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We solve a simple model that supports a dynamic phase transition and show conditions for the
existence of the transition. Using methods of large deviation theory we analytically compute the
probability distribution for activity and entropy production rates of the trajectories on a large
ring with a single heterogeneous link. The corresponding joint rate function demonstrates two
dynamical phases — one localized and the other delocalized, but the marginal rate functions do
not always exhibit the underlying transition. Symmetries in dynamic order parameters influence
the observation of a transition, such that distributions for certain dynamic order parameters need
not reveal an underlying dynamical bistability. Solution of our model system furthermore yields the
form of the effective Markov transition matrices that generate dynamics in which the two dynamical
phases are at coexistence. We discuss the implications of the transition for the response of bacterial
cells to antibiotic treatment, arguing that even simple models of a cell cycle lacking an explicit
bistability in configuration space will exhibit a bistability of dynamical phases.

I. INTRODUCTION

Large dynamical fluctuations and dynamical hetero-
geneity are characteristic features of non-equilibrium
chemical and biological systems. Important examples
include fluctuations in currents and transport proper-
ties of molecular motors [1], dynamic instability in actin
and microtubule growth [2, 3], dynamical heterogeneity
in cell migration [4], and intermittency in cell growth
rates [5]. Large deviation theories and statistical me-
chanics on the level of trajectories provide convenient
frameworks to characterize the dynamical fluctuations.
Of particular interest to the present work are the emer-
gence of dynamic phases analogous to the emergence of
phases in the conventional statistical mechanics of first
order phase transitions [6, 7]. The existence of dynamic
phases indicates that the most probable trajectories nat-
urally cluster into classes with distinct dynamical prop-
erties. As in equilibrium statistical mechanics, a very
productive perspective on the origins and consequences
of dynamic phase transitions can be gained by scrutiniz-
ing the statistics of pertinent order parameters. A hump
or “fat tail” in the wings of such distributions can reveal
the presence of a second dynamical phase. Importantly,
the separation of trajectories into distinct classes can be
made rigorous by demonstrating a singularity in the ap-
propriate scaled cumulant generating function [6]. Con-
versely, demonstrating such a singularity implies a broad
distribution for dynamical fluctuations, which can ratio-
nalize experimentally observed dynamical heterogeneity.

This perspective has been elaborated in several inter-
esting contexts [8, 9], albeit in most cases for compli-
cated many-body systems that do not permit full an-
alytical solutions and are thus not entirely transparent.
Notable examples include lattice and molecular models of
glasses [10, 11], asymmetric exclusion processes [12] and
zero-range processes [13]. It has recently been shown that

similarly complex behavior can emerge in seemingly very
simple systems which do permit an analytical treatment.
Specifically, we have shown that a dynamic phase tran-
sition can be demonstrated analytically for a biased ran-
dom walker on a ring with a single impurity in the tran-
sition rates [14]. The relatively simple analytics of our
random walker model provides an excellent arena for ad-
dressing two basic questions about dynamic phase tran-
sitions. Firstly, under what conditions will a dynamic
phase transition emerge? Secondly, are there physical
methods for modulating the dynamics to achieve coexis-
tence between dynamical phases or to induce transitions
between them?
To this end, here we investigate the statistics of two

dynamical order parameters whose fluctuations can re-
veal the phase transition. We analytically construct the
joint rate function for entropy production (Eq. 1) and dy-
namical activity [15] (Eq. 2), which is analogous to a two
dimensional free energy surface. The two-dimensional
rate function in all cases reveals two basins, correspond-
ing to two distinct classes of trajectories, one localized
and the other delocalized. However, when one of the or-
der parameters is integrated out, the remaining marginal
distribution does not necessarily reveal the underlying
bistability. In particular, we show regimes for which the
dynamical activity statistics is influenced by two dynam-
ical phases while the fluctuations in entropy production
reveal only a single phase.
The dynamic phase transition implies the existence of

a rare localized class of trajectories [14]. We investi-
gate conditions required to induce the transition, thereby
causing the localized trajectories to become typical. In
conventional statistical mechanics a rare phase can be
made dominant by adjusting intensive fields like temper-
ature, pressure, or chemical potential. The statistical
mechanics of trajectories is more complicated as the field
conjugate to a dynamical order parameter (the λ or s
field throughout this paper) is time-non-local and there-
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fore cannot be experimentally tuned in a straightforward
way. We construct Markov matrices which (in the long
time limit) are equivalent to the natural dynamics with
a λ or s field [16, 17]. These Markov matrices reveal the
physical values of the rate constants which would place
the two dynamical phases at coexistence. In other words,
with the computed set of rate constants, long trajecto-
ries switch back and forth equally between localized and
delocalized behavior. Using the Markov matrices that
generate effective λ field dynamics, we also show that λ
field biasing cannot induce non-equilibrium currents that
violate detailed balance. These biasing techniques can
amplify (or suppress) existing non-equilibrium currents,
but when applied to an equilibrium system the methods
simply transform from one detail balanced dynamics to
another.

Finally, we consider the problem of observed hetero-
geneity in cell growth rates and apply results from our
model system to elucidate this phenomenon. In particu-
lar, it has been observed that a stochastic subpopulation
of cells in an E. Coli colony exhibit markedly reduced
growth rates [5]. These cells, labeled persisters, are more
likely to survive antibiotic treatment [18]. Treating our
model system as an extremely simplified version of the
cell growth cycle, we argue that the phenomenon of per-
sistence should be a generic consequence of a class of
localized trajectories that is rare in the absence of antibi-
otics. We show how treating cells with different strengths
of antibiotics in experiments might be equivalent to ef-
fectively tuning a λ field and induce a transition between
different dynamical behaviors. We also note that coex-
istence in the space of trajectories can facilitate massive
dynamical fluctuations which are evocative of those ob-
served in other biological contexts such as growing poly-
mers including microtubules [19], actin [20], and bacte-
rial homologs thereof [21–23], where trajectories exhibit
a stark switching between growing and collapsing behav-
iors. Our work clarifies the conditions required for such
phase coexistence in trajectories and also illuminates the
properties of the phase transition.

The structure of the paper is as follows. In Section II
we review the basic structure of the large deviation cal-
culations. We then introduce our solvable model system
in Section III and derive the scaled cumulant generat-
ing function, the Legendre transform of which yields the
entropy production and activity statistics. Using this re-
sult, we discuss in Section IV the nature of a dynamic
phase transition and the conditions for which the transi-
tion can be observed by these order parameters. Finally,
we address implications of such a dynamic phase tran-
sition. We both identify conditions for dynamical coex-
istence in which the two phases contribute equally and
discuss the way in which the response of cells to antibiotic
treatment may expose a similar underlying transition.

II. FRAMEWORK

We consider continuous-time Markovian dynamics on a
discrete state space. Such a stochastic dynamics is com-
pactly represented by a master equation with rate ma-
trix W whose off-diagonal elements Wij detail the rates
of transition from state j to state i [24]. The probability
distribution of the set of all possible trajectories is well-
defined in the steady-state. We investigate both typical
and rare dynamical fluctuations by considering the be-
havior of dynamic order parameters.
Time-additive dynamic order parameters are particu-

larly relevant to many experiments as they report on cu-
mulative dynamical behavior, for example the net current
observed in a finite time experiment. In this paper we
consider two such order parameters, the entropy produc-
tion and the dynamical activity. The entropy production
of a trajectory is defined in the stochastic thermodynam-
ics sense as the log ratio of forward and reverse probabili-
ties [25]. We focus on continuous time hopping processes,
in which case the entropy production can be expressed
as

ω =
∑

hops

ln
kf
kr
, (1)

where kf and kr are the forward and reverse rate constants
for each hop. The dynamical activity, K, simply counts
the total number of hops.

K =
∑

hops

1 (2)

This accounting of microscopic transitions has been used
most predominantly in the study of glassy dynamics [15].
Whereas the entropy production provides a measure of
the dissipation associated with a trajectory, the dynam-
ical activity indicates how labile the dynamics is. By
considering both order parameters we highlight how the
statistics of various observables may be differently af-
fected by the dynamic phase transition.
The time-additivity of these order parameters allows

their probability distribution to be described by a large
deviation form,

P (σ,K/t) ≈ e−tI(σ,K/t), (3)

where I(σ,K/t) is the joint large deviation rate func-
tion and σ = ω/t is the entropy production rate. The
rate function I(σ,K/t) can be computed as the Legen-
dre transform of the scaled cumulant generating func-
tion [6, 26],

ψω,K(λ, s) = lim
t→∞

1

t
ln
〈

e−λω−sK
〉

, (4)

where the expectation value is taken over trajectories ini-
tialized in the steady state distribution. This function
can in turn be obtained as the maximum eigenvalue of
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FIG. 1. (Color online) Schematic illustrating the relationships between order parameter probability distributions collected in
a finite time experiment (a, d), rate functions (b, e), and cumulant generating functions (c, f) in one and two dimensions.
The rate function is the concave (for our sign convention) hull of the finite time distribution and the Legendre transform of
the scaled cumulant generating function. The bimodality of the finite time distribution results in a so-called tie line in the
concave hull, represented as a dashed line in the 1d rate function. The tie line necessitates a singularity in the scaled cumulant
generating function, depicted as a dot in (c) and as a dashed line in (f). Note that the 1d cumulant generating functions for
activity (entropy production) are given by the λ = 0 (s = 0) slice in (f).

a tilted operator, Wω,K(λ, s), which is simply related to
W [26]. Specifically the matrix elements are given by

Wω,K(λ, s)ij = (1− δij)W
1−λ
ij W

λ
jie

−s + δijWij . (5)

By solving for the eigenspectrum of Wω,K(λ, s) we can
thus compute the long time limit of P (σ,K/t) via a Leg-
endre transform.
Fig. 1 graphically illustrates the relationships between

probability distributions for the dynamic order parame-
ters, rate functions, and scaled cumulant generating func-
tions. In particular, the singularities in ψω,K(λ, s) gener-
ate bistable order parameter distributions. For the type
of ergodic dynamics studied here these bistable distri-
butions tend toward a strictly concave rate function in
the long time limit [27], which is the Legendre trans-
form of the scaled cumulant generating function with a
Maxwell construction. Despite the underlying bistability

of the distribution shown in the Fig. 1(d), the marginals
of that distribution need not illustrate a bistability, if the
two basins are appropriately aligned. We now shift our
attention to a particular solvable model, whereby com-
puting ψω,K(λ, s) we can determine conditions for phase
transitions in the two order parameters.

III. ANALYTIC SOLUTION TO 1D RANDOM

WALKER ON A RING WITH A

HETEROGENEITY

We consider dynamics of a single particle on a net-
work of N states arranged in a ring as depicted in Fig. 2.
Clockwise rates are given by x and counterclockwise rates
by 1 except for the rates at a single heterogeneous link,
which are given by h1 and h2, respectively. A trajec-
tory on the network corresponds to a sequence of hops
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FIG. 2. Network of states and the rates for transitioning be-
tween the states. For certain choices of x, h1, and h2 we
demonstrate a dynamic phase transition in entropy produc-
tion and dynamical activity rates.

from state to state with a Poisson-distributed waiting
time between hops determined by the rate constants x,
h1, and h2. Without loss of generality we focus on the
case that x > 1 such that typical trajectories cycle in
the clockwise direction. For generic choices of h1 and
h2 the dynamics is out-of-equilibrium, which can be seen
most simply since the probability of clockwise cycles dif-
fers from that of counter-clockwise cycles [28]. Because
the network supports only a single cycle, it is one of the
simplest models for non-equilibrium dynamics. This sim-
plicity enables an analytic solution in the limit that the
ring grows infinitely large. Because analytically solvable
non-equilibrium models are few, these solutions can pro-
vide a useful reference point.
We focus on a large N limit which maintains the dis-

crete nature of the states. This limit is appropriate for
chemical reaction kinetics with transitions among a dis-
crete set of states [24]. It may also be interesting to con-
sider continuum limits with rates scaled by N . Such a
continuum limit is pertinent to a Brownian particle con-
fined to a ring [29], and has been discussed in a Freidlin-
Wentzell framework without a heterogeneity in the limit
of small noise [30].
Following the framework of Section II, the tilted oper-

ator can be written down straightforwardly as

Wω,K(λ, s) =











−x− h2 xλe−s . . . h1−λ1 hλ2e
−s

x1−λe−s −1− x . . . 0
...

...
. . .

...

hλ1h
1−λ
2 e−s 0 . . . −h1 − 1











.

(6)
For modest N one can numerically calculate the largest
eigenvalue of this matrix to yield the scaled cumulant
generating function ψω,K(λ, s). In the large N limit,
however, we can obtain an analytic form for the lim-
iting behavior using a perturbation theory we recently
outlined [14].

Were it not for the heterogeneous link, there would
be a translational symmetry allowing the tilted opera-
tor to be exactly diagonalized via a Fourier transform.
For λ and s in a particular region of the (λ, s) plane,
the maximum eigenvalue of the tilted operator in Eq. (6)
coincides with this solution for the translationally sym-
metric network in the large N limit. ψω,K(λ, s) exhibits
a cusp along the boundary of this region. One side of
the boundary corresponds to a maximal right eigenvec-
tor of the tilted operator which is delocalized while on
the other side the eigenvector is exponentially localized
around the heterogeneous link. The discontinuity of the
slopes of ψω,K(λ, s) when crossing this boundary indi-
cates a dynamic phase transition between classes of tra-
jectories which are localized and those which are delocal-
ized. The detailed calculation, provided in Appendix A,
reveals that the line of cusps separating localized from
delocalized eigenvectors is given by the logarithm of the
roots of a quadratic,

s∗(λ) = ln





1 + x− h1 − h2 −

√

(h1 − x− h2 + 1)2 + 4(h2 − 1)(h1 − x)h1h2x
−2(|λ− 1

2
|+ 1

2
)

2(h2 − 1)(h1 − x)x−(|λ−
1

2
|+ 1

2
)



 (7)

This equation, corresponding to the purple dashed curve
in the schematic of Fig. 1(f), is plotted for particular
choices of x, h1, and h2 in Fig. 3(a).
Remarkably, the value of ψω,K(λ, s) everywhere can be

determined by the solution to the translationally sym-
metric network and the form of s∗(λ). This follows since
ψω,K(λ, s) is continuous and the partial derivatives with
respect to λ must vanish in the localized regime [31].
The translationally symmetric network solution evalu-
ated along the line of cusps thus provides the maximum
eigenvalue in the localized region giving

ψω,K(λ, s) =

{

x1−λe−s + xλe−s − 1− x, s ≤ s∗

x1−λ
∗

e−s + xλ
∗

e−s − 1− x, s > s∗,

(8)
where s∗ and λ∗ are shorthand for s∗(λ) given in Eq. (7)

and for the inverse function λ∗(s) [32]. This is our pri-
mary analytical result, which enables the computation of
the probability distributions for entropy production and
activity rates. To prevent confusion, we note that the
schematic of Fig. 1 was meant to depict generic joint dis-
tributions for activity and entropy production and does
not illustrate ψω,K(λ, s) for this particular solved model.

IV. PROPERTIES OF THE PHASE

TRANSITION

A. Tilted Operator Eigenvectors

Thus far we have merely asserted that the trajectories
have localized and delocalized character in the two dy-
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namic phases, but here we more formally make the claims
by analyzing the maximal right eigenvectors of the tilted
operator. We write the elements of the maximal eigen-
vector as (f1, f2, . . . , fN) and note that the eigenvalue
equation implies a recursion relation between neighbor-
ing fi’s in the bulk.
(

fi
fi+1

)

=

(

ψ+1+x
e−sx1−λ −x2λ−1

1 0

)(

fi+1

fi+2

)

= B

(

fi+1

fi+2

)

,

where we have introduced the transfer matrix B and sup-
pressed the subscripts and arguments on ψω,K(λ, s). The
nth component of the eigenvector can thus be written in
terms of the two eigenvalues of of B, k1 and k2. Specifi-
cally,

fn ∝
(

k−1
1

)n
+ ǫk

(N−n)
2 , (9)

where k1 > 1 and k2 < 1. The parameter ǫ serves to
match up the boundary conditions between f1 and fN .
When λ < λ∗, the eigenvalues of B can be expressed
as k1 = e−γ/N , and k2 = x2λ−1eγ/N correct up to sec-
ond order in 1/N . An expression for γ in terms of the
rate constants, Eq. (A6), follows from the full calculation
of the maximum eigenvalue in Appendix A. Hence the
maximal right eigenvector is found to have components

fn ∝ eγn/N + ǫdeloce
((2λ−1)N ln x+γ)(N−n), (10)

where ǫdeloc = hλ−1
1 h−λ2 (x1−λ + h2 − 1) − eγ . The first

term in Eq. (10) decays slowly over the entire range of
the system, giving the eigenvector a delocalized charac-
ter. This delocalized character indicates that trajectories
with high rates of entropy production and activity can be
found regularly visiting all of the states of the system.
Under the conditions that s > s∗(λ) the expression

for γ diverges, and the delocalized form for the maxi-
mal eigenvector given in Eq. (10) must break down [33].
We anticipate a similar functional form for the eigenvec-
tors except with some nonzero κ replacing γ/N . Indeed,
with some tedious algebra it can be shown that the right
eigenvectors are given by

fn ∝ eκn + ǫloce
((2λ−1) lnx+κ)(N−n) (11)

with κ = (λ∗ − λ) ln x and ǫloc =

hλ−1
1 h−λ2

(

x1−λ
∗

+ h2 − 1
)

eκ. Unlike the case of
the delocalized eigenvector, this solution is strongly
localized around the heterogeneous link. Thus the flat
region between the two cusps in ψω(λ) ≡ ψω,K(λ, 0)
stems from a class of localized trajectories which are
incapable of producing entropy in the long-time limit.
The two dynamic phases can therefore be thought of as
the classes of localized and delocalized trajectories, each
of which contributes its own feature to the rate function.

B. Entropy Production Statistics

We previously reported on the entropy production
statistics in the special case that h1 = h2 [14], but this

restriction was lifted in the preceding analysis. Surpris-
ingly, allowing for distinct values of h1 and h2 can yield
a qualitative difference in the entropy production rate
statistics. When h1 and h2 are constrained to be equal,
all values of h and x give rise to singularities in ψω(λ) and
therefore a dynamic phase transition with respect to the
entropy production rate. By solving for the conditions
when s∗(λ) = 0 in Eq. (7) one can obtain the position of
these two cusps in ψω(λ), λ

∗ and 1− λ∗.

When h1 and h2 are distinct, however, there are con-
ditions for which s∗(λ) lacks roots. The fluctuation the-
orem [26] entails a symmetry in the cumulant generating
function ψω(λ) about λ = 1/2. Because of this symme-
try, the marginal case where the dynamic phase transi-
tion disappears occurs when λ∗ = 1/2. Solving for the
condition that s∗(1/2) = 0 thus gives a critical value of
x,

xc =
1

2

(

1 + 2h1 − 2h2 + h22−

(h2 − 1)
√

1 + 4h1 − 2h2 + h22

)

, (12)

so that ψω(λ) will have cusps indicating a dynamic phase
transition if and only if x > xc. Indeed, Fig. 3 illus-
trates that the singularities are no longer present when
x drops below the critical value xc. It is of particular
note that the critically does not occur at the trivial limit
x = h1/h2, the condition for which hops across the het-
erogeneous link produce the same amount of entropy as
hops across any other link.

The existence of a critical value of x can be understood
more clearly by examining the large deviation rate func-
tion for the entropy production, I(σ), which is obtained
from a Legendre transform of ψω(λ) . In Fig. 4 we plot
these rate functions for a variety of values of x but for the
same value of h1 and h2. As x is decreased, the system is
biased less strongly toward clockwise cycles, and the av-
erage entropy production rate decreases correspondingly.
However, even when the average entropy production rate
is large, the class of localized trajectories present a way
for a trajectory to produce zero entropy. Therefore a
broad entropy production distribution with a hump at
σ = 0 is present for large x. When x is decreased be-
low xc, this shoulder at σ = 0 gets completely engulfed
by the natural fluctuations in entropy production charac-
terizing the dominant (delocalized) class of trajectories.
Thus the disappearance of the dynamic phase transition
corresponds to the condition when near-zero entropy pro-
duction rates are more likely to be obtained by a delocal-
ized trajectory than by a localized trajectory. As we shall
demonstrate shortly, the lack of the dynamic phase tran-
sition in the entropy production order parameter does
not rule out the presence of two classes of trajectories. A
dynamic phase transition can still be recovered by study-
ing the statistics of dynamical activity.
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FIG. 3. (Color online) (a) Curve of the cusp in ψω,K(λ, s)
given by Eq. (7) plotted for h1 = 0.3 and h2 = 0.2. This curve
corresponds to the dashed line in the schematic of Fig. 1(f).
Below the curve ψω,K(λ, s) has a delocalized eigenvector. For
these parameters xc ≈ 1.163 such that the x = 1.1 curve
does not intersect the s = 0 axis. (b) ψω(λ) for the same
conditions. Cusps are marked with a filled dot at (λ∗, ψω(λ

∗))
and (1−λ∗, ψω(1−λ

∗)). The shaded area indicates the region
arising from the localized phase.

C. Dynamical Activity Statistics

The statistics for the dynamical activity can be de-
duced in the same way by setting λ = 0 in Eq. (8). The
activity does not satisfy a fluctuation theorem, so there
is no symmetry corresponding to ψω(λ) = ψω(1−λ). As
a consequence, ψK(s) ≡ ψω,K(0, s) has a cusp at s∗(0)
for all values of the rate constants as is clear from the
λ = 0 intercepts of Fig. 3.
The Legendre transform of ψK(s) gives the rate func-

tion for dynamical activity, shown in Fig. 4. Like the
case of entropy production, as x is decreased the aver-
age activity decreases, but now the tie line (and corre-
spondingly the dynamic phase transition) persists for all
choices of x. Remarkably, this implies that there is a
regime with x < xc where the activity exhibits a dy-
namic phase transition but the entropy production does
not. Consequently the entropy production distribution
in this parameter regime converges to the distribution
found in a translationally symmetric network, while the
distribution for dynamical activity resolves the impact of
the heterogeneity.
To better appreciate the manner in which a dynamic

phase transition can be observed with respect to one or-
der parameter but not another, we Legendre transform

ψω,K(λ, s) and plot the two dimensional rate functions
for activity and entropy production. Figures 5(a) and
(d) show the rate function for the translationally sym-
metric network with x = 1.5. Note that the surface is
smooth, exhibiting only small fluctuations away from the
mean behavior. In contrast, when the heterogeneous link
is introduced a ridge develops along σ = 0. This ridge
corresponds to the class of localized trajectories, all of
which have identically zero entropy production rate in
the long time limit. The entropy production and activ-
ity rate functions are marginals of this two dimensional
surface, which corresponds to projecting the surface onto
the σ and K/t axes, respectively. For all values of x, the
projection onto the K/t axis results in a broad activ-
ity distribution with components from both the localized
and delocalized trajectories. The projection onto the σ
axis behaves differently. When x < xc the class of local-
ized trajectories along the ridge are in line with the most
likely contributions from delocalized trajectories. Con-
sequently the entropy production distribution will not
reveal the localized trajectories since for all possible val-
ues of σ there exist more probable delocalized trajectories
which produce that particular entropy production rate.
The calculation offers an important lesson which pro-

vides insight for more complicated dynamical systems.
Our analysis has shown that localized and delocalized
trajectories can be clearly separated into two distinct
classes. Nevertheless, the underlying transition is only
visible in the distribution for certain order parameters.
In more complicated systems, one can expect many more
than two classes of trajectories. Whether or not these
classes constitute a true dynamical phase is intimately
related to the symmetries of the dynamic order parame-
ter being probed. Thus an experimenter simultaneously
monitoring current, activity, and entropy production dis-
tributions may consistently observe large deviations in
some order parameters but not in others. We note that
similar scenarios can occur in equilibrium statistical me-
chanics.

V. PHYSICAL IMPLICATIONS OF

DYNAMICAL PHASES

A. Tuning Rates to Coexistence

We have shown that while typical trajectories on the
network are delocalized, there exists a rare class of lo-
calized trajectories, which in certain cases appears as a
distinct dynamic phase. In ordinary statistical mechanics
one tunes a Lagrange multiplier like the inverse tempera-
ture, β, to induce a transition between phases. Inducing
a dynamic transition cannot occur in an identical way
since the λ field is conjugate to a time-non-local object.
In computer simulations one can place the system in con-
tact with a large bath at a well-defined value of λ, but
this treatment requires that the system is the entire tra-
jectory. While it is not possible to directly tune the λ
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have the dashed tie lines), while the activity rate function shows two phases even for x < xc. The most likely values of σ and
K/t increase with increasing x.

-1.0 -0.5 0.0 0.5 1.0
0

1

2

3

4

5

6

Σ

K
�t

HaL
-1.0 -0.5 0.0 0.5 1.0
0

1

2

3

4

5

6

Σ

K
�t

HbL x > xc

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
0

1

2

3

4

5

Σ

K
�t

HcL x < xc

-2.0

-1.5

-1.0

-0.5

0
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field in an experiment, one can use the eigenvectors of
the tilted operator to construct a rate matrix which, in
the long-time limit, is equivalent to introducing such a λ
field [16, 17]. We denote this class of rate matrices for
effective λ fields W(λ) with matrix elements given by

Wij(λ) =
fi(λ)

fj(λ)
[Wω(λ)]ij − δijψω(λ), (13)

where fn is the nth component of the right eigenvector
determined in the large N limit in Eqs. (10) and (11).
For simplicity we limit the analysis to the λ field conju-
gate to entropy production, but this could of course be
repeated for activity.

A cusp in the maximum eigenvalue of the tilted oper-
ator Wω(λ) indicates that the two dynamic phases will
be in coexistence when a λ∗ bias is applied. The tilted
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the absence of λ biasing the transition rates are h1 = 0.3,
h2 = 0.2, x = 1.5. Note the strong spatial dependence of
the effective rate constants between λ∗ and 1− λ∗ where the
typical trajectories are localized.

operator, however, is only a rate matrix at λ = 0. For
all other values of λ the matrix does not conserve prob-
ability. In contrast, W , is a proper rate matrix and
can consequently represent physical rates which result
in long-time dynamics that exactly mimics the long-time
behavior of the original dynamics subject to a λ∗ biasing
field. [16, 17]. For our solvable model, we determine the
clockwise and counterclockwise rate constants as a func-
tion of position around the ring which yield an effective
λ bias according to Eq. 13. These rates are depicted in
Fig. 6. When λ = 0 they are just the rate constants of
the natural dynamics, but as λ increases the preference
toward low entropy production has two effects. Firstly,
the effective clockwise rates decrease while counterclock-
wise rates increase to yield slower rates of cycling around
the ring. With fewer completed cycles per unit time, the
trajectories achieve a lower rate of entropy production.
Secondly, a strong spatial dependence in the rates arises,
particularly as λ nears λ∗. As long as the clockwise rates
exceed the counterclockwise rates at every site in the ring,
typical trajectories will remain delocalized. In the regime
λ∗ < λ < 1−λ∗ some regions of the ring prefer clockwise
motion while others prefer counterclockwise. The result
is a localization at the interface of these regions. As made
clear in Fig. 6, the effective rates are smoothly tuned by
λ, even when passing through the transition. Dynamics
evolving under W(λ∗) is particularly interesting as it will
exhibit massive fluctuations in entropy production rates.
Given that states are connected together in a ring topol-
ogy, this W(λ∗) gives the physical rate constants which
tune the system to dynamical coexistence.

The ring topology is also convenient for demonstrat-
ing that λ biasing of detailed balance systems results in
new dynamics which also obeys detailed balance. This
has previously been shown to be the case when biasing
activity by an s field by other means [16]. We note that
in a network with a cycle loop (like our ring network) the

condition of detailed balance is satisfied if and only if

N
∏

i=1

(

Wi,i+1

Wi+1,i

)

= 1 (14)

i.e. if the product of rates for clockwise transitions equals
the product of rates for counterclockwise transitions [28].
(We have implicitly assumed periodic boundary conven-
tions.) Constructing similar products for effective dy-
namics under a λ field (Eq. 13), we find that the effective
dynamics obey detailed balanced if and only if

N
∏

i=1

(

Wω(λ)i,i+1

Wω(λ)i+1,i

)

= 1. (15)

Using the definition of Wω(λ), in Eq. 5, Eq. 15 can be
expressed as

(

N
∏

i=1

Wi,i+1

Wi+1,i

)1−2λ

= 1 . (16)

In other words, provided λ 6= 1/2, the effective dynamics
satisfy the condition of detailed balance if and only if the
underlying physical dynamics are detail balanced. The
result is simply extended to networks with multiple cycles
using the cycle decomposition theorem [28].

B. Persister Cells

It has long been observed that a small fraction of a
colony of genetically identical bacterial cells are resistant
to antibiotic treatment [34]. One important observation
is that bacteria which are not dividing are not affected
by the antibiotic, which suggests that bacteria have an
internal switch allowing rare transitions into non-dividing
persister states that could provide protection from the
antibiotic [18]. Several detailed mechanisms have been
proposed for stabilizing the non-dividing persister state
of the bacteria [35, 36], though these pathways have been
shown to be not wholly responsible for the appearance of
persister cells [37].
We note that the dynamic phase transition of our stud-

ied model presents a distinct stochastic hypothesis to ex-
plain the long timescale decay of bacterial population in
response to an antibiotic. The ensemble of bacteria could
be thought of as the ensemble of trajectories evolving in
time around the ring, with every completed cycle cor-
responding to another cell division. While typical cells
cycle rapidly, a rare dynamical phase of localized, non-
dividing cells could be expected to exist solely because of
the heterogeneity of rates around a cell cycle. Provided
that antibiotics kill cells which grow rapidly, the local-
ized subensemble of cells predicted by our calculations
could result in an anomalously slow decay in survival
probability. Notably, our model lacks an explicit degree
of freedom capable of differentiating persister and normal
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states based on a single-time observation since the phases
describe classes of trajectories, not of configurations.

In Figure 7 we use our model system to extract qual-
itative estimates of the survival probability of cells as a
function of time in the presence of an antibiotic. In par-
ticular, we kill trajectories in proportion to e−λω, where
ω denotes the entropy produced along the trajectory and
λ controls the death rate and is meant to represent the
presence of an antibiotic. At long times, the log proba-
bility of surviving trajectories decays according to ψω(λ),
which differs from the initial decay rate if λ > λ∗ and the
dynamic phase transition can be accessed. The decay of
survival probability can be expected to change markedly
from single exponential to biexponential behavior at a
critical value λ∗. An experimental realization of such
an observation may be accessible in observing the sur-
vival probability of persister cells in response to different
classes of antibiotics.

We note that the bi-exponential curves in Fig. 7 are
similar to those observed experimentally [5] and are at-
tained even without an internal switch that determines
the cell’s type. This demonstration suggests that per-
sister cells may be a generic feature resulting from in-
escapable heterogeneity in transition rates, such that re-
moving one pathway implicated in supporting persisters
will just reveal new localized phases centered around dif-
ferent heterogeneous links.
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FIG. 7. (Color online) Log survival probability for trajec-
tories killed in proportion to e−λω. Entropy production for
5× 106 steady state trajectories of various observation times
were collected with x = 3, h1 = h2 = 0.05, N = 1000. For this
choice of rate constants, λ∗

≈ 0.015. At the observation time
trajectories are killed with a probability tuned by λ, which
could act like the strength of an antibiotic in the case of bac-
terial cells. Dashed lines are lines with slope ψ(ts)(λ), which
capture the short-time behavior since typical trajectories do
not encounter the heterogeneity at short times. Solid lines
have slope ψ(λ) as given by Eqs. (A1) and (A6). As the
maximum eigenvalue, ψ(λ) must characterize the long-time
behavior.

VI. CONCLUSIONS

We have investigated the properties of a dynamical
phase transition in a recently introduced exactly solv-
able model. Using methods of large deviation theory
we analytically computed the joint rate function for the
dynamical activity and entropy production rates for a
single-particle system evolving on a simple driven kinetic
network. The joint rate function demonstrates two dy-
namical phases — one localized and the other delocalized
— but the marginal rate functions do not exhibit the
underlying transition under all conditions. Specifically,
the marginal rate function corresponding to the entropy
production has a critical point beyond which there is no
dynamic phase coexistence even though the system still
supports two distinct classes of trajectories. We illus-
trated the rates that position the system in a state of co-
existence between localized and delocalized phases. We
also discussed a biophysical implication of the transition,
namely the heterogeneity in the growth rates of bacte-
rial cells and the phenomena of persistence, arguing that
a bistability of dynamical phases can be found in even
the simplest models of a cell cycle which lack an explicit
bistability in configuration space.
Our study of a single-particle system reveals one simple

manner in which dynamical phase transitions can arise.
The two dynamical phases are time independent, a char-
acteristic of the transition shared by some many-particle
systems [9], but the model certainly does not encompass
the full range of dynamical complexity intrinsic to in-
teracting nonlinear degrees of freedom. This work thus
does not directly help to clarify, for instance, rare phases
related to the hydrodynamic limit of many-particle dy-
namics [38–40]. Nevertheless, our exact analytical results
for a schematic model highlight features that could be im-
portant in much more exotic phenomena, most notably
the possibility that dynamic phase transitions can be vis-
ible to some pertinent order parameters yet hidden from
others.
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Appendix A: Computation of Scaled Cumulant

Generating Function

Were it not for the heterogeneous link connecting sites
1 and N , the tilted operator would have a translational
symmetry, making its explicit diagionalization trivial
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in a Fourier basis. We construct a 1/N expansion of
ψω,K(λ, s) by expanding around around the maximum
eigenvalue of the translationally symmetric network,

ψω,K(λ, s) = x1−λe−s + xλe−s − 1− x

+
γe−s(xλ − x1−λ)

N
+ . . . ,

(A1)

Recall from the main text that we write the elements of
the maximal eigenvector as (f1, f2, . . . fN ) and

(

fi
fi+1

)

=

(

ψ+1+x
e−sx1−λ −x2λ−1

1 0

)(

fi+1

fi+2

)

= B

(

fi+1

fi+2

)

.

(A2)
Because of the translational symmetry of the network,
the same transition matrix B relates almost all pairs of
neighboring fi’s. The heterogeneous link requires that
we also introduce transfer matrices A1 and A2 given by

A1 =

(

ψ+x+h2

e−sh1−λ

1
hλ

2

− xλ

h1−λ

1
hλ

2

1 0

)

A2 =

(

ψ+h1+1
e−sx1−λ −

hλ

1
h1−λ

2

x1−λ

1 0

)

. (A3)

Because the network is arranged in a ring, propagations
around the full loop must map (f1, f2) onto itself, such
that the transfer matrices must satisfy the boundary con-
dition

BN−2A2A1

(

f1
f2

)

=

(

f1
f2

)

, (A4)

which requires that BN−2A2A1 posses a unit eigenvalue
in the N → ∞ limit. We use this condition to determine
the 1/N expansion coefficient γ as a function of λ and
s. Since ψω,K(λ, s) = ψω,K(1 − λ, s) we focus on the
case x > 1 and λ < 1/2 without loss of generality. It is
convenient to write B in its eigenbasis after inserting the
1/N expansion of Eq. (A1) where only the larger of the
two eigenvalues will survive the large N limit,

lim
N→∞

BN−2 =
e−γ

1− x2λ−1

(

1 −x2λ−1

1 −x2λ−1

)

(A5)

Since we are interested in the large N behavior and
there is only a single term of A1 and A2 in the product,
we can comfortably neglect the 1/N term in the A matri-
ces. The condition that BN−2A2A1 has a unit eigenvalue
requires

γ = ln

[

x2(1−λ) +
(

−h1h2 + e2s(h2 − 1)(h1 − x)
)

+ es(h1 + h2 − 1− x)x1−λ

h1−λ1 hλ2 (x
1−λ − xλ)

]

(A6)

Note that γ diverges when the numerator of the argument
of the logarithm has a root, in which case ψω,K(λ, s) de-
parts significantly from the corresponding value in the
translationally symmetric network. The values of λ and
s for which γ first diverges provides the line of cusps
given in Eq. (7) of the main text. As shown in the main
text, the value of ψω,K(λ, s) everywhere follows. When γ
does not diverge, the large N behavior coincides with the
translationally symmetric result. Otherwise the behavior
can be determined from the behavior of that translation-
ally symmetric result along the curve s∗(λ).
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ceedings of the National Academy of Sciences 106, 21173
(2009).

[3] M. Dogterom and S. Leibler, Physical Review Letters 70,
1347 (1993).

[4] T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J.
Fredberg, and D. A. Weitz, Proceedings of the National
Academy of Sciences 108, 4714 (2011).

[5] N. Q. Balaban, J. Merrin, R. Chait, L. Kowalik, and
S. Leibler, Science 305, 1622 (2004).

[6] H. Touchette, Physics Reports 478, 1 (2009).
[7] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van

Duijvendijk, and F. van Wijland, Journal of Physics A:
Mathematical and Theoretical 42, 075007 (2009).

[8] C. P. Espigares, P. L. Garrido, and P. I. Hurtado, Phys-
ical Review E 87, 032115 (2013).

[9] T. Bodineau and B. Derrida, Physical Review Letters 92,
180601 (2004).

[10] T. Bodineau and C. Toninelli, Communications in Math-
ematical Physics 311, 357 (2012).

[11] L. O. Hedges, R. L. Jack, J. P. Garrahan, and D. Chan-
dler, Science 323, 1309 (2009).

[12] B. Derrida, Journal of Statistical Mechanics: Theory and
Experiment 2007, P07023 (2007).

[13] R. Harris, A. Rákos, and G. Schütz, Journal of Statis-
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