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Abstract

Although the fully connected Ising model does not have a length scale, we show that the critical

exponents for thermodynamic quantities such as the mean magnetization and the susceptibility

can be obtained using finite size scaling with the scaling variable equal to N , the number of

spins. Surprisingly, the mean value and the most probable value of the magnetization are found to

scale differently with N at the critical temperature of the infinite system, and the magnetization

probability distribution is not a Gaussian, even for large N . Similar results inconsistent with the

usual understanding of mean-field theory are found at the spinodal. We relate these results to

the breakdown of hyperscaling and show that hyperscaling can be restored by increasing N while

holding the Ginzburg parameter rather than the temperature fixed, or by doing finite size scaling

at the pseudocritical temperature where the susceptibility is a maximum for a given value of N .

We conclude that finite size scaling for the fully connected Ising model yields different results

depending on how the mean-field limit is approached.

∗ lcolonnaromano@clarku.edu
† hgould@clarku.edu
‡ klein@bu.edu

1



I. INTRODUCTION

Mean-field approaches to phase transitions are useful for several reasons. Two of the

most important are that they provide a simple way of understanding the nature of critical

phenomena [1], and they are good approximations for systems with long-range interactions

and for systems with large molecules [2, 3]. Despite the work of Kac and collaborators [4],

who defined the applicability of mean-field theories in a mathematically precise manner,

mean-field approximations are still approached in different ways. These different approaches

can be confusing because they can produce different results for the same system. A common

approach is to assume that the probability distribution of the order parameter is a Gaussian.

Another common approach is to consider a system at its upper critical dimension.

In this paper we investigate another often used approach of understanding mean-field

systems and compare this approach to other ways of doing mean-field theory. We consider

the fully connected Ising model for which every spin interacts with every other spin. The

Hamiltonian of the fully connected Ising model is given by [5–8]

H = −JN
N∑

i>j, j=1

σiσj − h
N∑

i=1

σi, (1)

where σi = ±1 and h represents the external magnetic field. The interaction strength JN

is rescaled so that the total interaction energy of a given spin remains the same as N is

changed. We take

JN =
qJ

N − 1
, (2)

with q = 4. This choice of q yields the mean-field critical temperature Tc,∞ = 4, the value of

the critical temperature for a square lattice in the limit N → ∞. We have chosen units such

that J/k = 1, with k equal to the Boltzmann constant. The fully connected Ising model is

sometimes referred to as the “mean-field” [9], “infinitely coordinated” [10, 11], or “infinite

range” [12] Ising model.

The standard approach to finite size scaling yields numerical values of the critical ex-

ponents by determining how various quantities change with the linear dimension L at the

critical temperature of the infinite system [13–15]. The finite size scaling relations for the
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Ising model with finite-range interactions include

m ∼ L−β/ν (3)

χ ∼ Lγ/ν , (4)

where m = |M |/N , |M | is the absolute value of the magnetization of the system, the overbar

denotes the ensemble average, χ is the susceptibility per spin, N is the number of spins, and

β, γ, and ν are the usual critical exponents [1]. The exponents at the mean-field critical

point are given by

γ = 1, β = 1/2, and ν = 1/2, (5)

which yields m ∼ L−1 and χ ∼ L2 if we assume the system can be described by mean-field

theory at or above the upper critical dimension.

Because the fully connected Ising model has no length scale, the linear dimension L is

not defined. One simple way to determine how m and χ change with N at the critical

temperature is to assume that its critical exponents are the same as the nearest-neighbor

Ising model in four dimensions, the upper critical dimension [16]. Given this assumption we

can write N ∼ L4, and hence [17]

m ∼ N−1/4. (6)

χ ∼ N1/2. (7)

We stress that we will not assume that N ∼ L4 to obtain any of our results in the following,

and we make this assumption here only to motivate our investigation and simply note that

this assumption is only one way of doing finite size scaling for mean-field systems.

As pointed out in Refs. [18] and [19], the properties of the Ising model in four dimensions

and the predictions of other approaches are not always the same. Hence, it is desirable to

determine the finite size scaling behavior of various properties of the fully connected Ising

model directly. We will find that finite size scaling at the critical temperature of the infinite

fully connected Ising model yields results that are inconsistent with both the assumption of

a Gaussian probability distribution and several results at the upper critical dimension.
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FIG. 1. Log-log plot of m, the mean value of the absolute magnetization per spin, versus N , the

number of spins, at the critical temperature of the infinite fully connected Ising model, Tc,∞ = 4

computed using the exact density of states in Eq. (8). The slope from a least squares fit to m for

105 ≤ N ≤ 2× 107 is −0.2502, which is consistent with Eq. (6).

II. NUMERICAL RESULTS FOR THE MEAN MAGNETIZATION AND THE

SUSCEPTIBILITY

The exact density of states g(M) of the fully connected Ising model is given by

g(M) =
N !

n!(N − n)!
, (8)

where n = (N + M)/2 is the number of up spins. The probability that the system has

magnetization M is proportional to

P (M) = g(M)e−E/T , (9)

with the energy E given by

E =
JN
2
(N −M2)− hM. (10)

Note that the density of states depends only on M . We will refer to P (M) in Eq. (9) as a

probability, although P (M) is not normalized.

We can evaluate χ and m numerically as a function of N using the exact density of states

in Eq. (8). The only numerical limitation is associated with the rapid increase of g(M) with

increasing N . Our calculations for N ≤ 2×106 use infinite precision integer arithmetic. Five
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FIG. 2. Log-log plot of χ, the susceptibility per spin, versus N at T = Tc,∞ for N ≤ 2 × 107

computed using the exact density of states in Eq. (8). The slope from a least squares fit to χ for

105 ≤ N ≤ 2× 107 is 0.5000, consistent with Eq. (7).

thousand digits were retained for 2 × 106 < N ≤ 2 × 107. The two numerical approaches

give consistent results for N = 2× 106.

Our numerical results for the N dependence of m and χ are shown in Figs. 1 and 2,

respectively, and are consistent with Eqs. (6) and (7).

III. MOST PROBABLE VALUE OF THE MAGNETIZATION

We can derive analytical expressions for the N -dependence of various quantities using

the exact density of states. The usual treatment of the fully connected Ising model is

based on determining the value of M that maximizes P (M). If we use Stirling’s formula,

ln x! ≈ x ln x− x, we find for large N that

d lnP (M)

dM
≈ 1

2
ln
(N − n)

n
+ β(qJM + h) = 0. (11)

Equation (11) yields the usual mean-field result m = tanh β(qJm+ h).

To find the N -dependence of M at T = Tc,∞ we keep the next term in Stirling’s formula,

ln x! ≈ x ln x − x + ln
√
2πx, so that d lnx!/dx ≈ ln x + 1/2x. In this approximation we

obtain
d lnP (M)

dM
≈ 1

2
ln

1−m

1 +m
+
m

N

1

1−m2
+

βqJm

1− 1/N
+ βh = 0. (12)
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We let h = 0 and keep terms to first-order in 1/N and third-order in m. The result is

−m− m3

3
+
m

N
(1 +m2) + βqJm

(
1 +

1

N

)
= 0. (13)

For βqJ = 1 (T = Tc,∞), several terms cancel, and we obtain [20]

m2 ∼ 6

N
(N ≫ 1). (14)

We see from Eq. (14) that m ∼ N−1/2, in apparent contradiction with Eq. (6). However,

the variable m in Eq. (14) is the most probable value of the magnetization rather than its

mean value. Hence, the mean value and the most probable value of the magnetization scale

differently with N at T = Tc,∞, behavior that is inconsistent with our usual understanding

of mean-field.

In Fig. 3 we plot the N -dependence of m̃, the most probable (positive) value of m, as

determined numerically from Eqs. (8)–(10). We see that the N -dependence of m̃ is consistent

with

m̃ ∼ N−1/2 (most probable value at T = Tc,∞). (15)
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FIG. 3. The N -dependence of m̃, the most probable value of m, at T = Tc,∞ as determined from

Eqs. (8)–(10). The slope from a least squares fit to m̃ for 105 ≤ N ≤ 2× 107 is 0.4997, consistent

with the N -dependence of the analytical result in Eq. (14).
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FIG. 4. Plot of P (m) versus m as determined from Eqs. (8)–(10) at T = Tc,∞ for (a) N = 100

and (b) N = 800. Note that P (m) is symmetrical about m = 0, and the maxima of P (m) are at

|m| > 0. It is clear that P (m) cannot be approximated by a Gaussian.

IV. THE PROBABILITY DISTRIBUTION

A plot of P (m) for N = 100 and N = 800 as determined from Eqs. (8)–(10) at T = Tc,∞

is given in Fig. 4. Note that P (m) is not a Gaussian and the maxima of P (m) are at |m| > 0.

To emphasize that the behavior of P (m) at T = Tc,∞ is qualitatively different than at other

temperatures, we plot P (M) for T = 3, T = Tc,∞ = 4, and T = 5 in Fig. 5. We see that

P (M) has a single maximum for T > Tc,∞ and has two maxima at M 6= 0 for T < Tc,∞.

One way to characterize P (m) is to compute the reduced fourth-order (Binder) cumulant,

which is defined as [21]

U4 = 1− m4

3m2
2 . (16)

We use Eqs. (8)–(10) to compute U4 and find that, as expected, U4 ≈ 0 for T = 5, and hence

P (m) is well approximated by a single Gaussian for T > Tc,∞ and large N . Similarly, for

T = 3 we find that U4 ≈ 2/3, which implies that P (m) is well approximated as a sum of two

Gaussians [22]. At T = Tc,∞ we find that U4 ≈ 0.2706 for N = 2 × 107, and hence at the

critical temperature of the infinite system P (m) is not well approximated by a Gaussian,

even for large N . We also note that U4 ≈ 0.4948 at T = Tc,N , the pseudocritical temperature

at which the susceptibility for a given N is a maximum.
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FIG. 5. Plot of P (M) at T = 5, T = Tc,∞ = 4, and T = 3 for N = 800. As expected, P (M) has a

single maximum for T > Tc,∞ and two maxima at M 6= 0 for T < Tc,∞.

It is interesting to compare the behavior of m̃ and P (m) for the fully connected Ising

model to their behavior in the nearest-neighbor Ising model at the critical temperature of

the infinite system. As shown in Fig. 6(a), the maxima of P (m) for the nearest-neighbor

Ising model at T = Tc = 2/ ln(1 +
√
2) as obtained from a Monte Carlo simulation are not

at m = 0 [23]. However, the most probable and mean values of the magnetization both scale

as L−1/8 in two dimensions [see Fig. 6(b)], in contrast to their different scaling behavior in

the fully connected Ising model.

V. THE GINZBURG PARAMETER AND THE RESTORATION OF HYPER-

SCALING

The different scaling behavior of the mean magnetization and the most probable mag-

netization in the fully connected Ising model implies that hyperscaling does not hold. As

discussed in Ref. 2, hyperscaling is not satisfied by mean-field theories, but hyperscaling

is restored if the Ginzburg parameter, G, is held constant as the critical point is ap-

proached [2, 24].

The definition of the Ginzburg parameter follows from the well known Ginzburg criterion

for the applicability of mean-field theory [25]. This criterion requires that the fluctuations

of the order parameter be small compared to its mean value, that is, G−1 = ξdχ/ξ2dm2 ≪ 1,
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FIG. 6. Monte Carlo results for the nearest-neighbor Ising model at the critical temperature of the

infinite system, Tc = 2/ ln(1 +
√
2). (a) The probability P (M) for linear dimension L = 64 and

108 Monte Carlo steps per spin. Note the existence of maxima at M ≈ ±2872. (b) Log-log plot of

the maxima of P (m) for m > 0 as a function of L. The slope is approximately 0.128, consistent

with β = 0.125, the critical exponent for the mean magnetization.

where ξ is the correlation length and d is the spatial dimension. In the limit G → ∞ the

system is described exactly by mean-field theory. The system is near-mean-field for G ≫ 1

but finite.

To determine the dependence of G on N and ǫ = |T − Tc,∞|/Tc,∞, we use the mean-

field dependence of m and χ implied by the exponents in Eq. (5) and obtain G = ξdǫ2 [2].

Because N ∼ ξd, the Ginzburg parameter for the fully connected Ising model is given (up

to a numerical constant) by

G = Nǫ2. (17)

We can show analytically that m̃ scales as N−1/4 if G is held constant. We substitute

T = Tc,∞(1 + ǫ) in Eq. (13), assume that ǫ = −(G/N)1/2 with G a constant and T < Tc,∞,

and rewrite Eq. (13) to leading order in 1/N as

−m− m3

3
+

m

1− (G/N)1/2
= 0, (18)

where qJ/Tc,∞ = 1. If we let [1− (G/N)1/2]−1 ≈ 1 + (G/N)1/2, we obtain

m̃ = 31/2
(G
N

)1/4
∼ N−1/4. (constant Ginzburg parameter) (19)
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FIG. 7. Plot of the Ginzburg parameter G = Nǫ2N with ǫN = (Tc,∞−Tc,N)/Tc,∞ versus logN . The

pseudocritical temperature, Tc,N , corresponds to the temperature at which χ is a maximum for a

given N . The smallest value of ǫN is 2.8 × 10−4 for N = 2 × 107. A least squares fit of G(N) for

N ≤ 102 yields G(N) ≈ −0.3000 + 0.6484 logN . The plot suggests that G is increasing no faster

than logN for larger values of N .

From Eq. (13) we see that the scaling of m̃ is determined by the way the coefficient of

the linear term in m vanishes. Instead of working at the critical temperature of the infinite

system, we determine how m̃ scales with N at the pseudocritical temperature Tc,N . To that

end we define ǫN = (Tc,∞ − Tc,N)/Tc,∞, and note that the coefficient of the linear term in

Eq. (13) can be written as ǫN + Tc,∞/NTc,N .

We can show that hyperscaling is apparently restored if finite size scaling is done at

Tc,N [26]. We compute Tc,N numerically using Eqs. (8)–(10). The corresponding results for

the Ginzburg parameter G = Nǫ2N versus logN are shown in Fig. 7. We see that G is a

slowly increasing function of logN for large N and is increasing no faster than logN for large

N . We were unable to fit the N -dependence of G to a simple analytical form in the range

106 ≤ N ≤ 2×107 and were unable to distinguish between G approaching a constant as N →
∞ or G increasing indefinitely, albeit less than logarithmically. This behavior is consistent

with logarithmic corrections to the mean-field behavior of quantities such as χ obtained by

renormalization group calculations for the Ising model in four dimensions [26, 27].

In Fig. 8 we show the N -dependence of m and m̃ computed at T = Tc,N , the values of

T corresponding to the pseudocritical point. Least squares fits to m̃ and m yield slopes

of −0.2496 and −0.2494, respectively, consistent with m̃,m ∼ N−1/4, and the apparent

restoration of hyperscaling if finite size scaling is done at the pseudocritical temperature.
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FIG. 8. Log-log plot of m̃ (open circles) and m (filled circles) versus logN for N ≤ 2× 107 at the

pseudocritical temperature corresponding to the values of G shown in Fig. 7. The slopes from a

least squares fit in the range 105 ≤ N ≤ 2×107 of m̃ and m are −0.2496 and −0.2494, respectively,

consistent with m̃,m ∼ N−1/4, and the restoration of hyperscaling.

We conclude that G is increasing sufficiently slowly with N for N ≤ 2 × 107 so that we

cannot distinguish numerically between the results of constant G or possible corrections.

We also investigated the N -dependence of the specific heat C at both Tc,N and Tc,∞. We

find that C is a slowly increasing function of N at both temperatures and the N -dependence,

and we unable to fit the N -dependence of C to a simple analytic function. Hence, we are

unable to conclude if C is approaching a constant as is predicted by mean-field theory or if

there are logarithmic corrections.

VI. ANALYTICAL CALCULATION OF THE MEAN MAGNETIZATION

To calculate the scaling behavior of m at T = Tc,∞, we expand lnP (m) in a Taylor series

in m− m̃, where m̃ is the most probable value of m as given by Eq. (14). We have

lnP (m) ≈ lnP (m̃) +
1

2
(m− m̃)2

d2 lnP (m)

dm2

∣∣∣∣
m=m̃

+
1

3!
(m− m̃)3

d3 lnP (m)

dm3

∣∣∣∣
m=m̃

+
1

4!
(m− m̃)4

d4 lnP (m)

dm4

∣∣∣∣
m=m̃

. (20)

In analogy to the form of the free energy in Landau-Ginzburg theory, we will need to keep

terms only to fourth-order in (m − m̃)4 [28]. We also expect that the second and third
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derivatives of lnP (m) to both approach zero as N → ∞ and (d4 lnP (m)/dm4)m=m̃ to be

independent of N .

We have to leading order in 1/N that

d2 lnP (m)

dm2
= − 1

1 −m2
+

βqJ

1− 1/N
+

1

N

1 +m2

(1−m2)2
, (21)

and hence

d2 lnP

dm2

∣∣∣
m=m̃

≈ −1− m̃2 + 1 +
1

N
+

1

N
= − 4

N
. (22)

Note that (d2 lnP/dm2)m=m̃ < 0, which is consistent with m̃ being the most probable value.

We also have to leading order that

d3 lnP

dm3
= − 2m

(1−m2)2
and

d4 lnP

dm4
= − 2

(1 −m2)2
. (23)

Hence to leading order in 1/N we have

d3 lnP

dm3

∣∣∣∣
m=m̃

≈ −2
( 6

N

)1/2
and

d4 lnP

dm4

∣∣∣∣
m=m̃

≈ −2. (24)

We can interpret lnP (m) as the free energy per spin. Because (d2 lnP (m)/dm2)m=m̃ and

(d3 lnP (m)/dm3)m=m̃ both go to zero as N → ∞, we have from Eqs. (20) and (24) that [11]

m =

1∫
0

me−N(m−m̃)4/12 dm

1∫
0

e−N(m−m̃)4/12 dm

(N ≫ 1). (25)

We change variables to x = (m− m̃)(N/12)1/4 and keep only the leading order term in N .

The upper limit of integration, xmax = (1−m̃)(N/12)1/4 ∼ N1/4 → ∞ as N → ∞. Similarly,

the lower limit of integration xmin = −m̃(N/12)1/4 ∼ N−1/4 → 0 as N → ∞. Hence, for

large N we obtain

m =
(12
N

)1/4
∞∫
0

x e−x4

dx

∞∫
0

e−x4 dx

≈ 0.91N−1/4. (26)

The leading correction to m in Eq. (26) is proportional to N−1/2. Similar considerations

yield the scaling behavior of χ given in Eq. (7).

It is easy to check that (dn lnP (m)/dmn)m=m̃ for n > 4 is either independent of N (n

even) or proportional to N−1/2 (n odd), thus justifying the assumption in Eq. (20) that

higher-order terms in the expansion of lnP (m) can be neglected.
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The form of lnP (m) in Eq. (20) can be used to compute the cumulant defined in Eq. (16).

The result is U4 ≈ 0.271 at T = Tc,∞, which is consistent with the computed value of

U4 = 0.2706 using the exact density of states for N = 2× 107.

VII. SCALING AT THE SPINODAL

A. Simple scaling argument

Because the spinodal is a line of critical points, we expect that finite size scaling at

the Ising spinodal proceeds similarly to our analysis at the Ising mean-field critical point.

We assume that T < Tc,∞ and vary the field h near the spinodal field hs. In terms of

∆h = (h− hs)/hs the usual scaling relations are [2]

ψ ∼ ∆h1/2 (27)

χ ∼ ∆h−1/2 (28)

ξ ∼ ∆h−1/4, (29)

where the order parameter ψ = m−ms is related to the mean magnetization per spin near

the spinodal, and ms is the value of the magnetization at the spinodal. We use Eq. (29)

to obtain ψ ∼ ξ−2 and χ ∼ ξ2. If we assume the upper critical dimension to be six at the

spinodal [29], we have N ∼ ξ6, and hence

ψ ∼ N−1/3 (30)

χ ∼ N1/3. (31)

We will derive these results in the following without assuming that N ∼ ξ6 at the spinodal.

B. Numerical results

The numerical evaluation of the N -dependence of various quantities such as ψ and χ as

a function of N at h = hs using the exact density of states in Eq. (8) is more subtle than

at the critical temperature because we must include only values of M corresponding to the

metastable state. To understand this restriction, imagine a Monte Carlo simulation of the

fully connected Ising model at T < Tc,∞ and magnetic field h = h0 > 0. Because h0 > 0, the

13



values of M are positive. After equilibrium has been reached, we let h → −h0. If h0 is not

too large, the system will remain in a metastable state for a reasonable number of Monte

Carlo steps per spin. To compute χ associated with the pseudospinodal (the spinodal is

defined only in the limit N → ∞ for the fully connected Ising model), we must include only

those values of M that are representative of the metastable state. As discussed in Ref. 12,

the values of M that may be included in thermal averages of the metastable state must

satisfy the condition that M >∼ Mip, where Mip is the value of M at the inflection point of

P (M). We set d2 lnP (M)/dM2 = 0 and use Eq. (21) to find that [12]

Mip =

√
N2

(
1− 1

βqJ

)
+

N

βqJ
. (32)

We follow Ref. [30] and choose T = 4Tc,∞/9 = 16/9. Hence z = βqJ = 9/4 in Eq. (32).

For this value of z we obtain hs ≈ 1.2704 [31].

Our numerical results for χ at h = hs for increasing values of N are shown in Fig. 9

using the exact density of states in Eq. (8) and values of M > Mip. The slope of 0.335 is

consistent with Eq. (31). Similarly, we find that a log-log plot of ψ versus N yields a slope

of −0.334 [see Fig. 10(a)] in agreement with Eq. (30). A log-log plot of the most probable

value of m near the spinodal yields the scaling behavior [see Fig. 10(b)]

ψ̃ ∼ N−1/2. (33)

C. Analytical derivation

The analytical calculation of the N -dependence of ψ, ψ̃, and χ at the spinodal proceeds

similarly to the derivation at the critical temperature. We can use Eq. (12) with N → ∞
to show that the value of m at the spinodal is given by (1−m2

s)
−1 − qβJ = 0, or

ms =

√
βqJ − 1

βqJ
=

√
z − 1

z
. (34)

The corresponding value of hs can be obtained by substituting m = ms into Eq. (12) in the

limit N → ∞.

To find the leading correction to the most probable value of m near the spinodal, we
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FIG. 9. Log-log plot of χ, the susceptibility per spin, versus N at h = hs and T = 4Tc,∞/9 using

the exact density of states in Eq. (8) and the requirement that M ≥ Mip. A least square fit for

105 ≤ N ≤ 2× 107 yields a slope of 0.335, consistent with the exponent 1/3 in Eq. (31).
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FIG. 10. (a) Log-log plot of the mean value of the order parameter, ψ, versus N at h = hs and

T = 4Tc,∞/9. The slope is ≈ −0.334, which is consistent with Eq. (30). (b) Log-log plot of

the most probable value of the order parameter, ψ̃, at h = hs and T = 4Tc,∞/9. The slope is

≈ −0.523, consistent with the exponent in Eq. (33). We see that the N -dependences of ψ and ψ̃

at the spinodal differ.

substitute m = ms + ψ in Eq. (12) and assume that ψ ≪ ms for N ≫ 1. The result is

d lnP

dm
≈ 1

2
ln

1−ms

1 +ms
+ zms + βhs −

1

1−m2
s

ψ + zψ − ms

(1−m2
s)

2
ψ2

+
1

N

ms

1−m2
s

+
1

N

1 +m2
s

(1−m2
s)

2
ψ +

zms

N
+
zψ

N
= 0. (35)
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The sum of the first three terms on the right-hand side is zero. We will assume that

ψ ∼ N−1/2 and determine if this assumption is consistent with the solution to Eq. (35).

The terms proportional to N−1/2 are

[
− 1

1−m2
s

+ z
]
ψ, (36)

which sum to zero using Eq. (34). The terms proportional to N−1 include

− ms

(1−m2
s)

2
ψ2 +

1

N

ms

1−m2
s

+
zms

N
, (37)

which also must sum to zero. The result for ψ2 to order 1/N is

ψ2 =
(1−m2

s)
2

N

[ 1

1−m2
s

+ z
]
=

2

Nz
. (38)

The quantity ψ in Eq. (38) represents the most probable value, which we write in the

following as ψ̃. Hence, we conclude that ψ̃ ∼ N−1/2, in agreement with the numerical result

in Eq. (33) and the slope in Fig. 10(b).

Near the spinodal the Ginzburg parameter Gs is given by Gs = ξdψ
2
/χ ∼ N∆h3/2 [2],

where we have used Eqs. (29) and (31). In analogy to our discussion in Sec. V, we can show

that ψ̃ ∼ N−1/3 if Gs is held fixed as ∆h is varied at constant temperature.

Similarly, we find for large N at T = 4Tc,∞/9 and h = hs that

d2 lnP

dm2
= − 2ms

(1−m2
s)

2
ψ ∼ N−1/2, (39)

and

d3 lnP

dm3
= − 2ms

(1−m2
s)

3
∼ N0. (40)

We see that d2 lnP/dm2 ∼ N−1/2 and d3 lnP/dm3 is independent of N in the limit N → ∞.

Hence, we can show that ψ ∼ N−1/3 and χ ∼ N1/3 at the spinodal in agreement with

Eqs. (30) and (31).

VIII. DISCUSSION

We have shown that finite size scaling done at Tc,∞, the critical temperature of the

fully connected Ising model in the limit N → ∞, gives results that differ from our usual

understanding of mean-field systems. In addition, we found that finite size scaling yields

different results depending on how the mean-field limit is approached.
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In particular, the Gaussian approximation often associated with mean-field theory does

not hold at T = Tc,∞, and the probability distribution of the magnetization is not a Gaussian,

even in the limit N → ∞. Also our results are inconsistent with the assumption that the

scaling properties of the fully connected Ising model at the critical temperature of the infinite

system are the same as the scaling properties of the nearest-neighbor Ising model (when N

is used as the scaling parameter) at the upper critical dimension, where hyperscaling is

satisfied and the Ginzburg parameter is independent of the distance from the critical point

and the spinodal.

The reason that the most probable value of the magnetization, m̃, and the mean value,

m, scale differently with N at T = Tc,∞ is that hyperscaling is not satisfied. However, the

breakdown of hyperscaling does not affect the values of thermodynamic exponents such as β

and γ [32]. In contrast, the most probable value of the magnetization is not a thermodynamic

quantity and is affected. The breakdown of hyperscaling is consistent with results above the

upper critical dimension where hyperscaling also does not hold if finite size scaling is done at

the critical point of the infinite system [26]. To do finite size scaling so that hyperscaling is

restored, it is necessary to keep the Ginzburg parameter constant as N is increased. It is also

possible to do finite size scaling at the pseudocritical temperature where the susceptibility

is a maximum. In this case the Ginzburg parameter is either a constant or diverges more

slowly than lnN for large N . Whether the latter dependence maintains hyperscaling or

leads to logarithmic corrections cannot be determined from our numerical results.

To understand the different scaling behavior at T = Tc,∞ and T = Tc,N , we return to

Eq. (22) and interpret ǫ as the coefficient of the quadratic term in the free energy. Hence at

T = Tc,∞ we have

ǫeff ∼ − 4

N
, (41)

and the Ginzburg parameter G = Nǫ2eff ∼ 1/N , leading to m̃ ∼ N−1/2. In contrast, if G

is held constant, ǫeff ∼ N−1/2, leading to m̃ ∼ N−1/4. As shown in Fig. 7, G appears to

increase more slowly than lnN for large N if finite size scaling is done at the pseudocritical

temperature T = Tc,N , the temperature corresponding to the maximum of the susceptibility.

Because logarithmic corrections do not change the scaling laws [1], we expect that corrections

that are weaker than logarithmic will not affect the scaling of the most probable value of the

magnetization. Hence, we conclude that m̃ ∼ N−1/4 if finite size scaling is done at T = Tc,N .

It is remarkable that the fully connected Ising model, which is discussed in some un-
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dergraduate textbooks because of its simplicity [8], still yields surprises. In particular, the

behavior of the fully connected Ising model at the critical point differs from that of the long-

range Ising model with the Kac form of the interaction. This conclusion is not surprising

because the interaction between spins in the fully connected Ising model does not have the

Kac form for which mean-field theory has been shown to be exact if the thermodynamic

limit is taken before the range of the interaction is taken to infinity.

Our results are a reminder that the applicability of mean-field theories is subtle. A recent

example is found in Ref. [18], where it was shown that the divergence of the specific heat

of the long-range Ising model in one and two dimensions is neither mean-field nor has the

exponents associated with the nearest-neighbor Ising model. We also note that experiments

in systems that are well approximated by mean-field theory are not usually done at fixed

Ginzburg parameter. Hence, the interpretation of experimental results for such systems

should be done with caution.
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