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The shear viscosity coefficient of the one-component plasma is calculated with unprecedented
accuracy using equilibrium molecular dynamics simulations and the Green-Kubo relation. Numerical
and statistical uncertainties and their mitigation for improving accuracy are analyzed. In the weakly
coupled regime, our the results agree with the Landau-Spitzer prediction. In the moderately and
strongly coupled regimes, our results are found in good agreement with recent results obtained for
the Yukawa one-component plasma using non-equilibrium molecular dynamics. A practical formula
is provided for evaluating the viscosity coefficient across coupling regimes, from the weakly-coupled
regime up to solidification threshold. The results are used to test theoretical predictions of the
viscosity coefficients found in the literature.
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I. INTRODUCTION

Like the hard-sphere model in the theory of simple liq-
uids, the classical one-component plasma (OCP) is a ref-
erence model in the study of strongly coupled Coulomb
systems and, in particular, of ions in strongly coupled
plasmas [1]. By definition, the OCP consists of a sys-
tem of identical ions of charge Ze, mass m and number
density n in an infinite three-dimensional space. Parti-
cle dynamics is governed by the laws of classical, non-
relativistic mechanics. The interaction energy between
two ions separated by the distance r is modeled by a

Yukawa potential v(r) = q2
e−r/λsc

r
, where λsc ≥ 0 is

a parameter used to describe the screening effect of the
conduction electrons on the bare ion-ion Coulomb inter-
actions, and q2 = (Ze)2/4πǫ0. In the limit λsc → +∞,
particles interact via the bare Coulomb interaction and
the ions must be immersed in a uniform, neutralizing
background for well-posedness of the model.

The equilibrium properties of the OCP depend on
only two dimensionless parameters: the screening pa-
rameter κ = a/λsc and the Coulomb coupling parameter
Γ = q2/akBT , where a = (3/4πn)1/3 is the Wigner-Seitz
radius and T is the temperature. The Coulomb coupling
parameter measures the degree of non-ideality of the sys-
tem, i.e. the degree to which many-body interactions af-
fect the properties of the ensemble of ions. Given a value
for κ, the OCP shows transitions from a nearly collision-
less, gaseous regime for Γ << 1 continuously through an
increasingly correlated, liquid-like regime to the Wigner
crystallization into a lattice near Γm (e.g., Γm ≃ 175 at
κ = 0, Γm = 440 at κ = 2). The gas-like to liquid-like
crossover manifests itself in several ways in the micro-
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scopic properties of the OCP. Most noticeably, the coef-
ficient of reduced shear viscosity

η∗ =
η

mna2ωp
, (1)

where ωp is the plasma frequency defined below, exhibits
a minimum at intermediate values around Γmin ∼ Γm/10
[2, 3]. In absolute units, the shear-viscosity coefficient η
increases monotonically with density along any isotherm,
whereas along any isochore, η exhibits a minimum as a
function of temperature. In a fluid, transport of momen-
tum occurs not only by the bodily movement of parti-
cles, but also by the direct transmission of intermolecular
forces, which results from a competition between kinetic
and interaction effects. At small coupling Γ ≪ Γmin,
the former mechanism is predominant and, like in a gas,
the OCP viscosity increases with increasing temperature.
At large coupling Γ ≫ Γmin, the latter mechanism is
predominant and, like in a liquid, the OCP viscosity de-
creases with increasing temperature. Strong interparticle
interactions give rise to the cage-effect [4], whereby each
particle finds itself trapped for some period of time in the
cage formed by its immediate neighbors, rebounding until
it overcomes the energy barrier and diffuses to a neigh-
boring cage. At intermediate coupling Γ ∼ Γmin, the two
momentum transport mechanisms contribute with simi-
lar magnitude, resulting in a shallow minimum in the
viscosity coefficient.
Despite the apparent simplicity of the OCP model, ac-

curate determination of the viscosity coefficient of the
OCP by molecular dynamics (MD) simulations is diffi-
cult. This is exemplified by the significant discrepancies
in the results obtained over the years by different authors.
A compilation of these has been provided in [5]. Remark-
ably, important differences are found not only between
results obtained using different MD techniques, but also
between those obtained using the same technique. For
example, previous results obtained using equilibrium MD
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FIG. 1: Shear-viscosity coefficient of the Coulomb OCP
(κ = 0) obtained by different authors [6–9] using equilibrium
molecular dynamics and the Green-Kubo relation. Results
obtained using non-equilibrium molecular dynamics are com-
piled in [5].

are shown in Figure 1. Among these, the results of Bastea
[6] are believed to be most accurate. Recently, Donkó
and Hartmann have presented arguably the most accu-
rate results for moderately and strongly coupled OCP’s
at κ = 1, 2, 3 using two independent non-equilibrium MD
simulation methods, namely the Müller-Plathe reverse
MD approach and the Evans-Morriss homogeneous shear
algorithm. In the present paper, we use equilibrium MD
based on the evaluation of the Green-Kubo relation to
validate the non-equilibrium MD results of Donkó and
Hartmann and the equilibrium MD results of Bastea for
the Coulomb OCP (κ = 0).
There are a couple of reasons why this is important.

Donkó and Hartmann chose non-equilibrium MD meth-
ods, claiming that they are generally more efficient than
equilibrium calculations. Indeed, we shall see that the
determination of viscosity from the Green-Kubo relation
is made difficult by the large statistical imprecision in
the calculation of the shear-stress autocorrelation func-
tion. This arises mainly due to the fact that simulation
averages are taken over finite-length runs. The noise can
be satisfactorily reduced at the price of very long simula-
tions, but this requires much longer run times than have
previously been reported. Despite the computational
cost, equilibrium MD has advantages. It provides in-
formation about the microphysical ion dynamics, in par-
ticular the time-correlation function of the shear stress.
It works equally well for all κ and Γ values, including
the Coulomb OCP. The same simulation can be used to
consistently calculate all other transport and static prop-
erties of the plasma. Furthermore, it provides an inde-
pendent method that allows us to confirm Donkó and
Hartmann’s results.
In the past, much effort has been devoted to develop a

Particle number 5000 (Γ ≥ .5) ; 50000 (Γ < 0.5)
Time step 0.01/ωp; 0.001/ωp (Γ < 0.5)
Simulation length 83886.08/ωp

Equilibration length 1000/ωp

Numerical method Ewald sums with P3M algorithm [10]
Ewald parameter aα 0.64 (N = 5000) 1 (N=50000)
Short-range cutoff rC/a 5.0
FFT grid 543 (N=5000) 643 (N=50000)
rms forces < 10−5

TABLE I: Main parameters of the equilibrium MD simula-
tions used in this work to calculate the viscosity coefficients.

theory that extends the traditional plasma regime valid
at small Γ to the moderate and strongly coupled regimes.
An accurate determination of the shear-viscosity is de-
sirable to test existing and future theories. In this pa-
per, we test the conventional result of Landau-Spitzer,
the kinetic theories of Wallenborn-Baus [8], Viellifosse-
Hansen [3] and of Tanaka-Ichimaru [21], and the recent
effective potential theory of Baalrud-Daligault [18].

This paper is organized as follows. Section II describes
the equilibrium simulations used to determine the shear
viscosity coefficient. We present a detailed study of the
statistical convergence necessary to ensure quality of the
final results. The simulation methods and parameters
are explicitly given to help anyone who wishes to repro-
duce our results. The results are described in section III.
Finally, in section IV, we compare the results with the
above mentioned theories.

II. SIMULATION METHODS AND RESULTS

In the following, ωp = (4πnq2/m)1/2 denotes the
plasma frequency. In our MD simulation 1/ωp and the
Wigner-Seitz radius a are used as unit of time and length,
respectively.

A. Basic definitions

Here we describe a typical equilibrium MD simulation
of an OCP at given Γ and κ. N particles are placed in a
cubic box of volume V = L3 and periodic conditions are
imposed on all boundaries. Particle trajectories are de-
termined by solving Newton’s equations of motion with
the velocity Verlet integrator [11]. The force on an ion
that results from its interaction with the ions in the sim-
ulation box and with those in the periodically replicated
cells is calculated using the Ewald summation technique.
This is essential for small κsc := a/λsc values because
the range of the interaction is larger than the simulation
box in this case. A formulation of the Ewald sum ap-
proach for Yukawa potentials can be found in [9]. The
interaction energy v(r) between two particles at distance
r is represented by a sum of a short-range (sr) and a
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long-range (lr) component,

v(r) = q2φsr(r) + q2φlr(r) (2)

where

φsr(r)=
1

2r

[

erfc
(

αr +
κsc

2α

)

eκscr + erfc
(

αr− κsc

2α

)

e−κscr
]

and

φlr(r)=
4π

V

∑

n∈Z3

e−(k2+κ2
sc)/(4α

2)

k2 + κ2
sc

eik·r , k =
2π

L
n (3)

where α > 0 is the Ewald parameter, and erfc is
the complementary error function. In our simulation
code, the Ewald sum is calculated with the particle-
particle-particle-mesh (P3M) method, which combines
high-resolution of close encounters (the sr term is calcu-
lated using nearest neighbor techniques) and rapid, long-
range force calculations (the lr forces are computed on
a mesh using three-dimensional fast Fourier transforms)
[10].
Table I lists the main numerical parameters used in the

present study to compute the viscosity coefficients. Our
timestep δt = 10−2/ωp is chosen small enough to ensure
excellent energy conservation for all Γ and κ values. In
all simulations, N = 5000 for Γ > 0.5, while N = 50000
was chosen for Γ < 0.5 to ensure high enough collision
ability in the simulation cell.

B. Shear viscosity coefficient

The shear viscosity coefficient, η, was computed using
the Green-Kubo relation that expresses η as the time
integral of the equilibrium autocorrelation function of the
off-diagonal components σxy of the shear stress tensor σ↔

[12],

η =
1

6V kBT

3
∑

x=1

3
∑

y 6=x=1

∫ ∞

0

Jxy(t)dt . (4)

where Jxy(t) is the shear-stress autocorrelation function

Jxy(t) =
〈

σxy(t)σxy(0)
〉

eq
. (5)

In Eq.(4), the brackets
〈

. . .
〉

eq
the denote equilibrium

(thermal) average at temperature T . As shown Ref. [9],
it follows from the Ewald decomposition of the interac-
tion potential that the components of the shear stress
tensor can be conveniently split into a kinetic compo-
nent, a short-range interaction component, and a long-
range interaction component

σ↔(t) = σ↔kin(t) + σ↔sr(t) + σ↔ lr(t) , (6)

where

σ
↔kin(t) =

N
∑

i=1

mvi(t)vi(t) (7)

σ↔sr(t) = −q2

2

N
∑

i6=j=1

∑

n∈Z3

(rij(t) + nL)(rij(t) + nL)

||rij(t) + nL|| φ′
sr(||rij(t) + nL||) (8)

σ↔ lr(t) =
q2

2V

N
∑

i6=j=1

∑

n∈Z3

(

φ̃lr(k)
↔

U +
dφ̃lr(k)

dk

kk

k

)

eik·rij(t) , k =
2π

L
n (9)

in which ri(t) and vi(t) are the instantaneous postion

and velocity of particle i at time t, rij = ri− rj,
↔

U is the

unit dyad tensor, and φ̃lr(k) = 4π e−(k2+κ2
sc)/(4α

2)

k2+κ2
sc

.

C. Typical MD simulation

The simulations were performed as follows. Initial par-
ticle positions were assigned randomly in the simulation
box, with a small region surrounding each particle ex-
cluded to avoid initial explosion. Initial particle veloci-
ties were assigned randomly from a Maxwell-Boltzmann

distribution at the desired temperature. The simula-
tion time consisted of an equilibration phase of length
teq = Neqδt followed by the main MD run of length
trun = Nrunδt, for a total of Neq+Nrun time steps. Dur-
ing the equilibration phase, velocity scaling (also known
as the Berendsen thermostat [11]) was used at every
timestep to maintain the desired temperature. Veloc-
ity scaling was turned off after the equilibration phase,
at which point the simulations transitioned to the main
MD run phase in which particle positions and velocities
were recorded at every timestep.

The viscosity coefficient was evaluated from the Green-
Kubo relation, Eq. (4), as follows. First, σxy(t) was
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FIG. 2: Illustration of the calculation with equilibrium MD of the Green-Kubo expression (4) for the shear viscosity coefficient.
Shown are results for the OCP with κ = 0 and for three different values of the coupling parameter Γ: Γ = 0.5 (upper
row), Γ = 30 (middle row), and Γ = 120 (lower row). Results for the (dimensionless) shear-stress autocorrelation function∑3

x 6=y
〈σxy(t)σxy(0)〉 obtained using Eq.(13) are shown in the left-hand column. Corresponding (dimensionless) cumulated sums

η(t) defined by Eq.(15) are shown in the right-hand column. In each figure, the results corresponding to five different simulation
lengths are shown (in 1/ωp units); the other simulation parameters are listed in table I. In the left-hand side figures, the curves
have been shifted vertically for clarity (the horizontal dashed lines corresponds to the shifted zero of the vertical axis.)

computed using Eqs. (7)-(9) at each time step t = nδt,
0 ≤ n ≤ Nrun using the positions and velocities from the
MD simulation. Second, the shear stress autocorrelation
function (5) was computed by first replacing the thermal

average by a time average

Jxy(τ) = lim
t→∞

J̄xy(t, τ) (10)

≃ J̄xy(trun, τ) (11)
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where

J̄xy(t, τ) :=
1

t− τ

∫ t−τ

0

σxy(s+ τ)σxy(s)ds (12)

and then discretizing in time

J̄xy(trun = Nrunδt, τ = nδt) (13)

≃ 1

Nrun + 1− n

Nrun−n
∑

m=0

σxy((m+ n)δt)σxy(mδt).

Third, the cumulated sum

η(τ = nδt) :=
1

6V kBT

3
∑

x=1

3
∑

y 6=x=1

∫ τ

0

〈

σxy(t)σxy(0)
〉

eq
dt

(14)

≃
n
∑

m=0

δt

6V kBT

3
∑

x 6=y

J̄xy(Nrunδt,mδt) (15)

was calculated. Ideally, according to the Green-Kubo
relation (4), the viscosity coefficient is given by η =
limtrun→∞ η(trun) (neglecting other systematic errors
due to, e.g., size effects, N , force accuracy, etc.) One
expects the sum (14) to converge towards η after a time
longer than the correlation time scale of the correlation
function. Beyond that time, the correlation function van-
ishes and the cumulated sum reaches a plateau value
equal to the viscosity coefficient. In practice, as we shall
see, the convergence to a plateau is quite slow and the ac-
curate determination of the viscosity is impossible unless
one performs very long simulations.
Figure 2 illustrates the method and its convergence for

a Coulomb OCP (κ = 0) at three values of the coupling
parameter across the fluid regime: Γ = 0.5, 30 and 120.
The figures on the left-hand side show the shear-stress au-
tocorrelation function calculated using Eq. (13), those on
the right-hand side show the cumulated sum Eq. (15). In
each case, the results of simulations for four different sim-
ulation lengths are shown, namely trun = t1, 2 t1, 4 t1, 8 t1
and 16 t1 with t1 = 5242.88/ωp, all the other numerical
parameters being identical (see table I). The final results
reported in Sec. III were all obtained using trun = 16t1;
note also that the shortest runs shown here are in fact
longer than the simulation duration ∼ 103 − 104/ωp pre-
viously reported in the literature [6, 9]. For all Γ values,
the autocorrelation function decays toward zero on a time
scale tc ∼ 10′s/ωp, which is much smaller than the simu-
lation time scale since tc ≪ t1. Nevertheless, the length
of the simulation has a significant effect on the noise and,
in turn, on the convergence of the Green-Kubo calcula-
tion. Thus, in all cases, the correlation function obtained
with the shortest MD run trun = t1 never fully vanishes
as time increases: it decays toward zero and then alterna-
tively stays above and below the horizontal axis. When
integrated over time, this leads to a significant noise in
the cumulated sum, which never quite reaches a plateau
value.
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FIG. 3: Illustration of the convergence of the sum rule (16)
with the length of the simulation trun for Γ = 1 (upper panel),
Γ = 20 (middle panel), and Γ = 175 (lower panel). In all cases
κ = 0. Dashed lines represent Eq. (16) evaluated with the g(r)
obtained from the MD simulation, while the dots represents
results of direct calculations of Jxy(0) from the stress tensor.

D. Convergence Study

In this section, we report on the analysis of the speed of
convergence of the calculation that we have undertaken
to select the numerical parameters of table I used to cal-
culate the viscosity coefficients reported in section III.
The goal is to empirically answer the question: how large
should the simulation length trun be in order to attain
the desired accuracy.

1. Initial time behavior

We start with a calculation of the initial value of the
correlation function: Jxy(0) = 〈σxy(t)σxy(t)〉. Accuracy
in the determination of Jxy(0) is important since a shift
in its value would certainly correspond to a shift of the
entire time-evolution, which would lead to error in the cu-
mulated sum and viscosity. We find that although Jxy(0)
is less subject to statistical noise than Jxy(t) for t > 0, it
is sufficient to cause concern. Remarkably, a number of
properties (or “sum rules”) concerning Jxy(0) are known
and can be used to monitor the converge of its numeri-
cal determination. In particular, the following exact sum
rule can be shown

Jxy(0) = N(kBT )
2 (16)

+
2πNnkBT

15

∫ ∞

0

drr3 (g(r)− δκ,0) [4φ
′(r)+ rφ′′(r)]
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.

Alternatively, using unitless quantities σ̃ = σ/(m(aωp)
2)

and ṽ(r) = v(r/a)/kBT ,

J̃xy(0) =
Jxy(0)

[m(aωp)2]2
(17)

=
N

9Γ2
(18)

+
N

90Γ

∫ ∞

0

drr3 [g(r)− δκ,0] [4ṽ
′(r) + rṽ′′(r)].

Figure 3 shows a plot of the evolution of Jxy(0) with
the length of the simulation for a Coulomb OCP at
Γ = 1, 20 and 175. In all cases, the initial value of the
correlation function equals the expected value for simula-
tion lengths greater than t∗ ∼ 6000/ωp. The inaccuracy
grows rapidly when the simulation length lies below this
value. The convergence of the correlation function at
times t ≥ 0 is discussed in the following subsection.
Figure 4 shows the converged results for Jxy(0) as a

function of the coupling strength Γ. Note that this quan-
tity is simply related to the isothermal bulk modulus
G = −V dP

dV = ndP
dn , such that

Jxy(0) = V kBTG. (19)

In the weakly coupled regime, the equation of state is
dominated by the ideal gas, kinetic pressure P = nkBT ,
i.e. G = nkBT and Jxy(0) = N(kBT )

2; accordingly

J̃xy(0) ≃ N
9Γ2 . In the strongly coupled regime, the inter-

action energy dominates the pressure and the MD data
show that J̃xy(0) scales like ∼ N

Γ1.2 .
A more detailed study of the convergence of the initial

value can be obtained by considering the different com-
ponents of the sum rule (16) obtained by substituting the
decomposition (6) in Eq.(5). The first term in Eq. (16)
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corresponds to the kinetic-kinetic contribution

Jkin
xy (0) =

〈

σkin
xy (0)σkin

xy (0)
〉

eq
= N (kBT )

2. (20)

As shown in the appendix, the direct evaluation of
Jkin
xy (0) using Eq. (13) in an MD simulation amounts to

calculating

Jkin
xy (0) ≃

[

2

trun

∫ trun

0

N
∑

i=1

1

2
mvx,i(t)

2dt

]

×
[

2

trun

∫ trun

0

N
∑

i=1

1

2
mvy,i(t)

2dt

]

+ cross term. (21)

where the full expression for the cross term is given in
Eq.(A1). In the large trun limit, the first term, which
is related to the product of the averaged instantaneous

kinetic energy
∑N

i=1
1
2mvx,i(t)

2, is expected to converge
to the exact result (20), while the remaining cross term
is expected to vanish. In a MD simulation, the instanta-
neous kinetic energy fluctuates around the target velocity
and the first term rapidly converges with trun to its limit
value. On the contrary, the cross term, which involves
contributions that are quartic in the velocities, does not
converge as fast as the kinetic energy to its limit value,
which is quadratic in the velocities. This is illustrated in
Fig. 5 (top panel): the value of (21) converges to the ex-
pected value at large enough trun beyond which the cross
terms are negligibly small compared to the first term.
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We now discuss the term involving the interaction only,

Jpot
xy (0) :=

〈 [

σsr
xy(0) + σlr

xy(0)
] [

σsr
xy(0) + σlr

xy(0)
] 〉

eq
(22)

=
2πN

15
nkBT

∫ ∞

0

drr3g(r) [4φ′(r) + rφ′′(r)]

The later can actually be further broken into two com-
ponents; for instance [13],

Jsr
xy(0) :=

〈

σsr
xy(0)

[

σsr
xy(0) + σlr

xy(0)
] 〉

eq
(23)

=
2πN

15
nkBT

∫ ∞

0

drr3g(r) [4φ′
sr(r) + rφ′′

sr(r)].

(24)

Figure 5 shows the convergence of Jsr
xy(0) with the simu-

lation length trun toward the exact value Eq.(24). Again
we find that long trun must be used to ensure conver-
gence.
Finally, the kinetic-potential term

Jkin−pot
xy (0) :=

〈

σkin
xy (0)

[

σsr
xy(0) + σlr

xy(0)
] 〉

eq
(25)

=
〈 [

σsr
xy(0) + σlr

xy(0)
]

σkin
xy (0)

〉

eq

= 0 . (26)

In practice, the term is negligibly small for long enough
simulation length trun.
In conclusion, the initial value of the correlation func-

tion converges relatively slowly towards its expected
value; simulations longer than t∗ are necessary to repro-
duce the expected value. The slow convergence is found
to be caused by cross terms that vanish in the ideal limit
but are finite in practice.

2. Finite time correlation function

The initial time correlation function determines a lower
bound, t∗, for the simulation length needed to calculate
the viscosity coefficient. However, Fig. 2 shows that this
is far too short to obtain the accurate correlation func-
tions necessary to evaluate the viscosity coefficient. The
intermediate time dynamics of Jxy(t) does not converge
as fast as the short-time dynamics, which leads to large
variations in the evaluation of the viscosity coefficient.
As a consequence, the cumulated sum does not reach a
plateau value at time t∗. It is noteworthy that the time
t∗ is actually larger than the simulation lengths used in
previous studies [9]. Figure 2 reveals that satisfying con-
vergence can be achieved for simulation times on the or-
der of ∼ 16t∗, corresponding to over 8 million time steps
for δt = 0.01/ωp.
In order to understand this behavior, we employ the

statistical error analysis of Zwanzig and Ailawadi [11, 14].
Zwanzig and Ailawadi gave an error estimate for the de-
viation between the shear-stress autocorrelation function
at time t obtained with an MD simulation of finite length
trun, and its exact value J̄xy(∞, t)

∆(t) = J̄xy(trun, t)− J̄xy(∞, t); (27)

see Eq. (12). To this end, they assumed that σxy(t) is a
Gaussian random variable (average denoted by 〈. . . 〉 be-
low), which was shown to give the correct order of magni-
tude of error estimates [11, 15]. Under this assumption,
they arrived at the result

〈∆(t1)∆(t2)〉 ≃ 2τc
trun

J̄xy(∞, 0)2 (28)

with 0 ≤ t1, t2 ≤ τc ≪ trun

where

τc = 2

∫∞

0
dt Jxy(t)

2

Jxy(0)2
(29)

measures the relaxation time within which the exact cor-
relation function J̄xy(∞, t) decays to zero from its initial
value. Applying Eq. (28) with t = t1 = t2 shows that
the absolute error 〈∆(t)2〉 in Jxy(t) is independent of t.
Therefore, the relative error

〈

[

J̄xy(trun, t)− J̄xy(∞, t)
]2
〉

J̄xy(∞, t)2
≃ 2τc

trun

[

J̄xy(∞, 0)

J̄xy(∞, t)

]2

(30)

increases rapidly as J̄xy(∞, t) goes to 0 [11]. Equation
(30) shows that this increase in the relative error can be
lessened by increasing the simulation length trun. This is
indeed consistent with the results in Fig. 2 for trun = t1
and trun = 2t1, although the initial value of the corre-
lation function has converged to its expected value, the
values at later times t ≤ τc are not converged. This
noise is reduced when the simulation length is increased
to 16t1.

III. FINAL RESULTS

The shear viscosity coefficients obtained using the
method described in section II, along with the numer-
ical parameters collected in table I, are shown in figure 6
for κ = 0 and κ = 2. Also shown are the data of Donkó
and Hartmann, obtained from non-equilibrium MD for
κ = 2 (see table I in [5]) and the data of Bastea obtained
from equilibrium MD for κ = 0 (we plot the fitting for-
mula (11) of [6]). For convenience, the numerical values
are given in table II for κ = 0 and in table III for κ = 2.
We highlight the following important features of the

present results.
(1) In Fig. 6, the data at κ = 2 are compared with the
results of Donkó and Hartmann obtained using two in-
dependent non-equilibrium molecular dynamics calcula-
tions [5]. We find very good agreement between all three
independent calculations. For κ = 0, our data are in very
good agreement with Bastea’s fit, which was obtained by
interpolating MD data over 0.05 ≤ Γ ≤ 100 [6]; see Fig. 7.
(2) As shown in Fig. 7, for all Γ < 10, the viscosity coef-
ficient of the coulomb OCP (κ = 0) is well approximated
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Γ η/(mna2ωp) Γ η/(mna2ωp) Γ η/(mna2ωp)

0.1 75.2 20 0.084 75 0.152

0.5 3.6907 21 0.084 80 0.160

0.7 2.1546 23 0.085 85 0.168

1 1.1831 25 0.085 90 0.176

2 0.4440 27 0.086 95 0.184

3 0.2755 30 0.088 100 0.191

4 0.1928 32 0.089 105 0.199

5 0.1713 35 0.092 110 0.207

7 0.1345 40 0.097 115 0.214

10 0.101 45 0.102 120 0.222

12 0.0953 50 0.110 130 0.236

15 0.0864 55 0.119 140 0.251

17 0.083 60 0.128 175 0.3209

18 0.0830 65 0.136 200 0.4400

19 0.0810 70 0.144

TABLE II: Shear viscosity coefficient η of the one-component
plasma with κ = 0 at various coupling parameters Γ as ob-
tained with the molecular dynamics simulations described in
the main text. Data are shown in units of mna2ωp.

by

η = η0
δ

ln
(

1 + C λD

rL

) (31)

where η0 =
5

4

√

m

π

(kBT )
5/2

q4
, λD =

√

4πq2n/kBT is the

Debye length, and rL = q2/kBT is the so-called distance
of closest approach. Here δ = 0.466 and C = 1.493 are
numerical parameters determined by interpolating the
numerical data. The model (31) represents a straight-
forward modification of the traditional Landau-Spitzer
(LS) formula [16]

ηLS = η0
1

ln
(

λD

rL

) (32)

derived for weakly-coupled plasmas. Indeed, in the

weakly-coupled limit, Eq.(31) reduces to δη0/ ln
(

C λD

rL

)

.

In the LS theory, the Coulomb logarithm ln
(

λD

rL

)

arises

from the long-range nature of the Coulomb force. It
is usually expressed in terms of the Debye length λD

(which represents the largest impact parameter beyond
which interactions are screened out), and of the distance
rL (which characterizes the smallest impact parameter).
Our MD simulations reveal that, while the LS theory
provides the right scaling at Γ << 1, the model must be
corrected through the coefficients C and δ to match the
data. The coefficient C is a correction to the somewhat
arbitrary parameters λD and RL, which can be predicted
by more advanced theories ([18] and literature therein).
The prefactor δ is a correction to the fact that LS cor-
responds to a single Sonine polynomial approximation

Γ η/(mna2ωp) Γ η/(mna2ωp) Γ η/(mna2ωp)

2 0.8638 102 0.0654 242 0.1117

12 0.1170 112 0.0665 262 0.1170

32 0.0619 122 0.0736 282 0.1242

42 0.0584 132 0.0728 302 0.1296

52 0.05572 142 0.0742 322 0.1316

62 0.0562 162 0.0840 342 0.1426

72 0.05882 182 0.0906 362 0.1478

82 0.0575 202 0.0955 382 0.1550

92 0.0637 222 0.1003 402 0.1571

TABLE III: Shear viscosity coefficient η of the one-component
plasma with κ = 2 at various coupling parameters Γ as ob-
tained with the molecular dynamics simulations described in
the main text. Data are shown in units of mna2ωp.

in the Chapman-Enskog solution of the plasma kinetic
equation. Figure 7 shows that the modified LS result

δη0/ ln
(

C λD

rL

)

breaks down at Γ ∼ 0.1, while the simple

modification (31) extends its validity to the moderately
coupled regime up to Γ ∼ 10. Remarkably, the same ex-
tension of the LS theory was found to work as well for
other transport processes, including the electron-ion tem-
perature relaxation rate [17] and the diffusion coefficients
in mixtures [19].
(3) The curve η∗(Γ) presents a shallow minimum that
is located in the range 18 ≤ Γ ≤ 20. A more precise
determination of the minimum is not possible with the
accuracy of the present data.
(4) At high Γ, the viscosity η and the self-diffusion coef-
ficient D satisfy the Stokes-Einstein relation

πa

kBT
Dη = 0.087 ± 2% for Γ ≥ 50 , (33)

for κ = 0. For a detailed discussion on the Stokes-
Einstein and its physical interpretation, see [4].
(5) Finally, we provide a practical fit that reproduces
the viscosity coefficient across coupling regimes, from the
weakly coupled regime to the solid-liquid transition, in
the form

η∗(Γ) =
η

mna2ωp

=
a

Γ5/2 ln
(

1 + b
Γ3/2

)

1 + a1Γ + a2Γ
2 + a3Γ

3

1 + b1Γ + b2Γ2 + b3Γ3 + b4Γ4

(34)

In Eq.(34), we enforce the model (31) valid for Γ < 10
and approximate the remainder with a Padé (rational
fraction) approximation. As seen in Fig. 7, the formula
(34) together with the parameters listed in table IV is
very accurate across the entire fluid regime.
We also compare our fit (34) with that proposed

by Bastea [6], namely η∗ = 0.482/Γ2 + 0.629/Γ0.878 +
0.00188Γ, and obtained by fitting his MD data over the
range 0.05 ≤ Γ ≤ 100. While the later is quite accurate
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FIG. 6: (color online) Shear viscosity coefficient across the
fluid phase of the one-component plasma at κ = 0 (blue open
dots) and at κ = 2 (black full dots) obtained with the equilib-
rium MD simulations described in the text. The lines between
the dots are included to guide the eyes. At κ = 2, the red dots
show the non-equilibrium MD results of Donkó and Hartmann
[5].

at moderate and strong coupling, it fails to reproduce
the traditional Landau-Spitzer behavior in the weakly
coupled regime.

IV. COMPARISON TO THEORETICAL

MODELS

In the previous section, we compared the MD results
with the seminal theory of Landau-Spitzer. In this sec-
tion, we test the validity of theories that have been devel-
oped to predict the viscosity coefficients of the Coulomb
OCP (κ = 0) in the moderately and strongly cou-
pled regime, namely the theory of Vieillefosse-Hansen,
the kinetic theories of Wallenborn-Baus and of Tanaka-
Ichimaru, and the recent effective potential theory of
Baalrud-Daligault.

The predictions of these theories are compared with
our new MD results in Fig. 8. In the following, we briefly
recall some basic facts about the various theories and
discuss their validity with regard to the comparison with
the MD results.

a b a1 a2 a3

0.794811 0.862151 0.0425698 0.00205782 7.03658e-05

b1 b2 b3 b4

0.0429942 -0.000270798 3.25441e-06 -1.15019e-08

TABLE IV: Fitting parameters to be used in Eq.(34).
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FIG. 7: (color online) Comparison of the MD data (dots)
with the fitting formula Eq.(34). The red line shows the
full expression (34), the green dashed line shows the LS
limit η∗(Γ) = a

Γ5/2 ln
(

b

Γ3/2

) , the blue line shows Eq.(31), i.e.

η∗(Γ) = a

Γ5/2 ln
(

1+ b

Γ3/2

) , the black dashed line shows the

formula of Bastea [6].

A. The Vieillefosse-Hansen theory

Vieillefosse and Hansen [3] applied the framework of
the generalized hydrodynamics formalism. Briefly, the
known short-time expansion of the transverse-current au-
tocorrelation function C⊥(k, t) up to fourth-order in time
t was used to build a Gaussian approximation of the
memory function associated to C⊥. The coefficients of
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FIG. 8: (color online) Comparison of the MD results for the
shear viscosity coefficient with the corrected Landau-Spitzer
prediction discussed in Sec.III, the theory of Vieillefosse-
Hansen, the kinetic theories of Wallenborn-Baus and of
Tanaka-Ichimaru, and the effective potential theory of
Baalrud-Daligault. See main text for a detailed comparison.
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the Gaussian approximation depended on the first three
frequency sum-rules of C⊥ that can be exactly written
in terms of the pair distribution function g(r) and of
the ternary distribution function g3(r, r

′). Using the su-
perposition approximation to express g3 in term of g,
the theory of Vieillefosse-Hansen depends on the pair
distribution g only. Figure 8 displays the results re-
ported in Table III of the original paper [3]. Remark-
ably the predicted viscosity exhibits a minimum as a
function of Γ around Γ = 20. At Γ = 20, Vieille-
fosse and Hansen give for the reduced viscosity coefficient
η∗ = 0.0781±0.004, which is in good agreement with our
MD result η∗ = 0.084 reported in Table II. However, this
good agreement may be fortuitous since, as seen in Fig. 8,
the Vieillefosse-Hansen model greatly underestimate the
viscosity at all other values of Γ.

B. The Wallenborn-Baus theory

Wallenborn and Baus applied the framework of renor-
malized equilibrium kinetic theory, a general kinetic the-
ory of phase-space correlation functions, to derive an an-
alytical model for the shear-viscosity coefficient [8]. In
this framework, the shear-viscosity coefficient can be ex-
actly expressed in terms of the only unknown of the the-
ory, the so-called generalized memory function. They de-
rived a sophisticated approximation for the latter that,
by construction, attempts to account for (i.e. renormal-
ize) the correlated motion of ions. Their approximation
reduces to the Lenard-Balescu collision operator when all
the quantities involved in the memory function (e.g., the
direct correlation function) are approximated by their
weakly-coupled limiting values. They then used their
approximate memory function to calculate the shear-
viscosity coefficient across coupling regimes. The val-
ues of the shear-viscosity coefficient given in the original
paper [8] are displayed in Fig. 8. At weak coupling, the
Wallenborn-Baus theory agrees with the MD data, which
is consistent with the fact that the theory reduces to the
Lenard-Balescu result with corrections due to short-range
correlations, which determine the correction factor C in
the Coulomb logarithm (see Sec. III). This theory does
predict a minimum of the reduced viscosity coefficient
with a value η∗ = 0.007 in fair agreement with the simu-
lations, but at a coupling strength Γ ≈ 8, which is below
the MD value of ≃ 20.

C. The Tanaka-Ichimaru theory

Tanaka and Ichimaru obtained a model for the shear
viscosity coefficient by applying the framework of non-
equilibrium kinetic theory, i.e. a theory for the tempo-
ral evolution of the non-equilibrium single-particle phase-
space distribution functions f(r,p, t). Using quasi-linear
theory, they postulate an expression for the collision op-
erator by introducing the notion of static local field cor-

rection G(k), a quantity that accounts for static correla-
tions between particles. Their collision operator is

CI(f, f) = πm

∫

d3k

(2π)3
k · ∂

∂p

∫

d3p′
v2(k)[1−G(k)]

|ǫ(k,k · p/m)|2

× δ[k · (p− p′)]k ·
(

f(p′)
∂f

∂p
− f(p′)

∂f

∂p′

)

, (35)

where ǫ(k, ω) = 1 − v(k)[1 − G(k)]χ(0)(k, ω) is the

plasma dielectric function, v(k) = 4πe2

k2 , and χ(0)(k, ω) =

−
∫

d3pk·∂F/∂p
ω−k·v

the density response function of the ideal
gas, and F the Boltzmann distribution function at tem-
perature T and density n. In traditional weakly coupled
plasma physics, correlations are neglected, i.e. G(k) is set
to zero, and Eq. (35) reduces to the Lenard-Balescu colli-
sion operator. By applying the Chapman-Enskogmethod
to lowest order in the Sonine polynomial expansion, the
following expression for the viscosity coefficient can be
obtained [20]

ηTI = η0
1

ΞTI
. (36)

Here, the generalized Coulomb logarithm

ΞTI =
2√
π

∫ ∞

0

dk
[1−G(k)]

k

∫ ∞

0

dz
e−z2

|ǫ(k, kvT z)|2
(37)

arises, where vT =
√

kBT/m. This can be compared
with Eq. (32).
Tanaka and Ichimaru have presented results for ηTI

using Eq. (37) with a local-field correction obtained by
solving the modified hypernetted chain (HNC) equations
with the bridge function correction of Ichimaru [20, 21].
The HNC equation gives access to the direct correlation
function c(k), which provides G(k) = 1 + kBT

v(k) c(k). Ref-

erence [20] provides results for 0.1 ≤ Γ ≤ 20. We have
evaluated ηTI using the same modified HNC equations,
including Ichimaru’s bridge function, for a wider range of
values; see Fig. 8. This method agrees well with the MD
data for Γ <∼ 10. At Γ ≃ 22.4, ΞTI crosses from positive
to negative values, leading to a divergence of ηTI .
The Tanaka-Ichimaru theory reduces to traditional

plasma physics results in the weakly coupled limit. The
simplest (Landau-Spitzer) plasma limit can be obtained
by setting G(k) ≡ 0 (i.e., no correlations) and ǫ(k, ω) ≡ 1
(i.e., no screening). Then, ΞTI reduces to the traditional

Coulomb logarithm lnΛ = ln
(

λD

rL

)

when the usual cut-

offs λD and rL (see Sec. III) are used to regularize the
k-integral in Eq. (37). The Lenard-Balescu result is ob-
tained by setting G(k) ≡ 0 but keeping the dielectric
function ǫ̃. In this case, the k-integral converges at k = 0
but a cutoff is necessary to regularize the remaining diver-
gence at k = ∞. This case was worked out by Braun [22],
who expressed the result as a correction to the Landau-
Spitzer viscosity coefficient as

ηLB =
ηLS

1 + 0.346/ ln
(

λD

rL

) . (38)
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FIG. 9: (color online) Comparison between the local field
correction obtained from the hypernetted chain (HNC) ap-
proximation, and Eq. (39) for weakly coupled OCP.

Alternative to these cutoffs, simple results for the lo-
cal field correction can be obtained in the weakly coupled
limit that allow analytic evaluation of the convergent in-
tegral in Eq. (37). Figure 9 shows that

1−G(k) = exp(−Γka) (39)

provides a good approximation for the OCP local field
correction in the weakly coupled limit. If we also take
the static dielectric function ε̃ = 1 + 3Γ[1−G(k)]/(ka)2

and note that the local field correction is negligible in
this for weakly coupled plasmas [ε̃ ≃ 1 + 3Γ/(ka)2], we
find

ΞTI ≃
∫ ∞

0

dk̄
k̄ exp(−Γk̄)

k̄2 + 3Γ
(40)

=
1

2

[

E1(i/Λ)e
i/Λ + E1(−i/Λ)e−i/Λ

]

in which Λ = 1/(
√
3Γ3/2) = λD/rL is the OCP plasma

parameter and E1 is the exponential integral. Expanding
for Λ ≫ 1 gives

ΞTI → ln Λ− γ +O(Λ−1) (41)

where γ is Euler’s constant. Note that Eq. (41) is the
same result, including the order unity correction, as has
been obtained from other methods, including using the
screened Coulomb potential in the effective potential the-
ory ([18] and references therein).

D. The effective potential theory

Recently, we proposed another approach for extending
traditional plasma transport theories into the strong cou-
pling regime [18, 23]. Like traditional plasma theories,

this is based on a binary scattering approximation, but
where physics associated with many body correlations is
included through the use of an effective interaction po-
tential. This effective interaction potential was related
to the potential of mean force, which is the interaction
potential between two particles taking all surrounding
particles to be at fixed positions. Like the other theo-
ries previously discussed, this also requires only the pair-
distribution as input. Figure 8 shows that this approach
is accurate across coupling regimes up to approximately
the minimum in the viscosity coefficient.
Breakdown of the effective potential theory arises at

sufficiently strong coupling that the potential compo-
nent of the viscosity dominates. This is expected be-
cause transport theories based on binary collisions only
account for changes in the particle momenta, so they can
at most describe the kinetic contribution. This is shown
in detail in Fig. 10. This figure shows the kinetic-kinetic
and potential-potential terms of the viscosity computed
from MD using components of Jxy(t) based on σ↔kin and
σ↔pot = σ↔sr+σ↔ lr. We found that the cross terms (kinetic-
potential and potential-kinetic) were negligible across the
domain.
For the theoretical evaluation, the viscosity was com-

puted from the Chapman-Enskog relation

η∗1 =
5
√
π

3
√
3Γ5/2Ξ(2,2)

(42)

where Ξ(2,2) was obtained using the method of [18, 23]
inputing a pair distribution function calculated from the
HNC approximation (no bridge function was included for
the HNC computations used here). Figure 10 shows that
this theory accurately tracks the kinetic-kinetic term,
but contains no information about the potential-potential
term. This is similar to how binary collision operators
predict only the ideal gas component of the equation of
state, whereas an additional term dependent on the pair
distribution is required to describe the potential contri-
bution at strong coupling. The effective potential theory
breaks down at sufficiently strong coupling even for trans-
port coefficients that do not have potential components,
such as diffusion or temperature relaxation rates [18, 23],
but the inaccuracy beyond this threshold is not as severe
for these coefficients.

V. SUMMARY

We have carried out a detailed study of the calcula-
tion of the shear viscosity coefficient of one-component
plasmas with equilibrium MD simulation in order to in-
dependently validate the non-equilibrium MD results of
[5] for κ > 0 and the equilibrium MD simulations of [6].
We have presented a convergence study of the Green-
Kubo relation to determine optimal simulation parame-
ters and, in turn, produce accurate viscosity coefficients.
Finally, we have compared the accurate data to various
sophisticated theoretical predictions.
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Appendix A: Kinetic-kinetic term

The inital value of the kinetic-kinetic contribution to
the shear stress correlation function is

〈

σkin
xy (0)σkin

xy (0)
〉

eq
= lim

t→∞
J̄kin
xy (t)

where
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J̄kin
xy (t) =

1

t

∫ t

0

N
∑

i=1

mvx,i(s)
2
∑

j=1

mvy,j(s)
2ds+

1

t

∫ t

0

ds

N
∑

i6=j=1

m2vx,i(s)vx,j(s)vy,i(s)vy,j(s)ds

=

[

1

t

∫ t

0

N
∑

i=1

mvx,i(s)
2ds

][

1

t

∫ t

0

N
∑

i=1

mvy,i(s)
2ds

]

+ cross terms(t)

and

cross terms(t) =
1

t

∫ t

0

[

N
∑

i=1

mvx,i(s)
2 − 1

t

∫ t

0

N
∑

i=1

mvx,i(s)
2ds

]

×
[

N
∑

i=1

mvy,i(s)
2 − 1

t

∫ t

0

N
∑

i=1

mvy,i(s)
2ds

]

ds

+
1

t

∫ t

0

N
∑

i6=j=1

m2vx,i(s)vx,j(s)vy,i(s)vy,j(s)ds (A1)

In the limit t → ∞,

[

1

t

∫ t

0

N
∑

i=1

mvx,i(s)
2ds

][

1

t

∫ t

0

N
∑

i=1

mvy,i(s)
2ds

]

= (NkBT )(NkBT )

and

cross terms(t) = 0


