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Abstract

Electrons are weakly coupled in hot, dense matter that is created in high-energy-density (HED)

experiments. They are also mildly quantum mechanical and the ions associated with them are

classical and may be strongly coupled. In addition, the dynamical evolution of plasmas under

these hot, dense matter conditions involve a variety of transport and energy exchange processes.

Quantum kinetic theory is an ideal tool for treating the electrons but it is not adequate for treating

the ions. Molecular dynamics is perfectly suited to describe the classical, strongly coupled ions

but not the electrons. We develop a method that combines a Wigner kinetic treatment of the

electrons with classical molecular dynamics for the ions. We refer to this hybrid method as “kinetic

theory molecular dynamics,” or KTMD. The purpose of this paper is to derive KTMD from first

principles and place it on a firm theoretical foundation. The framework that KTMD provides

for simulating plasmas in the hot, dense regime is particularly useful since current computational

methods are generally limited by their inability to treat the dynamical quantum evolution of the

electronic component. Using the N -body von Neumann equation for the electron-proton plasma,

three variations of KTMD are obtained. Each variant is determined by the physical state of

the plasma (e.g. collisional versus collisionless). The first variant of KTMD yields a closed set

of equations consisting of a mean-field quantum kinetic equation for the electron one-particle

distribution function coupled to a classical Liouville equation for the protons. The latter equation

includes both proton-proton Coulombic interactions and an effective electron-proton interaction

that involves the convolution of the electron density with the electron-proton Coulomb potential.

The mean-field approach is then extended to incorporate equilibrium electron-proton correlations

through the Singwi-Tosi-Land-Sjolander (STLS) ansatz. This is the second variant of KTMD. The

STLS contribution produces an effective electron-proton interaction that involves the electron-

proton structure factor, thereby extending the usual mean-field theory to correlated but near

equilibrium systems. Finally, a third variant of KTMD is derived. It includes dynamical electrons

and their correlations coupled to a MD description for the ions. A set of coupled equations for

the one-particle electron Wigner function and the electron-electron and electron-proton correlation

functions are coupled to a classical Liouville equation for the protons. This latter variation has

both time and momentum dependent correlations.

PACS numbers:
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I. INTRODUCTION

The arrival of new high energy density (HED) physics facilities, such as the National Ig-

nition Facility (NIF) [1], and next-generation light sources, such as the Linac Coherent Light

Source (LCLS) [2], has enabled experiments on matter in the warm to hot dense regimes.

The design and analysis of these experiments have necessarily motivated the development

of new computational approaches [3]. Because of the short time scale associated with the

laser-matter interaction, the materials are created in non-equilibrium states. While molec-

ular dynamics is a well-established computational method for describing non-equilibrium

dynamics of classical systems [4–7], no quantum analog exists today. In this paper, we

present a formalism that provides a basis for such a method.

Hot dense matter (HDM) is characterized by temperatures ranging from hundreds of

eV to a few hundred keV and densities ranging from tenths to hundreds of gm/cc [8–10].

Hot dense matter conditions occur in stellar cores, Z-pinch, and inertial confinement fusion

experiments. These experiments frequently involve non-equilibrium states where multi-

ion species undergo thermonuclear burn, collisional, radiative and atomic processes [9, 10].

Examining the plasma coupling parameter Γ [11, 12], and the degeneracy parameter Θ

Γij =
ZiZje

2

kTaij
(1)

Θ = EF/kT (2)

Where Zi is the effective ionization of species “i”, “e” is the electron charge, k is Boltz-

mann’s constant, T is the temperature of the plasma and aij is the multi-species ion sphere

radius of species “i” and “j”.

aij = (ai + aj)/2 (3)

Low-Z species in multi-ionic HDM tend to be weakly coupled (Γ ≪ 1) while higher Z

species can be strongly coupled (Γ ≥ 1). Electron degeneracy is not a concern for the

density and temperature conditions we consider. This means that, for densities of 10 gm/cc,

temperatures must be higher than 120 eV, and for densities on the order of 100 gm/cc,

temperatures must be in excess of 560 eV.
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Although degeneracy is not an issue, electrons in HDM do exhibit a quantum character-

istic: diffraction. At large distances, Debye screening occurs as a result of classical collective

effects. At small distances, the relevant scale that characterizes close encounter Coulomb

collisions between electrons and protons and electrons and electrons is the thermal de Broglie

wavelength. We will refer to the fact that the electrons in HDM exhibit both classical and

quantum behavior as the classical-quantum dichotomy. Additional quantum effects such as

atomic transitions and thermonuclear burn can also be present.

HED experiments are challenging because of the extreme nature of the conditions (hun-

dreds of eV to tens of keV in temperature, densities of many gm/cc, and pressures in the

megabar to gigabar regime) and the complicated diagnostics and experiments required to

obtain high-quality data [2, 13, 14]. Radiation-hydrodynamic codes are used to model the

experiments [13, 14] and are an essential tool in the design process. The codes themselves

rely on theoretical models that have rarely been experimentally validated in HDM regimes.

Recently, researchers have turned to Molecular Dynamics (MD) to validate by simulation,

a variety of radiation-hydrodynamic code models [3]. MD has turned out to be a useful

and very powerful approach to validating models in radiation-hydrodynamic codes. The

most recent examples include electron-ion coupling [15–20], stopping power [21], screening

of thermonuclear burn [22], and diffusivity [23].

MD methods rely on classical equations of motion to describe the evolution of a many-

body system. Given a set of inter-particle potentials, particle positions and momenta evolve

in time according to Newton’s equations of motion. When applied to HDM, MD maps

the quantum many-body system onto a classical many-body system by using an effective

force between particles. Depending on the application, MD can employ Born-Oppenheimer

methods [24, 25] (e.g., ionic diffusivity) or it may include dynamic electrons explicitly [3, 15–

19, 26, 27] (e.g., electron-ion coupling). The emphasis of this paper is on the latter approach

where dynamical electrons are important. Currently, all classical MD methods with explicit

electrons use quantum statistical potentials (QSP) [28–38] to capture the classical-quantum

dichotomy and to model electron and ion dynamics and their interactions. The wave packet

MD methods (WPMD) are the exception [39–43]. However, they suffer from wave packet

spreading and are less popular than traditional MD methods that use QSP and we do

not consider them further. QSP capture the short-distance diffraction and interference

properties while at the same time retaining the long-distance classical behavior of Coulomb
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potentials. Hence, QSP have been and continue to be the workhorse of MD simulations for

HDM. However, the use of these potentials is proven only for MD simulations of equilibrium

phenomena like equation-of-state while many of the applications of interest for HDM are

non-equilibrium (e.g. electron-ion coupling and ion stopping). Some investigations into

HDM non-equilibrium processes have recognized this difficulty and attempted to avoid the

problem by running simulations with like charge electrons and ions ([16]). A great deal

of progress in the theoretical understanding of hot dense plasmas has been gained by this

approach. Unfortunately, a like charge plasma will not tell us about the quantum behavior

at small length scales that characterizes HDM. Even though MD with explicit dynamical

electrons continues to be applied to HDM, the classical-quantum dichotomy described above

continues to be an unsolved problem. The purpose of the work presented in this paper is to

propose an alternative approach.

To overcome the classical-quantum dichotomy and the reliance of MD on QSP, Murillo

suggested a quantum kinetic theory-molecular dynamics hybrid which we call kinetic the-

ory molecular dynamics (KTMD) [3]. KTMD uses quantum kinetic theory to describe the

electron dynamics and MD to describe the classical ion dynamics. Why use quantum ki-

netic theory to describe the electron dynamics? First, kinetic theory is the simplest way to

represent the many electron system with a time-dependent equation in phase space. Sec-

ond, quantum kinetic theory automatically accounts for quantum diffraction at small length

scales. Third, kinetic theory is flexible in that many variants exist for specific scenarios (e.g.

quantum Vlasov for collisionless versus quantum Landau for weakly collisional). Fourth, we

retain the possibility for fully non-equilibrium distributions. Finally, the KTMD equations

are meant to be used in a computer code. There exists a vast resource of methods developed

for numerically solving plasma, radiation, charged-particle and neutron transport/kinetic

equations. Numerically solving the KTMD equation leverages the existing numerical solu-

tion methods from the MD and transport communities.

The purpose of this paper is to derive KTMD from first principles and place it on a firm

theoretical foundation. Recently, Michta, Graziani and Surh [44] used reduction operators

to derive a classical version of mean-field KTMD from the Liouville equation. The electronic

structure in classical KTMD was computed numerically for a given proton configuration and

was shown to compare favorably with the results taken from an MD code where the electrons

were explicitly treated.
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In this paper, we derive KTMD from a fundamental non-relativistic quantum mechanical

description of the many-body problem using the N-body von Neumann equation for the

electron-proton plasma, where N = ne + np, is the sum of the electron and proton numbers

andN is the total number of particles in the plasma. The simplification to an electron-proton

plasma is merely to make the presentation easier to follow. The derivation presented in this

paper can be easily extended to multiple ion species. We show how the N-body von Neumann

equation can be mapped to an np classical Liouville equation with both classical proton-

proton Coulomb interactions and an effective electron-proton interaction and a one-particle

quantum electron kinetic equation. The effective electron-proton interaction includes both

the mean-field contribution and a contribution resulting from correlations. Ludwig and

collaborators [45] have recently considered a similar approach where they treat the ions

exactly with MD and an effective ion-ion potential that is dynamically screened by the

electrons. A consequence of the derivation of KTMD presented here is that the method does

not rely on assumed inter-particle potentials such as QSP. Instead, inter-particle potentials

in KTMD are a derived quantity, fully consistent with the dynamics. Assumptions regarding

the equilibrium nature of the plasma are not needed within KTMD.

II. KINETIC THEORY MOLECULAR DYNAMICS AND TRADITIONAL

MOLECULAR DYNAMICS METHODS

Molecular dynamics methods can be categorized as either All-Particle-MD (APMD) or

Ion-Only-MD (IOMD). APMD treats all particles, electrons and ions, as classical point

particles [6] (again, WPMD being the exception). When dynamical electrons need to be

simulated, for example, electron-ion coupling, ion stopping in a two component plasma or

ionization processes, APMD is used [3, 19, 26, 46, 47]. APMD offer the benefits of robustness

and the ease of implementation since they rely only on solving Newton’s equations of motion

with a fairly simple two-body QSP for all electrons and ions. APMD map the quantum

many-body problem onto a classical many body problem using QSP. Unfortunately, the

mapping is only proven for equilibrium many body systems [28, 30–32, 38]. .

IOMD methods treat only the ion dynamics with MD. Electronic structure is computed

by another method. A commonly used IOMD is Yukawa-MD [48–50] where the ions interact

with each through an imposed screened potential. Quantum Molecular Dynamics (QMD) is
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a more advanced IOMD that is also commonly used. In QMD the electronic structure is typi-

cally computed using density functional theory (DFT) [51, 52]. Both Yukawa-MD and QMD

are examples of IOMD where the Born-Oppenheimer approximation is invoked. Viscosity

[49, 50] and conductivity [53, 54] are physical processes that are commonly computed us-

ing Yukawa-MD and QMD. Recent efforts extending IOMD beyond the Born-Oppenheimer

approximation have been made [55, 56]. However, as a general rule the current implemen-

tations of IOMD use the Born-Oppenheimer approximation. QMD methods for computing

electronic structure are applicable to warm dense matter where the electrons are degenerate

and strongly coupled, temperatures are in the eV range and densities vary from 0.1 to 10.0

times solid density. Yukawa-MD methods have been applied to both warm and hot dense

matter.

KTMD is an example of an IOMD. Like Yukawa-MD and QMD, the electronic structure

is computed using a technique other than MD. However, KTMD is different from Yukawa-

MD and QMD. The Born-Oppenheimer approximation is not used. Instead, KTMD com-

putes the time-evolving electronic structure for electrons self-consistently using a quantum

kinetic equation. Unlike Yukawa-MD, where a Yukawa potential is imposed, KTMD spec-

ifies the nature of the electron-ion interaction through a self-consistent description of the

high temperature many-body dynamics. For example, in the mean-field approximation,

KTMD computes a self-consistent screening potential through which the ions interact. The

self-consistent screening potential depends on the time-evolving local electron density. In

addition, quantum diffraction is included.

Unlike QMD, KTMD is designed for high temperatures where the electrons are dynam-

ical, weakly coupled and where kinetic theory is an accurate description of the electronic

structure. At high temperatures where the electrons exhibit a classical-quantum dichotomy,

KTMD uses a quantum kinetic equation that includes classical collective effects that give

rise to screening in addition to quantum diffraction.

III. THE PLASMA VON NEUMANN EQUATIONS

The von Neumann equation [57, 58] is the quantum analog of the Liouville equation. It

describes the evolution of the Wigner transform of the density operator and it represents a

full description of the many-particle dynamics of the quantum system. The KTMD method
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is based on being able to map the N-particle von Neumann equation to a classical np proton

Liouville equation with proton-proton and effective proton-electron inter-particle potentials,

and a set of quantum kinetic equations for the electrons. In the paper, we demonstrate that

such a mapping can be done. We begin with the von Neumann equation for the Wigner

transform of the s-particle density operator, which exhibits a BBGKY hierarchy. A set of

simple scaling laws along with an expansion in powers of the electron to proton mass ratio,

allows us to transform the np-proton von Neumann equation into a form that looks like the

classical np-proton Liouville equation.

A few assumptions are made in the derivation presented here. First, we are considering

only an electron-proton plasma. The formalism can be easily generalized to include any

number of ion species. Second, we consider all particles to be fermions. In reality, for a

multi-species plasma, the ions may be bosons, in which case, the equal-time anti-commutator

relations need to be replaced by equal-time commutator relations. Finally, for simplicity and

ease of presentation, we have dropped the spin variables.

A. Preliminaries

The position ket of every electron and proton in the plasma is defined by

∣

∣r1 : rne
;R1 : Rnp

〉

= (1/
√

ne!np!)Ψ̂
†
e(r1, t)...Ψ̂

†
ne
(rne

, t)Ψ̂†
p(R1, t)...Ψ̂

†
np
(Rnp

, t) |0e; 0p〉 (4)

where |0e; 0p〉 is the vacuum state and Ψ̂†
a(r, t) and Ψ̂a(r, t) are the creation and annihi-

lation operators for a charged particle of species type a at a position and time (r,t). The

species index “a” is equal to “e” or “p”, for electrons and protons, respectively. The annihi-

lation and creation operators obey a set of equal-time canonical anti-commutation relations

appropriate for fermions.

{Ψ̂a(x, t), Ψ̂
†
b(y, t)} = δabδ

3(x− y) (5)

{Ψ̂a(x, t), Ψ̂b(y, t)} = 0 (6)

{Ψ̂†
a(x, t), Ψ̂

†
b(y, t)} = 0 (7)
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The many-body Hamiltonian operator for the plasma interacting via Coulombic forces is

described by

Ĥplasma =
∑

a

∫

d3raΨ̂
†
a(ra, t)

[−~2

2ma

∇2
ra

]

Ψ̂a(ra, t)

+
1

2

∑

a

∑

b

∫ ∫

d3rad
3sbVab(ra − sb)Ψ̂

†
a(ra, t)Ψ̂

†
b(sb, t)Ψ̂b(sb, t)Ψ̂a(ra, t) (8)

where a, b are the species index and can equal e or p. The electron and proton coor-

dinates are defined by a = e, re = r and if a = p, rp = R. We have not included either

electromagnetic or external fields in the Hamiltonian (8). The dynamics of the many-body

plasma are fully described by equation (8) along with the Heisenberg equations of motion.

∂Ψ̂†
a(r, t)

∂t
=

i

~
[Ĥplasma, Ψ̂

†
a(r, t)] (9)

Equations (5) through (9) constitute a complete description of the many-body quantum

plasma. They form the basis for the electron and proton von Neumann equations described

in the following sections.

B. Operator Quantum Dynamics

Define the one-particle electron and np proton density operators by

∆̂e(r + x/2, r − x/2) = Ψ̂†
e(r + x/2)Ψ̂e(r − x/2) (10)

∆̂np
= Ψ̂†

p(R1 +
y1
2
)...Ψ̂†

p(Rnp
+

ynp

2
)Ψ̂p(Rnp

− ynp

2
)...Ψ̂p(R1 −

y1
2
) (11)

Define the one-particle electron and np proton phase space density operators as Wigner

transforms of the corresponding density operators

F̂e(r, p) =

∫

d3x

(2π~)3
e

ip·x

~ ∆̂e(r + x/2, r − x/2) (12)

F̂np
(R1, ..., Rn, P1, ..., Pn) =

1

np!

∫

d3y1
(2π~)3

...
d3ynp

(2π~)3
e

iP1·y1
~ ...e

iPn·yn
~

× ∆̂np
(R1 +

y1
2

: Rnp
+

ynp

2
;R1 −

y1
2

: Rnp
− ynp

2
) (13)
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The one-particle electron and np proton phase space density operators are normalized so

that the quantum averages, denoted by 〈...〉, are defined by

∫

d3rd3p〈F̂e(r, p)〉 = ne (14)

∫

d3R1...d
3Rnp

d3P1...d
3Pnp
〈F̂np

(R1, ..., Rn, P1, ..., Pn)〉 = np (15)

Differentiating both sides of equation (12) with respect to time and using the Hamiltonian

and operator Heisenberg equations given by equations (8) and (9), we obtain the one-electron

von Neumann equation,

∂F̂e(r, p)

∂t
+

p

me
· ∇reF̂e(r, p) =

i

~

∑

a

∫

d3x

(2π~)3
d3q d3ra d

3sa e
i(p−q)·x/~

× [Vea(r − ra +
x

2
)− Vea(r − ra −

x

2
)]

× F̂a(ra, sa)F̂e(r, q) (16)

We have ignored exchange terms by making use of the fact that the electrons are non-

degenerate. This assumption is made manifest by making the following approximation in

the last term of the right hand side of equation (16)

1

2
{F̂a(ra, sa), F̂e(r, q)} ≈ F̂a(ra, sa)F̂e(r, q) (17)

If we had retained the anti-commutator, equation (16) would be the von Neumann equa-

tion valid for degenerate electrons. We stress that equation (16) is still in operator form and

hence electron correlations are still present.

Similarly, differentiating both sides of equation (13) with respect to time and using the

Hamiltonian and operator Heisenberg equations given by equations (8) and (9), we obtain

the n− p proton von Neumann equation.
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(

∂

∂t
+

np
∑

i=1

Pi

mp
· ∇Ri

)

F̂np
= 2

i

~

np
∑

i<j

∫

d3yi
(2π~)3

d3yj
(2π~)3

d3P̃i d
3P̃j e

i(Pi−P̃i)·yi/~ei(Pj−P̃j)·yj/~

× [Vpp(Ri −Rj +
yi − yj

2
)− Vpp(Ri − Rj −

yi − yj
2

)]

× F̂np
(R1, ..., Rnp

, P1, ..., P̃i, ...P̃j, ...Pnp
)

+ 2
i

~

np
∑

i

∫

d3yi
(2π~)3

d3p d3P̃i e
i(Pi−P̃i)·yi/~

× [Vep(r − Ri +
yi
2
)− Vep(r −Ri −

yi
2
)]

× F̂e(r, p)F̂np
(R1, ..., Rnp

, P1, ..., P̃i, ...Pnp
) (18)

A more compact form of equation (18) is

(

∂

∂t
+

np
∑

i=1

Pi

mp
· ∇Ri

)

F̂np
= 2

i

~

np
∑

i<j

Vpp(Ri −Rj) sin{
~

2
{←−∇Ri

· −→∇Pi
+
←−∇Rj

· −→∇Pj
}}F̂np

+ 2
i

~

np
∑

i

∫

d3pd3rVep(r − Ri) sin{
~

2

←−∇Ri
· −→∇Pi

}F̂e(r, p)F̂np
(19)

To make equations (18) and (19) more compact, we have used the notation

F̂np
≡ F̂np

(R1, ..., Rnp
, P1, ..., Pnp

) (20)

Equations (16) and (19) are the von Neumann equations for the electron-proton plasma.

They constitute a complete description of the quantum dynamics of the system. If we were

able to solve equation (16), and then substitute it into equation (19), we would have a

complete description of the proton dynamics. The one-particle electron equation (16), is

well known in various forms [57–64]. It still retains the presence of quantum diffraction

effects through the non-locality of the right hand side. A manifestation of the BBGKY

hierarchy is seen in the product of the one-particle phase space density operators on the

right hand side of equation (16).

The np proton von Neumann equation is an operator form generalization of the equation

derived by Ludwig, Bonitz, Kahlert and Dufty [45]. It is the quantum operator analog of the

proton Liouville equation. The first term on the right hand side of equation (18) is typical

of the Liouville equation for a proton-only system. The second term is a manifestation

of BBGKY and couples the np and one-particle electron phase space density operators.

12



This term will be responsible for the coupling of the MD description of the protons to the

continuum description of the electrons based on kinetic theory.

Equations (18) or (19) can be simplified even further if we make use of the observation

that the plasma properties of hot dense matter relevant to burning ICF targets are such that

the ions behave classically and the electrons exhibit both quantum and classical behavior.

In order to capture the hybrid quantum-classical dynamics, we adopt the methods of Kapral

and Cicotti [65]. They derived classical-quantum hybrid equations of motion for a quantum

subsystem of light particles coupled to a classical bath of heavy particles. They performed a

partial Wigner transform of the evolution equation of the density matrix for the whole system

with respect to the classical system consisting of heavy particles. Scaling variables were then

applied to the resulting equation followed by an expansion in the parameter µ =
√

m/M

which is the square root of the ratio of the light (m) to heavy (M) mass particles. We do not

simply perform an ~ expansion of equations (18) or (19) to extract the classical behavior

since for Coulomb potentials each succeeding term in ~ becomes more singular.

We apply the scaling variables used in Kapral and Cicotti [65] to the proton von Neumann

equation. If we define ǫ as some energy scale, then a thermal De Broglie length scale λ, time

scale τ , electron momentum Πe and proton momentum Πp can be defined by

λ = ~/
√

(meǫ), τ =
~

ǫ
, Πe =

λme

τ
, Πp =

√
meǫ⇔ Πe =

√

me

mp
Πp ≡ µΠp (21)

(r̃, p̃) =

(

r

λ
,
p

Πe

)

,
(

R̃, P̃
)

=

(

R

λ
,
P

Πp

)

, t̃ =
t

τ
, Ṽab =

Vab

ǫ
, Φ̂n = ~

3nF̂n (22)

We obtain a transformed von Neumann equation given by,

∂Φ̂np

∂t̃
+ µ

np
∑

i=1

P̃i · ∇R̃i
Φ̂np

= 2

np
∑

i<j

Vpp(R̃i − R̃j) sin{
µ

2
{←−∇ R̃i

· −→∇ P̃i
+
←−∇ R̃j

· −→∇ P̃j
}}Φ̂np

+ 2

np
∑

i

∫

d3p̃d3r̃Ṽep(r̃ − R̃j) sin{
µ

2

←−∇ R̃i
· −→∇ P̃i

}Φ̂e(r, p)Φ̂np
(23)

Transforming back to the original variables and expanding in powers of µ, we obtain
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∂F̂np

∂t
+

np
∑

i=1

Pi

mp
· ∇Ri

F̂np
=

np
∑

i<j

Vpp(Ri − Rj){
←−∇Ri

· −→∇Pi
+
←−∇Rj

· −→∇Pj
}F̂np

+

np
∑

i

∫

d3pd3rVep(r −Rj)
←−∇Ri

· −→∇Pi
F̂e(r, p)F̂np

≡ L̂CLF̂np
(24)

where L̂CL is defined as the right hand side operator of equation (24).

Upon expansion in the ratio of electron to proton mass, the np proton von Neumann

equation takes on the classical form of the Liouville equation. There is a significant difference

however, in that this equation is still in operator form with the ”classical” Liouville operator

L̂CL a functional of the electron phase space density operator. Equations (16) and (24) are

in the desired form that will allow us to describe the plasma by coupling quantum kinetic

and molecular dynamics descriptions.

IV. WIGNER EQUATIONS AND CORRELATION FUNCTIONS

Based on the weak coupling approximation of the electron-electron and electron-proton

interactions, expectation values of the electron and proton von Neumann equations can be

written in closed form. In this section, we show how the BBGKY hierarchy can be reduced to

a set of equations involving the one-particle electron distribution function, electron-electron

and electron-proton two-particle correlation functions and the proton Liouville equation.

We begin by defining the quantum expectation value of an arbitrary n-particle operator

An(t) in the usual way

〈Ân(t)〉 = Tr[Ân(t)ρN ] (25)

where N = np+ne, ρN is the density operator for the plasma and n in equation (25) can

take take on any value from 1 to N.

The expectation value of the phase space density operator is the Wigner distribution

function. The one-particle electron and proton Wigner distribution functions fe(r, p) and

fp(R,P ) are defined as
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〈F̂e(r, p)〉 = fe(r, p), 〈F̂p(R,P )〉 = fp(R,P ) (26)

〈F̂np
(R1 : Rnp

, P1 : Pnp
)〉 = fnp

(R1 : Rnp
, P1 : Pnp

) ≡ fnp
(27)

∫

d3P Fp(R,P ) = NP (R),

∫

d3R d3P FP (R,P )) = np (28)

∫

d3pfe(r, p) = Ne(r),

∫

d3rd3pfe(r, p) = ne (29)

Applying the expectation values to the one-electron and np-proton von Neumann equa-

tions, we obtain the set of Wigner equations for the one-particle electron and the np proton

distribution functions, viz.,

∂fe(r, p)

∂t
+

p

me
· ∇rfe(r, p) =

i

~

∑

a

∫

d3x

(2π~)3
d3qd3rad

3sae
i(p−q)·x/~

× [Vea(r − ra +
x

2
)− Vea(r − ra −

x

2
)]

× 〈F̂a(ra, sa)F̂e(r, q)〉 (30)

∂fnp

∂t
+

np
∑

i=1

Pi

mp
· ∇Ri

fnp
=

np
∑

i<j

Vpp(Ri − Rj){
←−∇Ri

· −→∇Pi
+
←−∇Rj

· −→∇Pj
}}fnp

+

np
∑

i

∫

d3pd3rVep(r −Ri)
←−∇Ri

· −→∇Pi
〈F̂e(r, p)F̂np

〉 (31)

We now recast the right hand side of equations (30) and (31) into a more illustrative form

by defining a set of correlation functions gee, gep and genp
given by,

〈F̂e(r1, p1)F̂e(r2, p2)〉 = fe(r1, p1)fe(r2, p2) + gee(r1, p1; r2, p2) (32)

〈F̂e(r, p)F̂p(R,P )〉 = fe(r, p)fp(R,P ) + gep(r, p;R,P ) (33)

15



〈F̂e(r, p)F̂np
(R,P )〉 = fe(r, p)fnp

(R1 : Rnp
, P1 : Pnp

) + genp
(r, p;R1 : Rnp

, P1, Pnp
) (34)

We will also have use later for the dimensionless correlation functions hab(r1, p1; r2, p2),

defined as

gab(r1, p1; r2, p2) = fa(r1, p1)fb(r2, p2)hab(r1, p1; r2, p2) (35)

Upon substitution of equations (32) through (34) into equations (30) and (31), the one-

particle electron Wigner and np proton Wigner equations can be written

∂fe(r, p)

∂t
+

p

me

· ∇rfe(r, p) =
i

~

∑

b

∫

d12Ωei(p−α)·x/~

× [Veb(r + x/2− s)− Veb(r − x/2 − s)]

× fe(r, α)fb(s, β)

+
i

~

∑

b

∫

d12Ωei(p−α)·x/~

× [Veb(r + x/2− s)− Veb(r − x/2 − s)]

× geb(r, α; s, β) (36)

∂fnp

∂t
+

np
∑

i=1

Pi

mp

· ∇Ri
fnp

=

np
∑

i<j

Vpp(Ri −Rj){
←−∇Ri

· −→∇Pi
+
←−∇Rj

· −→∇Pj
}}fnp

+

np
∑

i

∫

d3rVep(r − Ri)Ne(r)
←−∇Ri

· −→∇Pi
fnp

+

np
∑

i

∫

d3rVep(r − Ri)Ne(r)
←−∇Ri

· −→∇Pi

× genp
(r, p;R1 : Rnp

, P1 : Pnp
) (37)

We have simplified the notation by writing

∫

d12Ω (...) =

∫

d3x

(2π~)3
d3sd3αd3β (...) (38)

As a consequence of BBGKY, these compact forms of the electron and many-particle

proton Wigner equations demonstrate a need for the electron-electron, electron-proton, and
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electron-np proton correlation functions. We will show in the next section how the electron-np

proton correlation function can be written as a function of two-particle correlation functions.

In this way, the coupled set of electron and proton Wigner equations (36) and (37) can be

reduced to a description of the plasma based solely on single-particle distribution functions,

two-particle correlation functions and an np proton distribution function. The result is

equations (46) and (47).

A. Reduction of the Electron-Many Proton Correlation Function

Equation (37) requires further simplification due to the unwieldy correlation function

genp
(r, p;R1 : Rnp

, P1 : Pnp
). In this form, the coupled set of equations is useless since

it requires knowledge of how every proton correlates to a given electron. Guernsey has

shown that if the pair-wise correlations are small, the expectation value of a product of the

one-particle electron phase space density operator with the np proton phase space density

operator can be decomposed into a function of one-electron and one-proton distribution

functions and their pair-wise correlations.

〈F̂e(r, p)F̂np
〉 = 〈F̂e(r, p)〉〈F̂p(R1, P1)〉...〈F̂p(Rnp

, Pnp
)〉

+

np
∑

i<j

np
∑

j=2

gpp(Ri, Pi;Rj, Pj)〈F̂e(r, p)〉 ×
np
∏

k=1,k 6=i,j

〈F̂p(Rk, Pk)〉

+

np
∑

i=1

gep(r, p;Ri, Pi)×
np
∏

k=1,k 6=i

〈F̂p(Rk, Pk)〉 (39)

This form is still not yet particularly useful as written, since it decomposes the left

hand side into a function of one-particle functions. We would like the right hand side of

equation (39) to contain the terms F̂np
since it preserves the Liouville form for the protons.

The first two terms on the right hand side of equation (39) can be summed to obtain

〈F̂e(r, p)〉〈F̂np
(R,P )〉. Therefore,

〈F̂e(r, p)F̂np
〉 = fe(r, p)fnp

+

np
∑

i=1

gep(r, p;Ri, Pi)×
np
∏

k=1,k 6=i

〈F̂p(Rk, Pk)〉 (40)
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The final step in writing the expectation value of the product of the one-electron and np

phase space density operators as a function of the expectation value of the n-proton phase

space density operator is to note that to lowest order

〈F̂e(r, p)F̂np
〉 = 〈F̂e(r, p)〉〈F̂np

〉

+

np
∑

i=1

gep(r, p;Ri, Pi) ·
np
∏

k=1,k 6=i

〈F̂p(Rk, Pk)〉

= 〈F̂e(r, p)〉〈F̂np
〉

+ 〈F̂e(r, p)〉
np
∑

i=1

gep(r, p;Ri, Pi)

〈F̂e(r, p)〉〈F̂np
〉
〈F̂np
〉 ×

np
∏

k=1,k 6=i

〈F̂p(Rk, Pk)〉

≈ fe(r, p)fnp
+ fe(r, p)fnp

np
∑

i=1

hep(r, p;Ri, Pi) (41)

Upon substituting equation (41) into (37), we obtain

∂fnp

∂t
+

np
∑

i=1

Pi

mp
· ∇Ri

fnp
=

np
∑

i<j

Vpp(Ri −Rj){
←−∇Ri

· −→∇Pi
+
←−∇Rj

· −→∇Pj
}}fnp

+

np
∑

i

∫

d3rVep(r − Ri)Ne(r)
←−∇Ri

· −→∇Pi
fnp

+

np
∑

i

∫

d3pd3rVep(r − Ri)fe(r, p)
←−∇Ri

· −→∇Pi

× [

np
∑

j=1

hep(r, p;Rj;Pj)]fnp
(42)

We will now simplify the last term in equation (42) by transforming the discrete sum

over the various hep contributions into an integral form. We begin by Fourier transforming

the sum of the dimensionless correlation function hep.

Φ(r, p) =

np
∑

j=1

hep(r, p;Rj ;Pj) =

np
∑

j=1

∫

d3K

(2π)3
d3Q

(2π)3
eiK·RjeiQ·Pj h̃ep(r, p;K,Q) (43)

If we switch the order of integration and summation in equation (43) and note that

f̃p(K,Q) =

np
∑

j=1

eiK·RjeiQ·Pj (44)

18



is the Fourier transform of the one-particle proton distribution function fp(R,P ), equation

(43) can be written

Φ(r, p) =

∫

d3R′d3P ′fp(R
′, P ′)hep(r, p;R

′, P ′) (45)

B. KTMD Equations and Two-Particle Correlation Functions

Using the results from the previous section, we are now in a position to describe the

coupled electron-proton dynamics through a set of coupled Liouville and electron kinetic

equations. Each equation will contain a term involving the electron-electron and electron-

proton correlation functions. For now, we will leave the question as to how to treat the

correlation functions to section IV. Substituting equation (45) into equation (42), and using

the definition of hep in equation (35), we obtain a simple form of the proton Liouville equation

in terms of one-particle distribution and correlation functions.

∂fnp

∂t
+

np
∑

i=1

Pi

mp

· ∇Ri
fnp

=

np
∑

i<j

Vpp(Ri − Rj){
←−∇Ri

· −→∇Pi
+
←−∇Rj

· −→∇Pj
}fnp

+

np
∑

i

∫

d3rVep(r − Ri)Ne(r)
←−∇Ri

· −→∇Pi
fnp

+

np
∑

i

∫

d3pd3rd3R′d3P ′gep(r, p;R
′, P ′)Vep(r − Ri)

←−∇Ri

· −→∇Pi
fnp

(46)

The electron dynamics are described by

∂fe(r, p)

∂t
+

p

me

· ∇rfe(r, p) =
i

~

∑

b

∫

d12Ωei(p−α)·x/~

× [Veb(r + x/2− s)− Veb(r − x/2 − s)]

× fe(r, α)fb(s, β)

+
i

~

∑

b

∫

d12Ωei(p−α)·x/~

× [Veb(r + x/2− s)− Veb(r − x/2 − s)]

× geb(r, α; s, β) (47)
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,

We have repeated the electron kinetic equation for completeness. Assuming the electron-

electron and electron-proton correlation functions are known (see the next section for three

different variants), equations (46) and (47) are a coupled set of equations that describe the

electron-proton plasma. Equations (46) and (47) are the desired KTMD equations. In the

KTMD approach, the proton Liouville equation (46) describes the forces acting on each

proton. The forces acting on the protons are dependent on classical Coulomb forces, one-

particle electron distribution functions and the two-particle correlation functions. The first

term on the right hand side of equation (46) describes the classical Coulomb interaction. The

second term describes a mean-field contribution coming from the local electron density, and

the third term is the contribution to the proton motion caused by electron-proton density

fluctuations. Molecular dynamics provides the numerical method for solving this equation.

The electron information comes from the kinetic equation described by equation (47). This

equation is a multi-dimensional partial differential equation that can be solved by various

techniques [66] depending on the choice of correlation function and other approximations.

In the next section we describe three examples for the two-particle correlation functions

appearing on the right hand side of equations and the physical situations in which they are

applicable.

V. PLASMA PROPERTIES AND THE CLOSED SET OF KTMD EQUATIONS

FOR AN ELECTRON PROTON PLASMA

Based on the physical conditions of the plasma, constraints can be placed on the appro-

priate electron-proton and proton-proton correlation functions. The various options for the

correlation functions will allow us to close the KTMD equations.

The simplest KTMD variant is based on a mean-field approximation that is appropriate

for hot, diffuse, and weakly coupled plasmas. In this regime, the electron plasma frequency

greatly exceeds all collision frequencies. In addition, the collisional mean-free path is much

larger than the relevant system size. The mean field approximation cannot describe scatter-

ing processes and the potential energy of the system contains only mean field contributions.

Relevant high-energy density plasmas for which KTMD in the mean-field approximation

is applicable are Tokamak and some laser produced plasmas. Applications where this ap-
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proach would not be valid include ion stopping in dense plasmas and collisional relaxation

of electron-ion systems. Both of these applications require detailed knowledge of scatter-

ing processes. Ion diffusivity in diffuse plasmas is a good application for the mean-field

approach.

The second KTMD variant is based on the Singwi-Tosi-Land-Sjolander (STLS) ansatz

[67] where the electron-electron and electron-proton correlation functions are assumed static,

and equal to the radial distribution function. It is well known that STLS is only valid near

equilibrium. STLS extends mean-field theory to include equilibrium correlations. Even

though STLS allows us to consider denser plasmas where the electrons can be strongly

correlated but not far from equilibrium, our KTMD derivation assumes the electrons to be

weakly correlated (see equation 41). This variant is illustrative of how non-zero correlations

enter into the KTMD equations and modify the forces acting on the protons.

The third KTMD variant is the most complex and represents what we would call the

full KTMD description of the plasma. The correlation functions are dynamic, position,

momentum and time dependent, small, and their evolution is described by a set of quan-

tum kinetic equations that arise from closing the BBGKY hierarchy at the three particle

correlation level. Both the Landau and Lenard-Balescu equations are contained within this

third variant of KTMD. The regime of weakly coupled and weakly collisional electrons is

described by the full KTMD variant. Hence the relevant plasmas tend to be hot but more

dense than the mean-field approximation would allow. These plasmas have their collision

frequency comparable to or greater than the plasma frequency and the collisional mean-free

path is smaller than the relevant system size. Inertial Confinement Fusion plasmas tend to

belong to this category. We note that near equilibrium, the full KTMD variant is equivalent

to STLS. Ion stopping in dense plasmas is a good application for this variant of KTMD.

A. KTMD in the Mean-Field Limit

For hot and diffuse enough plasmas, the plasma frequency is much larger than the collision

frequency. Physically, collective effects dominate over collisional processes and the plasma is

nearly collisionless and we may take gee = gep = genp
= 0. we obtain a closed set of equations

which define KTMD within the mean field approximation. Setting gee = gep = genp
= 0 in

equations (46) and (47) yields a closed set of equations for the electron kinetic equation and
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the proton particle dynamics. The picture is one where a continuous or fluid-like description

of the electrons is coupled to a particle description of the ions. It is important to recognize

that the proton-proton correlations need not be small and proton-proton correlations are

included through the proton-proton Coulomb interaction in equation (35). The mean field

KTMD equations are

∂fe(r, p)

∂t
+

p

me
· ∇rfe(r, p) =

i

~

∑

b

∫

d3Ωei(p−α)·x/~

× [Veb(r + x/2− s)− Veb(r − x/2 − s)]

× fe(r, α)fb(s, β)

(48)

∂fnp

∂t
+

np
∑

i=1

Pi

mp
· ∇Ri

fnp
=

np
∑

i<j

Vpp(Ri −Rj){
←−∇Ri

· −→∇Pi
+
←−∇Rj

· −→∇Pj
}fnp

+

np
∑

i

∫

d3rVep(r − Ri)Ne(r)
←−∇Ri

· −→∇Pi
fnp

(49)

This set of equations defines completely the time evolution of the electron fluid and

the classical point ions within the mean-field approximation. The evolution of the electron

Wigner distribution function depends on two contributions. One is from the electron-electron

interactions and the other is from the electron-proton interactions. The proton dynamics

are described by a classical Liouville equation whose solution is obtained via MD. The

forces acting on each proton can be isolated in equation (49). There is the usual classical

proton-proton Coulomb force and an additional force due to the presence of the electron

fluid. This latter force is the gradient of a mean potential defined by the convolution of the

bare electron-proton Coulomb potential with the local time dependent electron density. The

quantum nature of the electron-proton interaction is contained in the electron distribution

function, but is classical otherwise (same as Vlasov). The effective potential is defined as,

V eff
ep =

∫

d3rVep(r − Rj)Ne(r). (50)
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This effective potential includes non-linear screening and is responsive to the time evolv-

ing electron dynamics. Therefore, it can be thought of as a generalization of the Yukawa

potential. We note that the effective potential depends not on the six-dimensional distri-

bution function but rather only on the zeroth order moment: the electron number density

Ne(r). As we will see, this observation is still valid beyond the mean-field approximation but

only in the cases where the correlation functions are independent of momenta. Therefore, a

quantum hydrodynamical description should be sufficient to describe the electron dynamics

for certain cases within KTMD.

B. KTMD and the Singwi-Tosi-Land-Sjolander (STLS) Ansatz

Equation (46) describes the many particle dynamics of the protons as they interact with

the electron fluid and each other. In this section, we show that the last force term in equation

(46) can be evaluated and takes on a simple form if the STLS ([67–69]) ansatz is invoked.

We assume that the two-particle correlation function is independent of momentum and it

is only a function of the coordinate difference. As noted in the introduction to this section,

the STLS ansatz extends the mean-field approximation by including equilibrium electron-

electron and electron-proton correlations. The STLS ansatz is in general valid for large

correlations but where the system is near equilibrium. However, our KTMD derivation

assumed the electrons to be weakly correlated (see equation (41)). Therefore, the STLS

variation of KTMD presented here is valid for weakly correlated electrons only. In spite of

this, the STLS variant of KTMD allows one to move beyond mean-field.

〈F̂e(r, p)F̂p(R,P )〉 = fe(r, p)fp(R,P )(1 + hep(r, p;R,P )) ≈ fe(r, p)fp(R,P )ξep(r −R) (51)

The quantity ξep(r−R) is the radial distribution function which describes the likelihood

that there is an electron at position r given that there is a proton at position R. The radial

distribution function is related to the static structure factor S̃ep(k) in the usual way [70],

S̃ep(k) =
√
nenp

∫

d3reik·r(ξep(r)− 1) (52)

In the STLS ansatz, the relationship between the radial distribution function, static

structure factor, and dielectric function, provide a set of equations that can be solved self
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consistently [67, 71]. From equations (51) and (52)we can write,

h̃ep(k) = ξ̃ep(k)− (2π)3δ3(k) = Sep(k)/
√
nenp (53)

To simplify the last term in equation (42), we write,

Φ(r) =

np
∑

i=1

hep(r, p;Ri;Pi) ≈
np
∑

i=1

hep(r − Ri) =

np
∑

i=1

∫

d3k

(2π)3
eik·(r−Ri)h̃ep(k) (54)

If we switch the order of the integration and summation in equation (54) and note that

the proton number density Np(r) and its Fourier transform Ñp(k) can be written

Np(r) =

np
∑

i=1

δ3(R− Ri)⇔ Ñp(k) =

np
∑

i=1

e−ik·Ri (55)

Using equation (55), equation (54) can be written,

Φ(r) =

∫

d3k

(2π)3
eik·rÑp(k)h̃ep(k) =

∫

d3k

(2π)3
eik·rÑp(k)

S̃ep(k)√
nenp

=

∫

d3s
Sep(r − s)
√
nenp

Np(s)

(56)

Substituting equation (56) into the proton Liouville equation (42) we obtain a form

amenable to a molecular dynamics code,

∂fnp

∂t
+

np
∑

i=1

Pi

mp
· ∇Ri

fnp
=

np
∑

i<j

Vpp(Ri −Rj){
←−∇Ri

· −→∇Pi
+
←−∇Rj

· −→∇Pj
}}fnp

+

np
∑

i

∫

d3rVep(r − Ri)Ne(r)
←−∇Ri

· −→∇Pi
fnp

+

np
∑

i

∫

d3pd3rΦ(r)Vep(r − Ri)fe(r, p)

× ←−∇Ri
· −→∇Pi

fnp
(57)

From equation (57), it is clear there are three force terms acting on each proton. The first

is the pure Coulomb force, the second the mean-field force, and the third is a consequence

of the equilibrium density fluctuations within the STLS ansatz,

Fi =
−→∇Ri

[

∫

d3rd3s
Sep(r − s)
√
nenp

Np(s)Ne(r)Vep(r − Ri)] (58)
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The electron kinetic equation that couples to equation (57) using the STLS approximation

is

∂fe(r, p)

∂t
+

p

me

· ∇rfe(r, p) =
i

~

∑

b

∫

d12Ωei(p−α)·x/~

× [Veb(r + x/2− s)− Veb(r − x/2 − s)]

× fe(r, α)fb(s, β)ξeb(r − s)

(59)

As mentioned at the beginning of this section, self consistency requirements between the

dielectric functions, static structure factor, and radial distribution function determines the

form of Sep in equation (57). The STLS ansatz allows for correlated electrons that are near

equilibrium. Hence, it is another extension of Yukawa to correlated but near equilibrium

systems. Whereas the mean-field variant of KTMD would not be applicable to electron-ion

relaxation where the electron temperature is changing, KTMD with the STLS ansatz for

the correlation functions would be applicable to systems where the ions are relaxing to a

fixed electron temperature.

C. Particle Collisions and Weak Correlations

The mean-field approximation is a useful illustration of the KTMD approach but for many

applications in HDM, such as electron-ion relaxation and ion stopping, scattering processes

are important. Therefore, the effects from non-zero correlations is needed. The STLS

approach includes correlations but relies on the equilibrium approximation. In this section,

we describe a version of KTMD that fully realizes the concept of a quantum kinetic equation

for the electrons and MD for the protons that was described in the introduction. The

quantum kinetic equations consist of a set of coupled kinetic equations for the one-particle

distribution function and the two-particle electron-electron and electron-proton correlation

functions. For example, equations (46) and (47) require a description of the electron and

proton two-particle correlation functions. In particular, we need a time evolution equation

for gee and gep. The set of closed equations for fe(r, p), gee and gep has been written down by

Guernsey [60], Klimontovich [57], Balescu [62], Bonitz [58] and many others. We summarize

the main steps of the derivation to arrive at a form that is amenable to computation.
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In order to derive an equation for the correlation functions gee and gep, we start with the

expectation value of a product of one-particle density operators defined by equation (12),

Gea(u, v;w, x) = 〈∆̂e(u, v)∆̂a(w, x)〉 − 〈∆̂e(u, v)〉〈∆̂a(w, x)〉 (60)

The index a can be “e” or “p”. We have introduced a transformed correlation function

Gea which is related to the correlation functions defined in equations (32) and (33).

gea(r, p; ra, pa) =

∫

d3x

(2π~)3

∫

d3y

(2π~)3
eip·xeipa·y

× Gea(r + x/2, r − x/2; ra + y/2, ra − y/2) (61)

For HDM, the electron-electron and electron-proton correlations are weak. We therefore

truncate the triple product of one-particle density operators as [64],

〈∆a(u, v)∆b(w, x)∆c(s, t)〉 = 〈∆a(u, v)〉〈∆b(w, x)〉〈∆c(s, t)〉

+ 〈∆a(u, v)〉Gbc(w, x; s, t)

+ 〈∆b(w, x)〉Gac(u, v; s, t)

+ 〈∆a(s, t)〉Gab(u, v;w, x)

(62)

In order to obtain a kinetic equation for the Gea correlation functions, we differentiate

equation (60) with respect to time and use equations (5-9) along with the truncation equation

(62) to obtain

∂

∂t
Gea(u, v;w, x) = −i~( 1

2me
[∇u

2 −∇v
2] +

1

2ma
[∇w

2 −∇x
2])Gea(u, v;w, x)

+
i

~

∑

b

∫

d3s[Veb(u− s)− Veb(v − s) (63)

+ Veb(w − s)− Veb(x− s)]∆b(s, s)Gea(u, v;w, x)

+
i

~

∑

b

∫

d3s[Veb(u− s)− Veb(v − s)]∆e(u, v)Gba(s, s;w, x)

+
i

~

∑

b

∫

d3s[Veb(w − s)− Veb(x− s)]∆a(w, x)Geb(u, v; s, s)

Applying the Wigner transform, and again using the notation
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∫

d12Ω =

∫

d3x

(2π~)3
d3sd3αd3β (64)

The required equations for gee and gep are obtained,

∂

∂t
gea(r, p; ra, pa) = [

p

2me

· ∇r +
pa
2ma

· ∇ra]gea(r, p; ra, pa)

+
i

~

∑

b

∫

d12Ωe(p−α)·x/~[Veb(r + x/2− s)− Veb(r − x/2− s)]

× fb(rb, β)gea(r, α; ra, pa)

+
i

~

∑

b

∫

d12Ωe(pa−α)·x/~[Veb(ra + x/2− s)− Veb(ra − x/2 − s)]

× fb(rb, β)gea(r, p; ra, α)

+
i

~

∑

b

∫

d12Ωe(p−β)·x/~[Veb(r + x/2− s)− Veb(r − x/2− s)]

× fe(r, β)geb(re, α; ra, pa)

+
i

~

∑

b

∫

d12Ωe(pa−β)·x/~[Veb(ra + x/2 − s)− Veb(ra − x/2− s)]

× fa(ra, β)geb(r, p; ra, α) (65)

Equation (65) represents a pair of equations, a,b equals “e” or “p”. For a,b=e, rb = r′

and pb = p′. While for a,b=p, rb = R and pb = P . The pair of equations (65) requires

knowledge of the one-particle electron and proton distribution functions. The former comes

from equation (47) while the latter comes from the proton MD simulation. Equations (47)

and (65) are the most general description of the non-degenerate electron dynamics, assuming

weak electron-electron and electron-proton correlations ([58], [64], [60] ). Given the one-

particle proton distribution function which comes from the MD simulation, it describes an

inhomogeneous, time dependent, non-local (due to quantum diffraction), non-Markovian,

dynamically screened electron plasma. No assumption is made concerning the relative time

scales of correlations versus one-particle distributions functions (Bogoliubov hypothesis).

In the limit of spatial homogeneity and assuming the Bogoliubov hypothesis, this set of

equations becomes the quantum Lenard-Balescu equation for non-degenerate electrons, [60].

If a further simplification is invoked, namely static screening, then this equation becomes the

quantum Landau equation. Thus KTMD allows flexibility in that, given an MD calculation

of the one-particle proton distribution function, the electron dynamics can be described by

any number of approximations (including static) to the full electron kinetic equation.

27



In summary, with equation (65), the closed set of KTMD equations are,

∂fe(re, pe)

∂t
+

pe
me
· ∇refe(re, pe) =

i

~

∑

b

∫

d12Ωb e
i(pe−α)·xe/~

× [Veb(re + xe/2− sb)− Veb(re − xe/2− sb)]

× fe(re, α)fb(sb, βb)

+
i

~

∑

b

∫

d12Ωb e
i(pe−α)·xe/~

× [Veb(re + xe/2− sb)− Veb(re − xe/2− sb)]

× geb(re, α; sb, βb) (66)

∂fnp

∂t
+

np
∑

i=1

Pi

mp
· ∇Ri

fnp
=

np
∑

i<j

Vpp(Ri −Rj){
←−∇Ri

· −→∇Pi
+
←−∇Rj

· −→∇Pj
}}fnp

+

np
∑

i

∫

d3rVep(r − Ri)Ne(r)
←−∇Ri

· −→∇Pi
fnp

+

np
∑

i

∫

d3p d3r d3R′ d3P ′gep(r, p;R
′, P ′)Vep(r − Ri)

←−∇Ri

× −→∇Pi
fnp

(67)

In this full realization of KTMD, we first note that all quantum effects associated with the

electron-electron and electron-proton interactions are contained in the one-particle electron

distribution function and the electron-electron and electron-proton correlation functions.

Second, beyond the classical proton-proton Coulomb forces, the proton dynamics are modi-

fied by a dynamical mean-field force and a force term due to the correlations. The force term

due to correlations introduces a momentum dependence into the effective potential between

ions.

VI. CONCLUSION

A hybrid method based on coupling a continuum treatment of electrons using quantum

kinetic theory with a molecular dynamics treatment of the ions has been derived from a

first principles approach based on the many-body von Neumann equations. Even though

the derivation has been done for a fully ionized electron-proton plasma, the remarks given
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here will refer to the more general case of electrons and ions in a fully ionized plasma.

KTMD is flexible in its treatment of the electrons. It has the advantage that the quantum

kinetic equation describing the electron dynamics can take on a variety of forms based on

the electron plasma physical conditions and the approximations one wants to invoke. At the

basic level, the quantum kinetic equation for the electrons (43) is the typical Wigner equation

first derived by Balescu [59] and Guernsey [60]. However, depending on the application,

this kinetic equation can be approximated by the quantum Lenard-Balescu [59, 60, 64] or

quantum Landau equations[72].

In the introduction, the classical-quantum dual nature of electrons and their treatment

with QSP was discussed. The electrons in KTMD are treated as a continuous medium or

fluid, which interacts with the ions. The electron plasma spatial and temporal evolution is

described by a set of coupled quantum kinetic equations for the one-particle and two-particle

correlation functions. Within KTMD, the ions are classical point particles modeled with

MD. The ions evolve according to the classical Newton equations but with a set of effective

ion-ion potentials dependent on the local electron density and electron-proton correlations.

Unlike QSP, the effective ion-ion interaction is fully consistent with the dynamics of the

system.

Finally, it should be noted that both the mean-field and STLS variations of KTMD involve

only the electron density. Another option that will be considered in the future is to solve a

set of moment equations derived from the electron quantum kinetic equations. The moment

equations are essentially a quantum hydrodynamic description of the electron plasma. The

utility of this approach is that a coupled set of field variables (density, momentum and

energy) obeying a set of hydrodynamic equations should be easier to solve than a coupled

set of kinetic equations.
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