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Abstract 

The combination of low elasticity modulus, anisotropy, and responsiveness to external 

fields drives the rich variety of experimentally observed pattern formation in nematic liquid 

crystals under capillary confinement. External fields of interest in technology and fundamental 

physics are flow fields, electro-magnetic fields, and surface fields due to confinement. In this 

work we present theoretical and simulation studies of pattern formation of nematic liquid crystals 

disclination loops under capillary confinement including a branching processes from m=+1 

disclination line to two m=+1/2 disclination curves that describes the post nucleation and growth 

regime of the textural transformation from radial to planar polar textures. The early post-

nucleation and growth of emerging disclination loops in cylindrical capillaries is characterized 

using analytical and computational methods based on the nematic elastica that takes into account 

line tension and line bending stiffness. Using sub diffusive growth and constant loop anisotropy, 

we find that the solution to the nematic elastica is a cusped elliptical geometry characterized by 

exponential curvature variations.  The scaling laws that govern the loop growth reflect the 

tension/bending elasticity balance and reveal that the loop dilation rate depends on the curvature 

and normal velocity of the disclination.  The line energy growth is accommodated by the 

decrease in branch point curvature. These finding contribute to the evolving understanding of 

textural transformations in nematic liquid crystals under confinement using the nematic elastic 

methodology. 

 

Keywords: Liquid crystals, Modeling, Disclination, Defect dynamics, kinematic, viscoelastic 

property 
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1. Introduction 

Nematic liquid crystals are anisotropic viscoelastic materials that exhibit the anisotropy 

of crystals and the fluidity of viscous liquids; their macroscopic orientation is characterized by 

the unit director vector n.  Phase transitions, external electromagnetic fields, shear flows, and 

confinement usually generate singular and non-singular orientational defects [1-13].  

Disclination formation in nematic liquid crystals under confinement is a subject of continuing 

interest since frustration emanating from fixed orientation at curved bounding surfaces is 

common in applications [13-18].  Defects in nematic liquid crystals include disclinations lines, 

walls and point defects [1, 19].  A disclination line is characterized by a quantized charge m 

which specifies the amount of rotation when encircling the line and the sign (+/-) associated with 

the charge denotes the sense of rotation [2]. Since the energy per unit length or line tension 

associated with a line defect scales with m2, ±½ lines are energetically preferred [2, 9].  The 

defect ring has been investigated previously by Luca and Rey [20], here we focus on the bending 

effect on the dynamics and kinematics of the radial disclination loops growth. Straight 

disclinations only store line tension energy since the planes of director gradients are parallel. On 

the other hand the energy of a planar curved disclination line contains both tension and bending 

contributions since the planes of director gradients are splayed [7].  In the most general case of 

spiral disclinations, additional torsion elasticity arises. This paper considers curved planar 

disclination loops under capillary confinement. Figure 1 shows a schematic of a +1/2 disclination 

loop attached to +1 line segments, relevant to this paper.  The splay of the cross sectional planes 
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as one moves along the line generate line bending stiffness since / s 0n⊥∂∇ ∂ ≠ ; where n⊥∇  are 

normal gradients and “s” is the arc-length. 

 

Figure 1. Schematic of a +1/2 disclination loop attached to a +1 line and director field in the 
cross-sectional plane.  Disclination bending stiffness arises when / s 0n⊥∂∇ ∂ ≠ (adapted from 
ref. 7) 

Texturing of NLCs under cylindrical capillary confinement with homeotropic anchoring 

is summarized in a generic texture phase diagram [20, 21] shown in Figure 2, which contains 

four textures: (i) polar radial line defect (PR), (ii) planar polar line defect (PP), (iii) escape radial 

ring defect (ERRD), and (iv) escape radial (ER) textures. This figure shows the stability range of 

each texture and provides a wealth of important information on interfacial science, phase 

transitions, elasticity, and defect physics. For example, the PR/PP boundary describes the defect 

instability: 1 2( 1/ 2)m m= + → = +  , emanating from the branch point to form a loop, driven by 

bulk elasticity reduction, and hence its location on the texture diagram provides information on 

bulk elasticity.  
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Figure 2. Texture phase diagram in terms of dimensionless temperature (T/TNI) as a function of 
the capillary radius for uniaxial nematics under capillary confinement, indicating the geometric 
and thermal conditions. The horizontal dashed line is the nematic/isotropic transition temperature 
TNI. PR is the planar radial line defect texture with a m=+1 defect at the center, PP is the planar 
polar line defect texture with two m=+½ defects, ER is the escaped radial texture where the 
director tilts out of the cross sectional plane, and ERRD is the escaped radial ring defect texture, 
consisting of a periodic lattice of alternating +1 and -1 point defects separated by a distance close 
to the capillary radius. (Adapted from reference 21).   

 The nature of the PR PP transition in principle can be spinodal (SD) or nucleation and 

growth (NG), but elastic energy estimates show that NG will prevail.  In the SD mode the entire 

+1 line splits into two +1/2 lines along the entire capillary of length L that separate under charge 

repulsion. On the other hand in the NG mode, a number ‘n’ of +1/2 loops nucleate and grow 

along the initial +1 line. Since the elastic length scale associated with the director n is the 

capillary radius Rc, the distance between the nucleating loops is of the order of Rc=L/n.  If the 

energy cost (creating two cores and two interfaces) of splitting a +1 line of length L is LE in the 

SD mode then energy of nucleating n loops in the NG mode is ( )E loop c EL R / R L< .   Figure 3 

shows a schematic of the NG mode of the PR  PP transition consisting of: 
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(i) initial stage: nucleation on a pre-existing +1 line of “n” +1/2 loops separated by a 

distance of the order of Rc=L/n (Figure 3(a));  

(ii) early stage: vertical and horizontal growth of  +1/2 loops, involving the motion of 

branch points (BP) that join the +1/2 loops and the +1 line segments with a constant 

branch angle (see Figures 3(b) and 4); 

(iii) intermediate stage: coarsening and horizontal growth saturation of the +1/2 loops, 

where the vertical saturation  is  c2y 1.33R∞ = ( Figure 3(c)). 

(iv) late stage: formation of the PP texture with two parallel +1/2 lines separated by a 

distance c2y 1.33R∞ = (Figure 3(d)). 

We emphasize that this paper deals with a single loop growth and that issues with multiple loops, 

loop-loop interactions and the exact loop-loop nulceation distance are not considered. 

In this paper we only consider the early stage (ii). Stages (iii) and (iv) were discussed in  

[7-9,22]  where it is shown that the bending to tension ratio  is a function of the capillary 

geometry.  The key issue of interest in the present paper is: what is the evolving shape of the 

+1/2 disclination loop that reflects the impact of line tension and bending stiffness of 

disclination lines under given growth kinetics? In the present problem each of the +1/2 

disclination loops is attached to a +1 string and they grow driven by the texture transformation 

process.  The related phenomenon of   growth of isolated disclination loops in a cylindrical 

capillary was previously discussed by de Luca and Rey [20]. 
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Figure 3.  The nucleation and growth process of domains consisting of +1/2 loops that 
eventually lead to sections with well-formed PP textures; (a) Initial nucleation stage, defect 
points appear on the +1 disclination line. The distance between two points is of the order of the 
capillary radius (Rc); (b) early growth stage including textural transitions from high order +1 
disclination into energetically less costly +½ disclinations. The energy difference between the 
two textures, which generates the constant motion of the branch point (BP); (c) Intermediate 
coarsening stage. The loop expansion stops when the loop vertical radius reaches the final defect 
distance, y∞, but BPs still moves horizontally; (d) Final stage. After collision of branch points, 
we see the relaxation of the line shape leading to 2 +1/2 disclination lines separated by distance 
y∞.  

 The organization of this paper is as follows.  Section 2 presents the theoretical framework 

and equations for disclination loop shape and kinematics. Section 3 presents the results including 

disclination curvature and space curve as a function of arc-length, the effect of time on the 

disclination shape and energy, the relations between loop geometry and disclination elasticity 

and the kinematics of the disclination loop. Section 4 presents the conclusions. The details of 

computational method are provided in Appendix I. Appendix II discusses the branch angle 

shown in figure 4 and establishes the relation between material length scale, lM, and geometric 

length scale that is behind a fixed branch angle value of 60o and Appendix III compares the 
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viscous and tension elasticity terms presented in the shape equation. As noted above this paper 

builds on our previous work on nematic liquid crystals under capillary confinement [7-9].  

2. Disclination Loop Shape Model and Simulation 

2.1. Disclination Loop Geometry 

Figure 4 shows the (x,y) coordinate system and geometry of a +1/2 disclination loop consisting 

of two planar m=+1/2 disclination lines emanating from two branch points located at

( )( )b(x, y) x t ,0= ± . The semi-axes ( ) ( )( )x yR t ,R t  grow in time as dictated by the driving 

energy minimization. 

 

Figure 4.  Schematic of the coordinate system and geometry of two m=+ ½ lines emanating from 
the branch point at x=xb, y=0. The x-axis is along the capillary axis. The angle between the x-axis 
and the tangent vector t is φ, N is the unit normal, and s the arc-length. The branch point angle, 
φo, is 60°. Rx is the loop long radius which is the half distance between two branch points and Ry 
is the loop short radius which is the half-separation distance between the two + ½ lines. ωn is the 
normal velocity of the loop growth, ωt is the tangent velocity and ωb is the branch point velocity 
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respectively. At the top and the bottom of the loop, (x0,±y0), κ=0 and at the branch point, (±xb,0), 
κ=κ*. 

 

The unit tangent t and the unit normal N to the filament are given by [7-9]: 

2

2

(s, t) (s, t) (s, t)(s, t)     ;    κ (s, t)
s s s

r t rt N∂ ∂ ∂= ≡ =
∂ ∂ ∂

      (1a,b) 

where / stκ = ∂ ∂  is the curvature, r is the position vector and s the arc length, respectively. t is a 

unit vector which is expressed with the tangent angle φ(s): (s) (cos (s), sin (s))ϕ ϕt = − . In the 

normal angle parameterization, the curvature is: s/ sκ ϕ ϕ= ∂ ∂ ≡ . According to Figure 4, to 

describe the disclination as an evolving space curve y(x,t), we need to specify: (i) the loop 

curvature κ(s), (ii) the tangent angle at the branch point oϕ , and (iii) the loop amplitude  Ry (t), 

and (iv) the location of the branch point Rx(t). 

 

2.1. Disclination Shape Equation 

In this section we derive the disclination shape equation by formulating the force balance 

equation on the line due to internal and external stresses. Internal stresses include line tension 

and line bending forces whose expressions are derived using Frank elasticity.  The shape 

equation of the +1/2 disclination is then used to formulate the shape equation for the growing 

+1/2 loop.  

(a) Disclination   line tension and bending stiffness  

The Frank gradient elasticity density f for uniaxial NLCs, using the one constant 

approximation is [2]: 
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( ) ( )( )2 2Kf
2

n n= ∇ ⋅ + ∇ ×                                                                                                       (2) 

Minimizing the total free energy leads to the Euler-Lagrange equation: 2K λn n∇ = ;  K is the 

Frank elastic constant, and λ is the Lagrange multiplier that takes into account the unit length 

restriction 1n n⋅ = .  The +1/2 axial disclination that forms the loop is characterized by a planar 

director field perpendicular to the direction of the line ( )cos ,sin ,0ψ ψn = . In planar polar 

coordinates (r,φ), a wedge disclination solution to  the Euler Lagrange equation is m Cψ ϕ= + , 

where the defect charge  m is a multiple of 1/ 2±  and C a constant. The occurrence of half-

integer winding numbers is a result of the nematic symmetry and physical identity of the 

alignment n and –n [22].  By integrating eqn. (2)  in a cylinder of radius Rc, one obtains  the line 

tension ( )o PPγ  of a single straight m=+1/2 disclination in the PP texture[21]: 

( )

,1/2

2
2

1/2 ln
2 2 ∞

⎛ ⎞⎛ ⎞
= = +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

o

c
o c c

c

RKPP r
r y

γ

πγ γ πσ
144424443

                          (3) 

where Rc is the capillary radius, rc is the core radius, σc is the core energy density that is usually 

assumed to be negligible in comparison to the other terms and  2Ry is the distance between the 

two +1/2 lines defined in Figure 4. The total line energy γ1/2 (energy/length) of a curved +1/2 

disclination is given by the sum of the core energy 2
c crπσ , bare line tension γ0,1/2,   and the 

bending 2
ck / 2κ contributions [7]: 

2
2 2c c

1/2 c c 0,1/2 c
k KRr ;  k
2 2

πγ = πσ + γ + κ =
                                        

(4a,b) 

where kc is the bending modulus (energy × length) and only the leading order bending term is 

retained. Equation (4b) is applicable to the intermediate coarsening stage (see mode (iii) 
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discussed above and [7]), but in the post nucleation and growth stage studied here we show 

below (see eqn. (31b)) that it is a function of Ry. To find the disclination shape equation, we 

perform the following stress balance.  

(b) Disclination  shape equation 

The force balance equation is written by the sum of line force  .Tl∇ and the surrounding 

medium force [23]: 

( )b 1
F

   d γ.T N T ω
∂

∇ + ⋅ =∫l l                                                            (5) 

where T  is the + ½ disclination line  elastic stress tensor, ( ) ( ) / stl∇ • = ∂ • ∂  is the line gradient 

operator, N is the unit normal vector and Tb is the bulk stress tensor, bN T⋅  is the elastic force 

acting on the disclination by the bulk, and the integral is over the disclination circumference F∂ , 

γ1 is the rotational viscosity,  and ω the velocity of the line.  To find the m=+1/2 line elastic stress 

tensor T, we perform a variation of the total line elastic free energy due to tangential and normal 

displacements and find [23, 24]: 

( )1/2
M :
s

∂= γ − −
∂

T M b I tNl

                        
(6) 

where 1/2γ Il  is the thermodynamic tension stress analogous to 3D pressure. The elastic line stress 

T has a mechanical contributions ( :−M b ), since there can be no bending without tension; here b 

is the line curvature tensor given by = κb Il . The last term in equation (6) are the bending 

stresses that arise under curvature gradients ( / s 0∂κ ∂ ≠ ). The scalar moment M, line moment 

tensor M, and line elastic stress tensor T  are:  

cM k= κ , ck= κM Il  ; e 2c
o,1/2 c

k k
2 s

∂κ⎛ ⎞= γ − κ −⎜ ⎟ ∂⎝ ⎠
T I tNl                (7a,b,c) 
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Assuming that bulk dissipation is generated by bulk forces: ( )b 1
F

 d γN T ω
∂

⋅ =∫ l , and replacing 

eqns.(4 and 7) into (6) we find the disclination shape equation , known as nematic elastica, as a 

balance between  tension and bending forces: 

{

3

0,1/2 c ss

tension
bending

k 0
2
κγ κ κ

⎛ ⎞
− + =⎜ ⎟

⎝ ⎠1442443                                       
(8) 

  The diffusive term 2 2
c ss ck κ k κ / s= ∂ ∂  and the nonlinearity 3

ck κ / 2 arise due to the bending 

stresses in eqn. (5).  We assume that 0,1/2 0,1/2/ tγ μ κ γ+ ∂ ∂ ≈  and the line viscosity term is 

negligible (see Appendix III).  Eqn. (8) is a steady nonlinear reaction-diffusion equation, in 

which  the time dependency of the curvature ( )sκ  that describes loop growth  enters through 

transient  boundary conditions at the moving  branch point  ( )bx ( ),0t and at the ( )y0, R ( )t .  

Disclination loop shape equation 

For simplicity we use one loop quadrant. For the selected fixed (x,y) coordinates, the 

amplitude of the loop corresponds to zero arch-length (s=0) , while the branch-point to S*(t).  To 

derive the loop shape equation we subject eqn. (8) to time dependent curvature boundary 

conditions: 

*
* *

S (t)s S (t), (t)= d /ds   ;  s 0, 0 κ κ φ κ= = = =
                                                                        

(9a,b,c)  

where S* and κ* are  functions of time .  The two important parameters in eqns. (8 and 9) that 

will affect the shape of the loop are the ratio of the tension to bending stiffness 

( )2
ca / k [ ]lengthγ −= =  and the branch point curvature (κ*) which are functions of capillary size 

[7]. 

(d) Disclination space loop  
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 In the selected quadrant the space loop is given by the evolving space curve ((x(t),y(t)).  

From the Fresnel integrals [25] we have: 

( ) ( )( )S (t ) s* *

0 0
x s,a, , t cos s",a, ds dsκ κ κ

∗ ′
′′ ′= ∫ ∫

                      
(10)   

( ) ( )( )( )*S t s* *

0 0
y s,a, , t sin s",a, ds dsκ κ κ

′
′′ ′= ∫ ∫            (11) 

where a is the tension to bending ratio: γ0,1/2/kc.  The   boundary conditions written in terms of y 

and x are: 

00,  y= ( )

( ),  tan(60 )
b

b
x

x y t
dyx x t dx

=

= = o                                                                                           (12a,b,c) 

where xb(t) is the branch point position on the x axis and  y0(t)= Ry is the loop height.   

Corresponding boundary conditions can be defined for the other loop quadrants. Equation (12) 

assumes a constant branch angle 60bθ = o , extensively discussed previously [7]. 

The equations (8, 10-12) are solved simultaneously in the domain ( ) ( )b bx t x x t− +≤ ≤ .  

(e)Loop growth laws 

The time dependent boundary conditions (eq. 12) require loop growth expressions. Growth 

laws of +1/2 loop growth attached to +1 disclinations under confinement have not been 

established. Nevertheless using +1 disclination splitting into two +1/2 lines under capillary 

confinement (SD mode) it was found [21] that in the intermediate stage of the PR  PP 

transition the defect-defect distance defectl   is described by a power law of the type: 

n
defect At=l                (13) 

where 0.2n ≈ . Assuming an anisotropic rate of expansions for the loop, the previous scaling 

yields:  
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( )
( )

0.2

0.2

x x

y y

R t A t

R t A t

=

=
                                               (14a, b) 

and the anisotropy ε  of the loop is a constant: 

( )
( )

y y

x x

R t A
R t A

ε = =                (15)
 

In this paper we use as characteristic values Ax=22.5, Ay=15, so the ratio ε= 0.667 is close to 

what has been observed experimentally [8]. 

2.2. Kinematic Characterization  

During loop growth the normal velocity n (s, t)ω  is function of arc-length and time (see 

Figure 5(a) below for details).  Figure 5(b) shows the normal, axial and vertical velocity at the 

branch point. At each point of curves, the normal velocity is a vector sum of the axial and 

vertical velocities. The axial velocity at the branch point is called branch point velocity. Using 

the previously established [7-9] constant branch angle, the axial and vertical BP velocities are: 

( )
( )

y n bpbp

x nbp bp

(t) (t) .sin 30

(t) (t) .cos 30

ω ω

ω ω

o

o

⎧ =⎪
⎨

=⎪⎩

                                                                                                 (16a,b) 

Hence kinematic compatibility leads to: 

 
y bp

x bp

(t)
tan(30 )

(t)

ω

ω
= o                                                                                                                    (17) 

In terms of growth velocities we have a slowdown exponents close to -1: 

0.8 0.8

0
( ) 0.2 ; ( ) 0.2x x y ybp s
t A t t A tω ω− −

=
= =                                                (18) 
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Figure 5. (a) Schematic of the system of parallel curves created as a result of the disclination 
loops’ growth process. The branch point angle remains unchanged during the evolution, so the 
normal velocity, ωn, is uniform along the curve; (b) The normal velocity at the branch point. The 
fact of a 60° angle at the branch points leads to a relation between the axial and the vertical 
velocity (eq. 17) which helps us to predict one from another.   
 

To find the normal velocity ( )n s, tω  along the disclination curve we can use the transport 

theorem for a closed loop [23]: 

( ) ( ) ( )
( )*S t

n
0

dL 1t s, t s, t ds
Ldt L

Δ κ ω= = − ∫                                                                                       (19) 

where L(t)  is the total  length of the disclination curve and ( )tΔ   is the dilation of the loop  

[25,26].  Hence the time-dependent dilation ∆(t)  encapsulates the geometry ( )( )s, tκ  and 

kinematics ( )( )n s, tω of the growing disclination loop. 

2.3. Computational Methods 

To find the shape of the evolving loop under micron-range confinement we solve 

equations (8, 10 and 11), subjected to boundary conditions (eq. 12)   using a standard iterative 

methods; see Appendix I. The analytical solution of eq. (8) presented in [7] is used to estimate to 

initial values for arc-length. The initial time is to=100 s, when the loop shape is a quartic
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( )7 4 29 10 0.0065 37.17y x x−= ± − × − + ; all distances used in this paper are in microns. The time 

step to describe growth is 10 s and the final time is 1400 s, when Ry becomes close to the 

saturation value 0.665Rc [7].  The capillary radius is Rc=100 µm and the branch point angle is 

fixed at 60° for all cases (see Appendix II).   

  

3. Results and Discussion 

We recall that starred values refer to values at the branch points. Unless explicitly 

mentioned, due to the symmetries of the loop and for brevity we mainly show results for one 

quadrant. 

3.1. Curvature κ(s) 

The evolutions of the +1/2 disclination loop is characterized in terms of: (a) the curvature 

κ(s), (b) the total arc-length S*(t), and the branch-point curvature κ* (t), and (c) the total loop 

curvature tκ (t);  

(a) Curvature κ(s). Figure 6(a) shows the curvature κ(s) as a function of arc-length for t=100, 

700 and 1400 s for 0<x<xb, and fourth quadrant of the disclination curve. The curvature increases 

exponentially as the branch point is reached and loop expansion decrease κ* (see also Fig. 6(b)).   

Complex spatio-temporal changes in the curvature reflect the tension-bending elasticity under growth 

conditions. Figures 6(b) shows the exponential-like decay of the diffusion-to-nonlinear bending 

ratio 32 /ssκ κ  as a function of arc-length for t=100, 700 and 1400 s.   The figure demonstrates 

that the relative importance of bending stress (diffusion term ssκ ) to tension stress (cubic term 3κ ) 

is maximal at x=0 and vanishes at the branch point. 
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Figure 6. (a) Effect of time on curvature κ(s) as a function of arc-length. For the later time, the 
final curvature κ* is smaller; (b) The diffusion to nonlinear bending ratio 32 /ssκ κ  as a function 
of arc-length for t=100, 700 and 1400 s. The ratio increases over time.  

 (b) Total Arc-Length S*(t). Figure 6(a) shows the final arc-length S*(t) as a function of time. 

The increases from 88.25 µm at t=100 s to 134.26 µm at t=1400 s is associated with the loop 

expansion. On the other hand Figure7 (b) shows that as loop grows, the branch point curvature 

decreases. The data shown in Figs.7 (a-b) can be collapsed into power laws: 

* 0.15

* 0.19

45.3
0.14

S t
tκ −

=
=

                                      (20a,b)  

Comparing with eqn. (13) we retrieve the expected results: ( ) ( ) 1* *;x y x yS o R R o R Rκ
−

≈ + ≈ +
, 

the latter is shown in Figure A2. 

The dimensionless number  * *P S κ=  which is the ratio of loop growth to maximum loop 

curvature, shown in Figure 7(c), is a weak function of time as per eqn. (20) and higher than for 

circular growth ( ( )/ 3.14P R Rπ≥ = .  
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Figure 7. (a) The final arc-length as a function of time. S* increases by time; (b) The branch 
point curvature as a function of time. κ* decreases by time; (c) The dimensionless number  

* *P S κ=  as a function of time. This number is larger for smaller loops than for larger loops; (d) 
The total curvature for a quarter loop as a function of time. The total curvature is independent of 
the time.  
 
(c) Total Curvature tκ . Figure 7(d) shows the total curvature tκ  for a quarter loop as a function 

of time.  The total curvature tκ  is the subtended angle ψ (radians) of the disclination arc (for a 

circle of radius R, the subtended angle is: * /S Rψ = ) and is a function of S* as well as κ(s).  The 

subtended angles ψ (radians) is essentially constant because of a constant branch angle [27]:   

=0 point

Branch Point

 
2 6t ds

s

κ θ π πκ ∂= = −
∂∫                                                    (21) 

so the total curvature for all cases should be π/3.  The essentially negligible temporal decrease of  

tκ  shown in Figure 7b is due to unavoidable but negligible computational errors.  

 

3.2. Disclination Curve y(x)  
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Figure 8(a) shows representative disclination curves y(x), for t=100, 700 and 1400 s. At 

t=100 s, Rx=52.77 µm and Ry=37.67 µm which increase to Rx=97.22 µm and Ry=65.87 µm at 

t=1400 s. The disclination curve that satisfies is essentially a quartic 

( )
7

4 2
y0.5 0.03

9 10 0.0075y=± - x - x +R t
t t

−⎛ ⎞⎛ ⎞× ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
                        (22) 

where ( ) 0.215yR t t= ; the quartic fit has a standard deviation of 0.97.   

Figure 8(b) shows the changes of the slope of disclination curves over time for

( )b0 x x t+≤ ≤ . The funnel shape reflect the time-invariant fact that the curvature vanishes as we 

approach x=0. 

Figure 8. (a) The disclination curves as a function of time. The size of loops increases over time; 
(b) The slope of disclination curves, dy/dx, for t=100, 700 and 1400 s. The rate of changes is 
faster for the smaller loops. 

3.3. Kinematics  

     Figure 9(a) shows the growth velocities ( )x y x b(y 0), (x 0), (x x )ω ω ω= = = .  These velocities 

show a power law decrease followed by a terminal velocity. This regime signals proximity to the 

transition intermediate stage of coarsening characterized by Ry=0.66Rc and



20 

 

x BP t y(x x ) ,and (x 0) 0ω ω ω= = = = , where tω  is a terminal velocity.  At t=1400s, the Ry 

reaches the saturation value (y∞=0.66Rc) [7-9] at which the terminal velocity will be around tω

=0.016 µm/s. This value is rationalized by this fact that the branch points moves slowly which 

doesn’t affect the disclination curve shape.  The ordering of the growth velocities follows from 

kinematic compatibility (eqn. (17)) and growth kinetics (eqn.(18)): 

( )
0.8 0.8

0

( )
( ) ( ) 5.19 ( ) 3

cos 30
x bp

n x ybp s
bp

t
t t t t t

ω
ω ω ω− −

=
= > = > =

o
                               (23) 

Figure 9(b) shows the normal velocity n (s, t)ω  as a function of arc-length computed from eqns. 

(18).  The time functionally of the normal velocity n (s, t)ω  is essentially homogeneous over the 

disclination curve as per eqns. (14), the upper and lower limits decrease as 0.8t− : 

*
0.8 0.80

branch point normal velcity vertical velocityat x=0

5.5 3( , ) ( , ) ( 0, )
=

= = > > = =n n n xbp
s S t s t s t

t t
ω ω ω
144424443 144424443

                     (24) 

Figure 9. (a) The growth velocity in x and y directions and the normal velocity at the branch 
point as functions of time. These velocities decrease until they reach a terminal velocity; (b) 
Normal velocity as a function of the arc-length for t=100, 700 and 1400 sec. Over time, the 
normal velocity becomes a week function of arc-length.   
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Figure 10(a) shows the loop dilation Δ(t)=(dL/dt)/L as a function of time.   The power 

law for dilation is  

10.15t−Δ =                                                                  (25) 

and follows the growth scaling: 

0.856.8dL t
dt

−=                                                                 (26) 

Figure 10(b) shows the computed stiffness ratio a = γ0,1/2/kc  as a function of Ry. We recall 

that a (t) = γ0,1/2/kc  is not a constant material property but it depends on time, as kc  depends on 

the confinement (see Fig. A1). The present stiffness ratio data in the nucleation and growth mode 

can be collapsed into the power law: 

( )
( ) ( )

0,1/2
2 2

c

1 4
 

= ≡ ≈
yM

a t
k R t

γ
l

          (27) 

where  Ml  is the material length scale (see also Appendix II).  Eqn.(27) simply states that the 

material length scale Ml  is one half of the geometric length scale Ry:  / 2=M yRl .  In the 

coarsening mode we found [7] that the material length scale is / 3=M cRl . Since the limiting 

value of Ry is: ( ) / 3→ ∞ =y cR t R  we find that long term time limit of eqn.(27) is consistent with 

our previous result [7] since: 

4lim  0.66  
9→∞ ≈ =t y c cR R R                                                   (28) 
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Figure 10. (a) The loop length dilation Δ as a function of time. The loop growth rate decreases as  
t-0.85; (b) The stiffness ratio ( ) 0,1/2 /=a t kγ  as a function of the loop short radius Ry. When the 

loop size increases, ( ) 0,1/2 /=a t kγ  decreases as 4/Ry
2.  

3.4. Disclination Energy 

The total energy of a +1/2 disclination loop is the sum of total tension and total bending 

contributions: 

T b tE E E= +                 (29) 

where Eb and Et are the total bending and total  tension energy defined (for a loop quadrant) by 

( ) ( )
( )

( ) ( )
( )* *S t S t

2c
t o,1/2 b

0 0

kE t s, t  ds;        E t s, t  ds
2

⎛ ⎞= γ = κ⎜ ⎟
⎝ ⎠∫ ∫          (30a,b) 

where according to eqns.(3, 4, 28) the time-dependent tension and bending stiffness of a growing  

loop in terms of the semiaxes Ry(t) are well-approximated by: 

( ) ( ) ( ) ( )2
y y

o,1/2 c
c

9R t 9 KR tKt ln ;      k t
2 8r 4 2

π⎛ ⎞πγ = =⎜ ⎟
⎝ ⎠

                             (31a,b) 

We note that eqns. (31) used to calculate the total energy Et are consistent with eqn.(27) since: 
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( )

( )

( ) ( )2 2

9
2 2 ln

8 4
9

⎛ ⎞
⎜ ⎟
⎝ ⎠= ≈

y

c

y y

R t
r

a t
R t R t

                          (32) 

Figure 11(a) shows the scaled total energy ET/πK as a function of time (single loop 

quadrant).  The power law is: 0.14386tE t= . The scaled energy increases since S* increases, and 

also the line tension increases; the term 2
ck κ is essentially time-independent. 

Figure 11(b) show the ratio of the total tension energy to the total bending energy as a 

function of time.  According to eqns. (30), TE  is a function of S*(t) and the bending energy 

density which  is the product of the bending stiffness times the curvature. Curvature decreases 

over time, but the bending stiffness increases as a result of increasing in loop size, so this ratio 

decreases slightly over time, from 1.138 at t=100 s to 1.082 at t=1400 s. At the branch point xb, 

the energy ratio is close to 1.   

Figure 11. (a) Scaled total disclination line energy ET/πK as a function of time; (b) The ratio of 
the total tension energy per the total bending energy length as a function of t. 

Figure 12(a) shows the scaled total energy ET/πK (µm) as a function of the branch point 

curvature κ*. Smaller loop radius is accommodated by larger and energetically less costly 
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curvature. By increasing the loop radius, the branch point curvature κ*
 decreases but the scaled 

total energy ET/πK increases.  Figure 12(b) integrates schematically the effects of time on the 

disclination loop found from simulations (Figs.6-8, 10). In the early stage, small loops lead to 

high curvature, and low total energy and as time elapses the length S*, tension Et  and bending 

Eb energies increase while the branch point curvature κ* and normal velocity ωn  decrease.    

 

Figure 12. (a) The scaled total energy ET/πK as a function of the branch point curvature κ*. 
Increasing the loop size decreases the curvature and increases the total energy; (b) Parametric 
plane indicating the total energy ET and final arc-length S* of the disclination loop as a function 
of loop size and time. The loop size increases over time and leads to significant changes in the 
total energy ET and final arc-length S*. The growth velocity decreases over time until reaching a 
terminal velocity.  

 

4. Conclusions 

 This paper presents theory and simulation of the post nucleation and growth mode of the 

transformation of a nematic liquid crystal planar radial texture with one axial +1 singular 

disclination into a planar polar texture with two +1/2 singular disclinations that occurs in a 

capillary whose surfaces impose homeotropic anchoring. In the initial stages an array of +1/2 

loops nucleate on the pre-exiting +1 line and slowly grow by an elastic driving force that is 

generated by the elimination of the director radial splay.  Each +1/2 loop is connected to the +1 
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line by two branch points and the elliptical cusped loop grows with sub-diffusive kinetics

( )n
loopR t , n 1/ 2≈ < . We presented, solved and characterized a model based on the “nematic 

elastica” that incorporates tension and bending stiffness. The cusped elliptical loop geometry is 

the result of strong bending at the two branch points which results in an exponential decrease of 

curvature when moving away from these cusps. The sub-diffusive loop growth is reflected in the 

total length, curvature, and dilation.  The total energy of the loop increases with decreasing the 

branch point curvature as the length increase effect is larger than curvature decrease.  We 

demonstrated that when the branch angle is close to π/3, the material length scale Ml  is one half 

of the loop short axes.   

 The introduction of a nematic elastica model to solve texture transformations under 

confinement can in the future be extended to non-planar disclinations where disclination torsion 

arises. The modeling predictions from the nematic elastica model enhance the current 

fundamental understanding of defect physics of liquid crystals. 
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Appendix I  

Numerical Methods 

To find the evolving loop shape y(x,t) we solve equations (8, 10 and 11)  using time-

dependent boundary conditions subjected to constraints given by eqn.(12).   The computational 

domain is discretized into n=100 nodes.  To find the final curvature (κ*) and initial values for the 

bending to tension ratio (a) we use the following initial guess as per our previous work [7]:   

2
*

* *
10 3,  a=3y (t) y (t)

⎛ ⎞κ = ⎜ ⎟
⎝ ⎠

           (A1) 

The boundary conditions are:   

*

*
b

y(1)=y (t); x(1)=0; (1)=0
y(n)=0; x(n)=x (t);  (n)=

κ
κ κ

                   (A2a,b) 

From our previous work [7-9] the analytical solution for the shape equation (8) is given by: 
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           (A3) 

where ( )0, os tκ κ= = .  To find the arc-length at the ith node we use eqn.(A3): 

1( ) 2 ln
2( )

( )

s i a
aC i
i

κ
κ

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟

− −⎜ ⎟
⎝ ⎠

                  (A4) 

in a loop for i≥2. Then we find x(i) and y(i) : 

s(i)

s(1)
x(i) cos( )ds x(1)θ= +∫            (A5) 

s(i)

s(1)
y(i) sin( )ds y(1)θ= +∫            (A6) 

where φ is tangent angle defined as follow 

( )

( )

( ) ( )
2

s i

s n

i i dsπϕ α κ= + + ∫              (A7) 

The value of s(n) is found  from: 

0
*

( )

 : ( )
3 2s n

at s s i ds π πκ= = −∫                         (A8) 

The slope dy/dx at the branch point must satisfy: 

[ ]*(  s=S ):tan(60 ); ( ) ( ) ( 1) tan(60 ) ( 1)dy at y n x n x n y ndx = − − + −o o           (A9) 

If the branch angle is essentially equal to 60° (error<0.01), the initial guess for κ* and a is 

acceptable, otherwise we redo the loop calculation. After each converged step, time is up-dated 

in the forward-marching scheme: 

t t h= +                    (A10) 
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where h is the time step.  

Appendix II 

In this appendix we establish the origin of the branch point angle φo,= 60° shown in  

Figure 4.  As the loop grows, both tension and bending stiffness change, as indicated in eqns.(27, 

31).  The ratio a = γ0,1/2/kc   decreases with increasing  Ry and hence the bending stiffness 

increases (eqn.(32)). As the material parameter a = γ0,1/2/kc  evolves ,  the geometry also evolves , 

increasing the total loop length and decreasing the total loop curvature. The imposed constant 

branch angle is the condition that leads to the balance between these two effects. 

Figure A1 shows the branch point angle as a function of the loop   radius Ry, for several 

values of  a = γ0,1/2/kc .  The lines cross the 60o branch angle value at Ry values that satisfy 

equation (32).   We conclude that the 60o branch angle constraint simply indicates that the 

material length scale is one half of the geometric scale Ry: ( ) ( )1/ / 2≈ ya t R t . This length 

increases over time as shown in figure A2.  This last figure also shows that the inverse of the 

curvature at the branch point 1/κ*. Scales linearly with Ry. Figure A2 demonstrates that the 

branch angle φo,= 60° is due to the consistency of the three length scales: Ry, 1/κ*.and lM. 
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Figure A1. Branch point angle as a function of the loop short radius under capillary 
confinement, computed using a fixed the tension/bending stiffness ratio a = γ0,1/2/kc and changing 
the final curvature κ*. 
 

 

Figure A2. Material length scale, lM, and the reverse of the branch point curvature as a function 
of Ry for different time. The two length scales are linear functions of Ry and of the same order of 
magnitude. 
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Appendix III  

The purpose of Appendix III is to demonstrate that line viscous dissipation is negligible.  The 

line viscosity is: 

2
1crμ π γ=                                                              (A11) 

where γ1 is the rotational viscosity and rc the defect core radius. Next we compare the line 

tension force γ0,1/2κ with the viscous force / tμ κ∂ ∂ . The values of the line tension and rotational 

viscosity can be estimated by studying the uniform motion of the branch points. The branch point 

velocity can be estimated from the dRx/dt. Assuming that the Frank elastic constant is K≈10 pN, 

which is a measured value for a well-studied chromonic LC-DSCG by dynamic light scattering 

[28], we estimate that the rotational viscosity is γ1≈ 5 Pa.s. According to equation 4(b), the 

bending modulus is kc≈2.5х10-7 pN.m2 and using Figure (A1), the bare line tension is estimated 

γ0≈200 pN. Figure A3 shows the ratio of the line tension force (γ0,1/2κ) to the viscous force 

/ tμ κ∂ ∂  as a function of time. It can be seen even for small loops the viscous term is negligible.  



33 

 

 

Figure A3. The ratio of tension forces to the viscose force. It can be seen the viscous force is 
negligible compared to the line tension force. 

 


