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We employ Monte Carlo simulations to investigate the non-equilibrium relaxation properties of the
two- and three-dimensional Coulomb glass with different long-range repulsive interactions. Specif-
ically, we explore the aging scaling laws in the two-time density autocorrelation function. We find
that in the time window and parameter range accessible to us, the scaling exponents are not univer-
sal, depending on the filling fraction and temperature: As either the temperature decreases or the
filling fraction deviates more from half-filling, the exponents reflect markedly slower relaxation kinet-
ics. In comparison with a repulsive Coulomb potential, appropriate for impurity states in strongly
disordered semiconductors, we observe that for logarithmic interactions, the soft pseudo-gap in the
density of states is considerably broader, and the dependence of the scaling exponents on external
parameters is much weaker. The latter situation is relevant for flux creep in the disorder-dominated
Bose glass phase of type-II superconductors subject to columnar pinning centers.

PACS numbers: 75.10.Nr 71.55.Jv, 05.70.Ln, 74.25.Uv

I. INTRODUCTION

The Coulomb glass model was devised to describe the
physical properties of localized charge carriers in disor-
dered semiconductors [1–3]. It assumes that the localiza-
tion length ξ is small or of the order of the mean sep-
aration a0 between acceptor or donor sites, whence the
system can be essentially described in classical terms:
Charged particles are confined to randomly distributed
sites, and at low temperatures the system equilibrates
through rearrangement of the carrier distribution to
minimize the total interaction energy. In semiconduc-
tors, these variable-range hopping processes are effected
through phonon-assisted tunneling between the accep-
tor / donor sites. The strong spatial (anti-)correlations
resulting from the long-range repulsive forces in turn
induce a marked depletion of the (interacting) single-
particle density of states, i.e., the distribution function
g(ǫ) of the site energies, near the chemical potential µc

that separates low-energy (ǫ < µc) filled states from
empty states at elevated energies (ǫ > µc). In the pres-
ence of this correlation-induced soft Coulomb gap, car-
rier mobility thus becomes considerably impeded [2]: If
g(ǫ) ∼ |ǫ − µc|

γ follows a power law in the vicinity
of µc with an (effective) gap exponent γ, the associ-
ated conductivity scales as lnσ ∼ −T−p, with p(γ) =
(γ + 1)/(γ + d + 1) in d spatial dimensions in the ther-
mally activated transport regime at low temperatures
T . Note that p(γ) ≥ 1/(d + 1) = p(γ → 0), the Mott
variable-range hopping exponent applicable for a finite
density of states g(µc) > 0. Electron tunneling experi-
ments in doped semiconductors have confirmed the ex-
istence of correlation-induced soft gaps in the density of
states [4, 5].

The two-dimensional Coulomb glass model, with the
electrostatic 1/r potential essentially replaced by a loga-
rithmic repulsion, has furthermore been adapted to cap-

ture the static properties as well as thermally activated
flux creep in type-II superconductors with extended, lin-
ear disorder aligned along the magnetic-field direction [6].
These columnar defects serve as effective pinning sites for
fluctuating magnetic flux lines; at low temperatures T
(and driving currents J) they undergo a continuous local-
ization transition [7, 8]. In this localized Bose glass phase,
the pinned flux lines are essentially straight and par-
allel, rendering the system effectively two-dimensional,
and vortex transport between columnar defects proceeds
in analogy to variable-range hopping through formation
and subsequent relaxation of double kinks between dif-
ferent pinning sites [9, 10]. Long-range repulsive vor-
tex interactions again induce a soft gap in the density of
states which strongly suppresses flux creep, leading to a
desired much reduced resistivity ln ρ ∼ −J−p/T [11] (for
magnetic flux densities smaller than the matching field,
at which the number of flux lines equals the number of
columnar defects; for extensions to the regime near and
beyond the matching field, see Refs. [12, 13]).

Over the past three decades, intense research into
the correlation-dominated equilibrium features [14–26] as
well as non-equilibrium relaxation properties [27–41] of
the Coulomb glass have considerably advanced our un-
derstanding of this paradigmatic model system for highly
correlated disordered materials. In part motivated by
the unambiguous experimental confirmation of aging ef-
fects in relaxation measurements for the conductivity of
a two-dimensional silicon sample, and scaling near its
metal-insulator transition [42, 43], in this work we focus
on a numerical study of the non-equilibrium relaxation
properties of the Coulomb glass following a quench from
a fully uncorrelated, high-temperature initial state.

Although the soft Coulomb gap in the site energy dis-
tribution forms quite fast, subsequent relaxation towards
the equilibrium terminal state is sufficiently slow to open
a sufficiently wide time window wherein time translation
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invariance is broken and aging scaling is clearly observed
(for recent overviews on non-equilibrium relaxation and
aging phenomena, see Refs. [44, 45]). Specifically, we em-
ploy a variant of the Monte Carlo algorithm described in
Refs. [31, 32] to investigate the dependence of the en-
suing aging scaling exponents for various Coulomb glass
systems as function of temperature T , filling fraction (to-
tal charge carrier density) K, dimensionality, and form of
the repulsive interaction potential (Coulomb 1/r poten-
tial in d = 2, 3 dimensions; logarithmic potential in two
dimensions). A first, concise account of aging in the two-
dimensional Coulomb case was presented in Ref. [37]; we
note that further technical details and additional data
can be found in Ref. [46].

In the following Sec. II, we introduce our model Hamil-
tonian and explain our Monte Carlo simulation algo-
rithm. We also briefly discuss basic simulation results
pertaining to the emerging Coulomb gap in the (inter-
acting) single-particle density of states. Section III ad-
dresses non-equilibrium relaxation properties of our sys-
tem as obtained from measurements of the two-time den-
sity autocorrelation function, starting from random ini-
tial conditions. The obtained aging scaling exponents
and their dependence on temperature, filling fraction,
interaction potential, and dimensionality constitute the
central findings of this work. We conclude with a brief
summary and discussion.

II. MODEL DESCRIPTION AND MONTE
CARLO SIMULATIONS

In this section, we briefly describe the Coulomb glass
model, explain our Monte Carlo algorithm, and list our
results on equilibrium properties obtained from our sim-
ulation runs in two and three dimensions with different
interaction potentials.

A. The Coulomb Glass Model

The Coulomb glass model was introduced by Efros
and Shklovskii to capture thermodynamic and transport
properties of localized charge carriers in doped semicon-
ductors [1]. A set of multiple, randomly (Poisson) dis-
tributed but fixed localized pinning sites (here selected
off-lattice on a continuum) are available to the charge
carriers in d spatial dimensions. Because of the strong
intra-site correlations these sites labeled by an index i
can only contain at most a single particle, which restricts
the site occupation numbers to ni = 0, 1. The system is
dominated by long-range repulsive interactions V (r) be-
tween the charge carriers. The combination of quenched
spatial site disorder and long-range interactions induce
strong correlation effects.

For the case of unscreened Coulomb interactions, the

Hamiltonian of the Coulomb glass model reads [1, 2]

H({ni}) =
∑

i

niϕi +
e2

2κ

∑

i6=j

(ni −K)(nj −K)

|Ri −Rj |
, (1)

where e denotes the carrier charge, κ a dielectric con-
stant, and Ri, ϕi, and ni respectively represent the posi-
tion vector, (bare) site energy, and occupancy of the ith
site, i = 1, . . . , N . The first term corresponds to (ran-
dom) site energies assigned to each accessible location;
since the system is dominated by the long-range forces,
we choose all ϕi = 0 to further simplify the model, while
drawing the positions Ri at random from a two- or three-
dimensional continuous set [18, 28, 31, 32]. The second
contribution encapsulates the repulsive Coulomb interac-
tions (with dielectric constant κ). In order to maintain
global charge neutrality, a uniform relative charge density
K =

∑

i ni/N is inserted; it constitutes the total carrier
density per site or filling fraction. Note that with ϕi = 0
the Hamiltonian (1) displays particle-hole symmetry, i.e.,
systems with filling fractionsK = 0.5+k and K = 0.5−k
are equivalent. Upon replacing the site occupation num-
bers with Ising spin variables σi = 2ni − 1 = ∓1, the
Coulomb glass maps onto a random-site, random-field
antiferromagnetic Ising model with long-range exchange
interactions [14].
The Coulomb glass model may be adapted to describe

the low-temperature properties of magnetic flux lines
in type-II superconductors with strong columnar pin-
ning centers [9–11]. Deep in the Bose glass phase, the
vortices become localized at the linear material defects,
and thermal transverse wandering is strongly suppressed,
which renders the system essentially two-dimensional.
The mutual repulsion interaction between two occupied
sites is now characterized by a modified Bessel function
K0(r/λ), essentially a long-range logarithmic potential
that is screened on the scale of the London penetration
depth λ, and the Hamiltonian becomes

H({ni}) = ǫ0
∑

i6=j

(ni−K)(nj−K)K0

(

|Ri −Rj|

λ

)

. (2)

The energy scale is now set by ǫ0 = (φ0/4πλ)
2 with the

magnetic flux quantum φ0 = hc/2e. We shall address the
dilute low-magnetic field regime where all site distances
rij = |Ri−Rj| ≪ λ and thus K0(x) ≈ − lnx (aside from
a constant). The random site positions Ri are drawn
from a continuous flat distribution in two dimensions.

B. Monte Carlo Simulation Algorithm

The Monte Carlo simulations were initiated by ran-
domly placing N sites within a square in two / cube
in three dimensions. Initially, we prepared the system
in a completely uncorrelated configuration, distributing
KN charge carriers at random among the N available
sites. The “charged” particles may then attempt hops
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from occupied sites a (with na = 1) to unoccupied sites
b (nb = 0). Following Refs. [31, 32], two multiplicative
factors determine the success rate of this hop, namely
(i) a strongly distance-dependent transfer process that
respectively models phonon-mediated tunneling in semi-
conductors, and vortex superkink proliferation in type-II
superconductors, and (ii) thermally activated jumps over
energy barriers represented by a Metropolis factor:

Γa→b = τ−1

0
e−2rab/ξ min[1, e−∆Eab/T ] , (3)

where τ0 represents a microscopic time scale, rij =
|Ri − Rj| is the distance between sites i and j, while
ξ characterizes the spatial extension of the localized car-
rier wave functions / thermal wandering of the magnetic
flux lines (we set Boltzmann’s constant kB = 1). The
rate for a thermally activated move from occupied site
a to empty site b is determined by the energy differ-
ence ∆Eab = ǫb − ǫa − V (rab), with the (interacting)
site energies ǫi =

∑

j 6=i(nj − K)V (rij), and where the
long-ranged interactions are governed by the Coulomb
potential V (r) = e2/κr for semiconductor charge carri-
ers, whereas V (r) = 2ǫ0K0(r/λ) for magnetic vortices.
The simulation consecutively performs the following

four stochastic processes [37, 46]: (i) Randomly select an
occupied site a (na = 1). (ii) Choose an unoccupied site b
(nb = 0) from the exponential probability distribution in
the first, “tunneling” term in Eq. (3). (iii) Attempt a hop
with a success probability determined by the Metropolis
factor in Eq. (3). (iv) If the hop attempt fails, return to
step one. If it is successful, move the particle from site a
to site b. Each Monte Carlo time step (MCS) consists of
N iterations of (i)–(iv). Note that all pair potential val-
ues V (rab) may be calculated at the beginning of the sim-
ulation run. Subsequently, only the site energies of sites a
and b need to be evaluated, which merely requires a sum-
mation of the pre-calculated pair potentials. Collecting
these interacting site energies and averaging over many
independent realizations with different random site place-
ments, we then compiled the (interacting) single-particle
density of states g(ǫ), to be discussed in the following
subsection. With all occupation numbers ni recorded at
each time step, we could furthermore study the temporal
evolution of the two-time carrier density autocorrelation
function, see Sec. III.
In the following, distances are measured relative to the

mean separation a0 between sites, and energies as well
as temperature scales are given in units of the typical
energy scales e2/κa0 and 2ǫ0 K0(a0/λ), where we used
λ/a0 = 8. As in Refs. [31, 32], we set ξ = a0; we have
in fact explored other values for ξ as well, 0.5a0 and 2a0,
but (within the applicability range of the model) found
that the ensuing changes can simply be absorbed into
a renormalized overall time scale τ0. Initially, KN par-
ticles were placed at random on the N = Ld available
sites to mimic a quench from a very high temperature.
Then the system was evolved for typically 106 MCS at
temperature T with the Monte Carlo dynamics defined
by the generalized Metropolis rate (3). We employed pe-

riodic boundary conditions, whence the potential due to
charges outside the simulation cell was calculated by mir-
roring it on the 2d adjacent faces. The minimum of the
distances between any given sites i and j and the latter’s
2d mirror images in neighboring cells is used to compute
the interaction potential V (rij).
We performed simulations for different system sizes

8 ≤ L ≤ 32; with temperatures in the range 0.001 ≤ T ≤
0.1; and filling fractions in the interval 0.25 ≤ K ≤ 0.5
(equivalent to 0.5 ≤ K ≤ 0.75 due to particle-hole sym-
metry). Running the simulations with various system
sizes L, we noticed no measurable finite-size effects; for
example, deviations between the obtained density auto-
correlations at L = 10 and L = 16 were less than 2% [46].
For each configuration (temperature T , filling fraction
K, etc.), the data were averaged over at least 1000 inde-
pendent simulation runs. Temperatures larger than 0.03
turned out not to be useful for our study of aging pro-
cesses since equilibrium was then reached far too quickly.
In contrast, for T < 0.01, the kinetics slowed down too
much for gathering statistically significant data within
computationally reasonable time frames. As will be dis-
cussed in more detail below, the dynamics also freezes
out within the numerically accessible simulation times
for filling fractions K < 0.4 (or K > 0.6).

C. Coulomb Gap Properties

The long-range interactions quickly generate strong
correlations among the “charged” particles. As they
maximize their distances subject to the availability of
randomly placed pinning sites, in equilibrium a pro-
nounced soft Coulomb gap forms at zero temperature in
the (interacting) single-particle density of states, or dis-
tribution of site energies g(ǫ) [2]. Following Efros and
Shklovskii’s insightful mean-field argument, this inter-
acting density of states vanishes precisely at the chemi-
cal potential µc that separates the low-energy filled sites
from the more energetic empty sites, g(µc) = 0. For
a power-law repulsive interaction potential V (r) ∼ r−σ,
the mean-field analysis further predicts that for σ < d

g(ǫ) ∼ |ǫ− µc|
γ (4)

vanishes algebraically near µc in d dimensions, with the
positive gap exponent γ = (d/σ) − 1 [2, 11]. Beyond
mean-field theory, this expression still represents a lower
bound for γ [26]. Indeed, Monte Carlo simulations typ-
ically yield gap exponent values that exceed the mean-
field estimate [11, 14, 16, 17, 19], especially in the absence
of random on-site disorder (ϕi = 0). For example, in
their very detailed numerical Coulomb glass study with
up to N = 125, 000 and 40, 000 sites in d = 3 and d = 2
dimensions, Möbius and Richter measured γ = 2.6± 0.2
and γ = 1.2± 0.1, respectively [19]. More recent studies,
however, found gap exponents much closer to the mean-
field predictions [24, 25]. Tunneling experiments on the
non-metallic semiconductor Si:B samples yielded a gap
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FIG. 1: (Color online) (a) Density of states g(ǫ) for the three-
dimensional Coulomb glass (L = 8, N = 512 sites) at half-
filling K = 0.5, at temperatures T = 0.001 (black), T = 0.01
(green/gray), and T = 0.1 (light blue/light gray). (b) Cor-
responding (effective) gap exponents γ(T ) vs. temperature;
(c) gap exponent γ(T ) in two dimensions (L = 16, N = 256,
K = 0.5). The dashed lines represent the mean-field predic-
tion γ = d− 1.

exponent γ ≈ 2.2 [4], while transport measurements on
ultrathin Be films were compatible with the mean-field
value p = 1/2, i.e., γ = 1 for d = 2 [5]. For the two-
dimensional Bose glass with essentially logarithmic re-
pulsion, the mean-field argument predicts an exponential
gap (σ → 0); in contrast, the data in Ref. [11] from zero-
temperature simulations with N = 400 sites could best
be fitted with power laws and (perhaps just effective)
gap exponents that increase with decreasing filling frac-
tion K, ranging from γ ≈ 2.2 for K = 0.4 to γ ≈ 2.9 for
K = 0.1. Indeed, correlation effects should be strongest
far away from half-filling, since the charged particles are
then least affected by the Poissonian spatial disorder.

In our Monte Carlo simulations performed in the ab-
sence of a background random site energy distribution,
the Coulomb gap in the single-particle density of states
forms very quickly, and appears fully formed within
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FIG. 2: (Color online) (a) Coulomb glass density of states g(ǫ)
in three dimensions (L = 8, N = 512 sites) at temperature
T = 0.02, for various filling fractions K = 0.5, 0.46875, 0.4375,
and 0.40625 (from bottom to top on right). (b) Corresponding
(effective) gap exponents γ(K) vs. filling fraction; (c) gap
exponent γ(K) in two dimensions (L = 16, N = 256, T =
0.02); the dashed lines show the mean-field values γ = d− 1.

∼ 50 . . . 100 MCS [37, 46]. To make contact with previous
work, we have measured the interacting density of states
/ distribution of site energies, and obtained approximate
values for the effective gap exponents γ from best linear
fits near the chemical potential µc in double-logarithmic
plots. In Fig. 1(a), we display results for the temperature
dependence of the shape of g(ǫ) for the three-dimensional
Coulomb glass with repulsive 1/r interaction potential
at half-filling. The graphs for T = 0.001 and T = 0.01
are indistinguishable within the statistical errors. At el-
evated temperature T = 0.1, g(µc) attains a non-zero
value; when the temperature scale reaches the width of
the soft gap in the density of states, the Coulomb gap
begins to fill owing to thermal excitations that wash out
the sharp boundary between filled and empty energy lev-
els. As shown in Fig. 1(b), the three-dimensional gap
exponent γ(T ) becomes independent of T once thermal
excitations can be neglected. In contrast, in two dimen-
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FIG. 3: (Color online) (a) Density of states g(ǫ) for the two-
dimensional Bose glass (L = 16, N = 256 sites) for K = 0.5,
at temperatures T = 0.001 (black), T = 0.01 (green/gray),
and T = 0.1 (light blue/light gray). (b) Corresponding (ef-
fective) gap exponents γ(T ) vs. temperature.

sions, Fig. 1(c), we observe a stronger temperature de-
pendence of the effective gap exponent. Extrapolating
to T → 0, our numerical values γ ≈ 2.5 ± 0.2 for d = 3
and γ ≈ 1.2± 0.2 deviate from the mean-field prediction
γ = d − 1 (for σ = 1), and are in good agreement with
Ref. [19]. The displayed error bars merely represent the
statistical errors which vary with the number of indepen-
dent realizations used for each parameter set.

In Fig. 2, we study the dependence of the soft Coulomb
gap on the filling fraction K. Moving away from half-
filling, g(ǫ) naturally becomes increasingly asymmetric.
Yet near its minimum at µc, the curves in Fig. 2(a) col-
lapse onto each other, resulting in gap exponents γ(K)
that are essentially independent of the total charge car-
rier density K, at least in the small range 0.4 < K ≤ 0.5.

Next we explore the distribution of site energies in
the two-dimensional Bose glass with long-range, essen-
tially logarithmic repulsion (λ = 8a0). As is evident in
Fig. 3(a), the emerging soft correlation gap is wider by
a factor of 5 as compared to the data for the Coulomb
1/r interaction. Therefore, even at T = 0.1 no ther-
mal effects can be visibly discerned. Yet measuring the
effective gap exponent reveals an even steeper temper-
ature dependence of γ(T ) than for the two-dimensional
Coulomb glass, compare Fig. 3(b) with Fig. 1(c), extrap-
olating to γ ≈ 3.5± 0.1 as T → 0 at half filling K = 1/2,
a considerably larger value than reported in Ref. [11]; in
that study, however, no neutralizing charge background
was employed, i.e., K was set to zero in the Hamiltonian
(2). As depicted in Fig. 4, the dependence of the effec-
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FIG. 4: (Color online) Bose glass density of states g(ǫ) in
two dimensions (L = 16, N = 256 sites) at temperature T =
0.02, for filling fractions K = 0.5, 0.46875, 0.4375, and 0.40625
(from bottom to top on right). (b) Corresponding (effective)
gap exponents γ(K) vs. filling fraction.

tive gap exponent γ(K) on the filling fraction K is rather
weak within the interval 0.4 < K ≤ 0.5.

III. NON-EQUILIBRIUM RELAXATION AND
AGING SCALING

We now proceed to our numerical results for non-
equilibrium relaxation features of the Coulomb and Bose
glasses initially prepared in a random, high-temperature
state, as measured in the two-time density autocorre-
lation function. We first discuss the general relaxation
scenario and the two distinct aging scaling fits we have
implemented, before we provide the resulting scaling ex-
ponent values.

A. Two-Time Density Autocorrelation Function

In our initially entirely random distribution of charge
carriers in the system, inevitably many particles are
placed in close vicinity. They strongly repel each other
and are fast displaced to energetically much more favor-
able sites. Correspondingly, the soft correlation-induced
Coulomb gap in the density of states develops quite
rapidly within 50 . . . 100 MCS. Subsequently subtle spa-
tial rearrangements take place that further reduce the
total energy, as becomes clearly visible in the temporal
evolution of the energy landscape contour plots shown in
Fig. 5. These processes proceed on considerably longer
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FIG. 5: Energy landscape contour plots for the Coulomb glass with 1/r potential in d = 2 dimensions (L = 16, K = 1/2,
T = 0.02) after (a) 10 MCS and (b) 106 MCS.

time scales; yet in this intermediate regime the system re-
tains memory of its initial configuration, and time trans-
lation invariance is broken, in contrast to the asymptotic
stationary, equilibrated state [44, 45].
In order to monitor the slow structural relaxation

kinetics in the Coulomb and Bose glass, we compute
the (normalized) two-time carrier density autocorrelation
function [31, 32, 37]

C(t, s) =
〈ni(t)ni(s)〉 −K2

K(1−K)
=

∑

i ni(t)ni(s)−K2N

K(1−K)N
,

(5)
where s indicates the elapsed time after the high-tem-
perature quench, when the Monte Carlo simulation runs
are initiated, while t > s refers to a later “measure-
ment time” when the temporal correlations are obtained
relative to the “waiting time” s. Since n2

i = ni and
∑

i ni = KN , at equal times C(s, s) = 1.
Representative data from our simulation runs are dis-

played in Fig. 6. The linear plot of C(t, s) vs. the
measurement time t in Fig. 6(a) shows that even af-
ter 106 MCS no stationary, equilibrium state has been
reached yet. Graphing the same autocorrelation data
against the time difference t − s, in Fig. 6(b) on a loga-
rithmic scale, establishes that time translation invariance
is indeed manifestly broken. In accord with the data of
Ref. [31], we observe that following a fast initial decay to-
wards an almost flat quasi-“plateau” region, the graphs
for different waiting times s become distinct. Indeed,
the longer “aged” runs for larger waiting times remain
in an intermediate state for more extended time periods,
before the density autocorrelation ultimately resumes its
slower relaxation towards zero. In analogy with the phe-
nomenology in structural glasses (see, e.g., Ref. [47]), we
term these two distinct relaxation regimes visible in our
data “β” and “α relaxation”, respectively. In the follow-

ing, we address the power law scaling for the slow density
relaxation processes in the α relaxation regime.
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FIG. 6: (Color online) Non-equilibrium relaxation and ag-
ing for the carrier density autocorrelation function (5) in
the two-dimensional Coulomb glass (for L = 16, K = 1/2,
T = 0.02). (a) C(t, s) vs. t for various waiting times
s = 100, 200, 500, 1000, 2000, 5000, 10000 (from bottom to
top); (b) same data plotted vs. t− s on a logarithmic scale.
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set of waiting times s = 100, 200, 500, 1000, 2000, 5000, 10000
(from bottom to top): (a) full aging scaling according to
Eq. (6) with µ = 1; (b) subaging scaling, Eq. (6) with b = 0.

B. Dynamical Aging Scaling

We consider the aging scaling limit, where both s, t ≫
τ0 (or any other microscopic time scale), and in addition
t ≫ s. i.e., t− s ≫ τ0. In the α relaxation regime, time
translation invariance does not hold, whence the carrier
density two-time autocorrelation function (5) does not
just depend on the time difference t − s, but on both t
and s separately. Following the notations in Ref. [45], we
posit the following general aging scaling form

C(t, s) = s−bfC(t/s
µ) , (6)

with scaling exponents b ≥ 0 and µ ≤ 1. In many sim-
ple, analytically tractable situations, characterized by a
single algebraically growing length scale L(t) ∼ t1/z with
dynamic scaling exponent z ≥ 1, one in fact obtains ag-
ing scaling laws of the form (6) with µ = 1, often referred
to as “full aging”. In the limit t/s → ∞, in this situation
one furthermore expects the scaling function to follow
the algebraic decay

fC(x) ∼ [L(t)/L(s)]−λC ∼ (t/s)−λC/z (7)

with the autocorrelation exponent λC ≥ 0. Promi-
nent examples that display this full aging scaling sce-
nario are the purely relaxational dynamics in the kinetic
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t/sm
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FIG. 8: (Color online) Aging scaling collapse for the den-
sity autocorrelations as in Fig. 7, but now for the three-
dimensional Coulomb glass (L = 8, K = 1/2, and T = 0.02;
waiting times s as in Figs. 6 and 7).

Ising model in one dimension [48, 49], time-dependent
Ginzburg-Landau models quenched to the critical point
[50, 51], and coarsening of the spherical model A in the
low-temperature phase, both with short-range [52, 53]
and long-range [54–56] interactions.

In Fig. 7(a), we demonstrate scaling collapse of the
two-dimensional Coulomb glass density autocorrelation
data from Fig. 6 (L = 16) utilizing the full-aging scaling
form (6) with µ = 1. Focusing on the data for t−s in the
range 3 ·104 . . . 106 MCS, and following the interpolation
method described in Ref. [57], we obtain optimal collapse
onto a single master curve for b = 0.032±0.007. From the
asymptotic long-time decay we furthermore infer λC/z ≈
0.10± 0.02 for T = 0.02 at half filling K = 1/2 [37].

Alternatively, one may impose b = 0 in Eq. (6), and
instead work with a non-trivial scaling exponent µ < 1;
this “subaging scaling” is frequently employed in the spin
glass literature [45]. As purely phenomenological fits,
both scaling ansätze are in essence equivalent. The sub-
aging scaling collapse of our data for the two-dimensional
Coulomb glass is depicted in Fig. 7(b), best fit with the
value µ = 0.66 ± 0.04 [37]. Similar scaling properties
are obtained for the three-dimensional Coulomb glass as
well as for the two-dimensional Bose Glass. Figs. 8 and 9
show a characteristic example for each of these two cases.
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FIG. 9: (Color online) Aging scaling collapse for the density
autocorrelations as in Fig. 7, for the two-dimensional Bose
glass with L = 24, K = 1/2, and T = 0.02; waiting times s
as in Figs. 6 and 7.

C. Coulomb / Bose Glass Aging Scaling Exponents

We collected data for the two-time density autocor-
relation function for the Coulomb glass model in two
(with L = 16, N = 256) and three dimensions (L = 8,
N = 512), as well as for the two-dimensional Bose glass
with essentially logarithmic repulsion (L = 24, N = 576)
at various temperatures and filling fractions. We then
determined the associated scaling exponents in the long-
time aging regime following the procedures outlined in
the previous subsection. (The resulting scaling plots can
be found in Ref. [46].)
The thus obtained full-aging scaling exponents b and

λC/z, see Eqs. (6) with µ = 1 and (7), are compiled
in Fig. 10(a) and (b) at half filling K = 1/2 as func-
tions of the temperature T (see also Refs. [31, 32]). As
one would expect, the non-equilibrium relaxation from
the randomized initial state slows down drastically upon
lowering the temperature, here clearly reflected in suc-
cessively smaller values for b and λC/z as T is reduced
from 0.03 to 0.01. Indeed, for even lower temperatures
T < 0.01, our systems basically freeze in and we could
not obtain statistically meaningful data for the ensuing
extremely rare relaxation events. At T = 0.01, we find
b = 0.001±0.001 for the two-dimensional Coulomb glass,
see the left panel in Fig. 10(a), borderline consistent with
the recently developed mean-field theory for aging relax-
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FIG. 10: Aging scaling exponents at K = 1/2 as functions of
T for the Coulomb glass (1/r interaction) in two (left panels)
and three dimensions (center), and for the Bose glass (with
logarithmic repulsion, right): (a) full aging scaling exponent
b, Eq. (6) with µ = 1; (b) autocorrelation decay exponent
λC/z, Eq. (7); (c) subaging exponent µ, Eq. (6) with b = 0.

ation in disordered electron glasses that predicts logarith-
mic scaling [33, 34, 36, 38]. However, in three dimensions
we measure b = 0.006 ± 0.001 at our lowest accessible
temperature T = 0.01 (center panel), while for the two-
dimensional Bose glass b = 0.0009± 0.0003 (right panel).
The associated autocorrelation to dynamic exponent ra-
tios at T = 0.01 are λC/z = 0.036 ± 0.005 (Coulomb
glass, d = 2), λC/z = 0.047 ± 0.002 (Coulomb glass,
d = 3), and λC/z = 0.026±0.003 (Bose glass, d = 2), see
Fig. 10(b). Note that relaxation processes in the Bose
glass generically happen much slower as compared to the
Coulomb glass (in d = 2 and d = 3 dimensions), as a con-
sequence of the much shallower soft gap in the density of
states, see Figs. 2(a) and 4(a).

Our corresponding results from the alternative subag-
ing scaling analysis, Eq. 6 with b = 0, are plotted in
Fig. 10(c). Note that the drastic slowing-down of the
relaxation processes with reduced temperature now be-
comes apparent as a marked increase of the subaging
scaling exponent µ, which almost approaches 1 for the
two-dimensional Coulomb glass at T = 0.01. At this
lowest temperature and half filling K = 1/2, our data
yield µ = 0.96 ± 0.008 and µ = 0.86 ± 0.05 for the
Coulomb glass in two and three dimensions, respectively,
and µ = 0.9± 0.0 for the two-dimensional Bose glass.
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FIG. 11: Aging scaling exponents at T = 0.02 as functions of
K for the Coulomb glass (1/r interaction) in two (left panels)
and three dimensions (center), and for the Bose glass (with
logarithmic repulsion, right): (a) full aging scaling exponent
b, Eq. (6) with µ = 1; (b) autocorrelation decay exponent
λC/z, Eq. (7); (c) subaging exponent µ, Eq. (6) with b = 0.

Intriguingly, our data reveal that the aging scaling ex-
ponents also depend on the total charge carrier density
K. As evidenced in Fig. 11, the non-equilibrium relax-
ation processes from the initial high-temperature config-
urations proceed increasingly slower as the filling fraction
K is tuned away from K = 1/2. These plots list our re-
sults measured at T = 0.02 for K = 0.40625, 0.4375,
0.46875, and K = 0.5 for the Coulomb glass model in
two (left panels) and three dimensions (center panels), as
well as in addition for K = 0.375 for the two-dimensional
Bose glass system; but recall that owing to particle-hole
symmetry the same data apply for both K = 0.5 ± k
above and below half-filling. At the lowest filling frac-
tions we investigated for the two-dimensional Coulomb
and Bose glasses, we already obtain unphysical values
b < 0 and correspondingly µ > 1: These systems at
K = 0.40625 and 0.375, respectively, are already frozen
in on the time domain accessible to our Monte Carlo
simulations. We are hence limited to the carrier density
range 0.4 < K < 0.6.

Within the full-aging scaling analysis, Figs. 11(a) and
(b), it is apparent that the Bose glass exponents dis-
play a much weaker dependence on the filling fraction
than is visible for either the two- or three-dimensional
Coulomb glass. We tentatively attribute this observa-

tion to the considerably wider soft gap in the density of
states that emerges for the logarithmic interaction po-
tential as compared with the Coulomb 1/r repulsion,
compare Figs. 2(a) and 4(a). In the long-time aging
scaling regime, spatial rearrangements only redistribute
energy levels deep inside this Coulomb gap, which at-
tains a much more K-independent shape and still re-
mains very shallow for the Bose glass in, e.g., the interval
|ǫ−µc| ≤ 0.5, for which the effects of modified filling frac-
tions already become clearly discernible in the Coulomb
glass. Remarkably, though, our data yield a noticeable
dependence of the subaging scaling exponent µ even for
the Bose glass with logarithmic interactions.
Consequently, the aging scaling exponents in the

Coulomb and Bose glass appear to be non-universal, de-
pending both on temperature and filling fraction, aside
from dimensionality and the form of the long-range re-
pulsive potential. Non-universal aging scaling has also
been observed in other disordered systems, as for example
the two-dimensional random-site [58] and random-bond
[59, 60] Ising models or the three-dimensional Edwards-
Anderson spin glass with a bimodal distribution of the
coupling constants [60, 61], where some of the scaling ex-
ponents were found to depend on temperature and/or the
disorder. Our present work therefore provides additional
interesting examples of disordered systems that display
non-universal aging exponents.

IV. SUMMARY AND CONCLUSIONS

We have carefully investigated non-equilibrium relax-
ation processes and aging scaling of the Coulomb glass
model in two and three dimensions, and of the Bose glass
system in two dimensions through Monte Carlo simula-
tions at low temperatures. We confirm that the long-time
dynamics in the α relaxation regime for the two-time
autocorrelation function can be described by the simple
general aging scaling form (6). We have employed either
full-aging or subaging simplified scaling forms, and as-
sess that neither version appears to provide substantially
superior scaling collapse, although on physical grounds
we tend to prefer full-aging scaling described by Eq. (6)
with µ = 1 and Eq. (7). The extracted aging scaling ex-
ponents depend on the filling fraction and temperature,
in addition to dimensionality and form of the repulsive
interaction potential, and are hence not universal. More-
over they follow a common trend: We observe that as ei-
ther the temperature decreases or the charge carrier den-
sity deviates more from half-filling, the aging exponents
reflect considerably slowed-down relaxation kinetics.
A series of recent studies [58, 60, 62] has shown that

in disordered coarsening systems governed by a single
length scale L(t) one typically encounters rather compli-
cated growth laws, characterized by a cross-over from a
transient power-law growth to asymptotically logarith-
mic growth. Using this length L(t) as variable in the
aging scaling analysis reveals that the full aging scenario
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prevails in these systems. It it an interesting question
whether a similar cross-over between different growth
regimes also exists in the Coulomb and Bose glasses, for
which we would tentatively interpret L(t) to describe the
emerging spatial (anti-)correlations as the mutually re-
pelling particles relax towards more energetically favor-
able sites. One way to extract a time-dependent length
is through an analysis of the space-time correlation func-
tion. Computing this correlation function is a challenging
task for our off-lattice model with long-range repulsive in-
teractions. Because of the importance of this length in
the non-equilibrium relaxation process, we plan to come
back to this issue in the future.
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[10] U. C. Täuber, H. Dai, D. R. Nelson, and C. M. Lieber,

Phys. Rev. Lett. 74, 5132 (1995).
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