity of the pho-
toacoustic effect to small fluctuations in optical power
when a strongly absorbing gas is present in the res-
onator.

The calculation given above do not give the effects
of losses in the cavity which act to damp out self-
oscillation. Such losses can be incorporated into the
above results by considering the cavity quality factor
Qn the value of which is given a subscript indicating a
dependence on the longitudinal oscillation mode num-
ber n. For the calculation leading to a single mode,
standing wave pressure, the exonential term in Eq. 24,
must replaced by exp[Γω − (ωn/Qn)](t/2), where ωn

is the angular frequency of the the mode n. For Eq.
11, the incorporation of losses is complicated in that
each delta function contains a wide spectrum of fre-
quencies corresponding to a sum over all of the lon-

gitudinal modes of oscillation, the damping for each
mode on a single cycle being exp(−2πn/Qn). If the
simple case of a frictional force proportional to the
wave speed at the wall is taken[9], then the quality
factor becomes proportional to n so that Γ̂ becomes
Γ̂ = [(βI0/cρCP ) − exp(−2π/Q)]. It is to be noted
that the effects of dispersion, which have not been in-
cluded in the calculations given here, would degrade
the sharply spiked pressure profile indicated by Eq.
11; strong deviation from the delta function pressure
profile would be expected in an experimental realiza-
tion of the mode locking effect. The question of what
factors limit the amplitude of the photoacoustic wave
once oscillation has been attained is not addressed in
the formulation given here, but can be found by con-
sidering the effects of nonlinear acoustics as discussed
in Ref. [8].

The results given here are carried out assuming
an initial pressure p̃ that is amplified on interaction
with the optical beam, which provides a straightfor-
ward starting point for calculations. Although self-
oscillation is perhaps excited most easily by an external
perturbation, at all times there is thermal excitation of
the various modes of oscillation in the cavity depend-
ing on their energy relative to kBT, where kB is Boltz-
mann’s constant and T is the ambient temperature.
It is thus possible that self-oscillation can take place
spontaneously on achieving a sufficiently high gain in
the resonator.

Any single mode can sustain oscillation indepen-
dently of the other modes since the energy deposition
increment (or decrement) is always in phase with the
pressure. The salient result given by Eq. 11, however,
is that the photoacoustic effect from a continuous op-
tical source causes a locking of the various longitudinal
modes of oscillation, the mechanism of synchronizing
the modes being a pressure increase at the entrance
window in a given mode that increases the pressure
in the other modes. As any pressure increase at the
entrance window results in increased absorption of en-
ergy from the optical beam, the modes are naturally
excited to reinforce each other so that phase match-
ing is inherent in the excitation process. This mode
locking, under ideal circumstances, would result in the
train of sharp pulses described by Eq. 11, which would
appear to be directly analogous the pulse train seen in
a mode locked picosecond laser. Despite the appar-
ent similarity between photoacoustic and mode locked
laser generation of pulses, the photoacoustic process
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does not require imposition of a periodic loss in the os-
cillator. Photoacoustic generation of sound according
to the theory given here arises from energy deposition
in the wave dependent on the absorbed optical power
and acoustic wave amplitude, and appears to be unique
in its mechanism of mode locking.
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