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We obtain exact solutions for kinks in φ8, φ10 and φ12 field theories with degenerate minima,
which can describe a second-order phase transition followed by a first-order one, a succession of two
first-order phase transitions and a second-order phase transition followed by two first-order phase
transitions, respectively. Such phase transitions are known to occur in ferroelastic and ferroelectric
crystals and in meson physics. In particular, we find that the higher-order field theories have
kink solutions with algebraically-decaying tails and also asymmetric cases with mixed exponential-
algebraic tail decay, unlike the lower-order φ4 and φ6 theories. Additionally, we construct distinct
kinks with equal energies in all three field theories considered, and we show the co-existence of up
to three distinct kinks (for a φ12 potential with six degenerate minima). We also summarize phonon
dispersion relations for these systems, showing that the higher-order field theories have specific
cases in which only nonlinear phonons are allowed. For the φ10 field theory, which is a quasi-exactly
solvable (QES) model akin to φ6, we are also able to obtain three analytical solutions for the classical
free energy as well as the probability distribution function in the thermodynamic limit.

PACS numbers: 03.50.-z, 11.27.+d, 62.20.D-, 77.80.B-

I. INTRODUCTION

First- and second-order phase transitions are usu-
ally modeled by φ6 and φ4 field theories, respectively
[1]. An asymmetric double well in φ4 field theory can
also describe first-order transitions [2]. However, if one
has to capture all symmetry-allowed phases in a low-
dimensional phase transition [3] or describe a succes-
sion of phase transitions, then one has to consider either
multi-component field theories [4] or higher-than-sixth-
order single-component field theories [5, 6]. For example,
it is well known [3, 7] that while φ8 field theory can de-
scribe a second-order phase transition followed by a first-
order phase transition, one has to go to φ10 field theory
to describe a succession of two first-order phase transi-
tions. Indeed, there are examples of crystals undergoing
two successive (ferroelastic and ferroelectric) first-order
phase transitions [8]. The φ8 field theory has also been
used to model massless mesons with long-range inter-
actions [5] as well as isostructural phase transitions [9].
Similarly, the φ10 field theory has been used in the study
of crystallization of chiral proteins [10]. Meanwhile, the
φ12 field theory has been invoked to describe the phe-
nomenology of phase transitions in highly piezoelectric
perovskite materials [11, 12].

The study of kinks (also known as topological solitons
[13]) and domain walls in classical and quantum field
theories [14, 15], in theories of gravity and cosmology
[16, 17] and even in the nonlinear field theories of fluid
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mechanics [18] remains a topic of active research. Simi-
larly, Ginzburg–Landau theories [19, 20] have been very
successful in explaining superconducting, superfluid and
many other transitions as well as in modeling topological
defects (e.g., vortices and domain walls) in a variety of
functional materials, through the inclusion of the gradi-
ent of the relevant order parameter in the free energy.

In this context, solitary wave solutions of some spe-
cial octic potentials have been presented before [21, 22].
Similarly, generic properties of kink solutions of certain
field theories with polynomial self-interaction have been
studied previously [23–25]. However, to the best of our
knowledge, the various kink solutions of the φ8, φ10 and
φ12 field theories with degenerate minima have not been
studied systematically (and neither has the correspond-
ing statistical mechanics). The purpose of this work is to
provide such solutions. In addition, we show that as in
φ6 field theory (but unlike φ4 field theory), it is possible
to obtain an exact expression for the classical free en-
ergy and probability distribution function (PDF) [26, 27]
at a given temperature in the thermodynamic limit of
the φ10 field theory. This is related to the fact that the
Schrödinger equation with a φ4n (e.g., φ8, φ12) potential
is not analytically solvable, whereas with a φ4n+2 (e.g.,
φ6, φ10) potential it is quasi-exactly solvable (QES) [28].

II. φ8 FIELD THEORY

Throughout this paper, we refer to φ = φe as an equi-
librium value if V (φe) = 0, by degenerate extremum we
mean φ = φe such that V (φe) = V ′(φe) = 0, all poten-
tials are assumed symmetric, i.e., V (−φ) = V (φ), and
we use Planck units (m = c = ~ = 1) to simplify the
notation.
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First, we will discuss the general picture, describing
different possible phases for a generic potential V , then
we will discuss the kink solutions in the various phases.

A. The Various Phases

The φ8 potential (free energy) is given, generically, by

V (φ) = λ2(φ8 − α6φ
6 + α4φ

4 − α2φ
2 + α0), (1)

where, without loss of generality, the coefficient of the φ8

term is set to +1 in units of λ2. The coefficients of φ6, φ4

and φ2 are, in general, arbitrary and there are eight dif-
ferent possibilities, depending on whether all three, two,
one or none of the coefficients are positive. However, if
one wants to consider a model describing a second-order
transition followed by a first-order transition, then one
must take α6,4,2 > 0 in (1). Additionally, a particular
choice of α0 ensures that the minimum value of the po-
tential is zero, i.e., minφ V (φ) = 0.
While the potential is determined by three parameters

(α6,4,2), one can show, by using scaling arguments, that
only two of them are independent. In a Landau-type the-
ory, the coefficients α6,4,2 have some dependence on the
thermodynamic temperature T . Thus, at the first-order
phase transition point T = T I

c , V has four degenerate
minima, and the coefficients α6, α4 and α2 = αc

2 are
related by

α4 =
α2
6

4
+

2αc
2

α6
. (2)

In particular, if the four degenerate minima are at φ =
±a,±b, then the potential at T = T I

c has the factorized
form

V (φ) = λ2(φ2 − a2)2(φ2 − b2)2. (3)

Without loss of generality, we choose b > a throughout
this paper, unless otherwise specified. On comparing (1)
and (3), and enforcing minφ V (φ) = 0, it is clear that the
relationship between α6,4,2,0 and a, b is given by

α6 = 2(b2 + a2),

α4 = (b4 + a4 + 4a2b2),

α2 = αc
2 = 2a2b2(b2 + a2),

α0 = a4b4.

(4)

Clearly, α6,4,2,0 > 0. In this case, one can also show

that the potential has maxima at φ = 0,±
√

(b2 + a2)/2.
From (4), we also find that α4/α

2
6 is constrained to satisfy

the inequality

1

4
<
α4

α2
6

<
3

8
. (5)

Now, what happens as T is slowly increased from T I
c ?

It is easily shown that, in this model, keeping α6, α4 fixed

and decreasing α2 (from its value αc
2 at T = T I

c ), T goes
above T I

c . As soon as T is slightly greater than T I
c , the

potential has two degenerate absolute minima at φ = ±â,
where 0 < â < a. Furthermore, there are now two local

minima at φ = ±b̂, where 0 < b̂ < b, and there are three
maxima including one at φ = 0. As the temperature is
further increased, the degenerate absolute minima at φ =
±a persist until the onset of the second-order transition
at T = T II

c , which corresponds to α2 = 0. Beyond this
point (T > T II

c ), the absolute minimum is now at φ = 0,
not at φ = ±a. Meanwhile, it can be shown that, as long

as 1/4 < α4/α
2
6 < 9/32, there are local minima at φ = ±b̂

even at T = T II
c (i.e., α2 = 0); if α4/α

2
6 = 9/32, then for

α2 = 0, there are inflection points at φ = ±b̂. However, if
9/32 < α4/α

2
6 < 3/8, then, as the temperature is slowly

increased from T I
c , the local minima at φ = ±b̂ disappear

even before the second order transition point T = T II
c

(i.e., α2 = 0) is reached.
Let us now discuss what happens as temperature is

lowered from T I
c , i.e., α2 is increased from its value αc

2 at
T I
c (while keeping α6, α4 fixed). As soon as T is slightly

less than T I
c , the potential has degenerate absolute min-

ima at φ = ±b̂, where b̂ > b, while there are degenerate
local minima at φ = ±â, where â > a, and three maxima
including one at φ = 0. Finally, beyond a critical point,
the local minima at φ = ±â disappear, and the potential

only has absolute minima at φ = ±b̂ and a maximum at
φ = 0. This picture persists no matter how much further
the temperature is lowered (i.e., α2 is increased). For
example, it is easily shown that at α2 = 2αc

2 (for given
α6, α4), the potential (1) can be written as

V (φ) = λ2[φ2 − (b2 + a2)]2[φ4 + 2a2b2]. (6)

Hence, at α2 = 2αc
2, V has absolute minima at φ =

±
√
b2 + a2, a maximum at φ = 0 and no local minima

as long as (b2 + a2)2 < 16a2b2. Using (4), it follows that
the local minima at φ = ±a disappear for some value of
α2 < 2αc

2 if 9/32 < α4/α
2
6 < 3/8. On the other hand,

if 1/4 < α4/α
2
6 < 9/32, then V has local minima at

φ = ±â with a < â, while for α4/α
2
6 = 9/32, V has

inflection points at φ = ±
√

(b2 + a2)/2.
As an illustration, consider the potential

V (φ) = λ2[φ8 − 4φ6 + (9/2)φ4 − α2φ
2 + (1/16)] (7)

for various values of the parameter α2. For α2 = αc
2 = 1

this potential has four degenerate minima with b2+a2 =
2 and b2−a2 =

√
3 [see (3) and (4)], hence this case corre-

sponds to the first-order phase transition at T = T I
c . Fur-

thermore, for the potential in (7), α4 = (9/32)α2
6, hence

at T = T II
c (i.e., α2 = 0), V has an absolute minimum at

φ = 0 and inflection points at φ = ±
√

(3/4)(b2 + a2) =

±
√

3/2. Similarly, for α2 = 2αc
2 = 2, there are abso-

lute minima at φ = ±
√
2, a maximum at φ = 0 and

points of inflection at φ = ±
√

(b2 + a2)/2 = ±1. Thus,
for 0 < α2 < 1, the potential (7) has absolute minima

at φ = ±â, local minima at φ = ±b̂ and three maxima,
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FIG. 1: (Color online.) (a) Example potentials of the form (7) for various illustrative values of the coefficient of the quadratic
term, α2, showing the various phases and phase transitions in the φ8 theory. (b) Zoom-in of (a) near the origin.

including one at φ = 0. Similarly, for 1 < α2 < 2, the

potential has absolute minima at φ = ±b̂, local minima
at φ = ±â and three maxima, including one at φ = 0.
For α2 < 0, the potential has a single minimum at φ = 0,
while for α2 > 2, the potential has degenerate minima
at φ = ±b, a maximum at φ = 0 and no local minima.
In Fig. 1, we show plots of the example potential (7) for
α2 = 0, 0.5, 1, 1.5, 2, 2.5 (in units of λ2) to illustrate its
structure.

B. Four Degenerate Minima

1. T = T I

c

At the first-order phase transition, i.e., T = T I
c , the

potential can always be written in the form (3) with a, b
and α6,4,2 being related by (2). Since there are four de-
generate minima, we expect two different kinds of kinks,
one connecting a to b (or, equivalently, −b to −a) and
another connecting −a to +a, as x goes from −∞ to
+∞. In general, these kinks have different energies. No-
tice that if a kink goes from a to b, as x goes from −∞
to +∞, then the kink’s energy is given by

Ek =

∫ +∞

−∞
dx

[

1

2

(

dφ

dx

)2

+ V (φ)

]

=

∫ b

a

dφ
√

2V (φ),

(8)
where the last equality follows from the first integral of
the equation of motion, i.e., dφ/dx =

√

2V (φ) [5, 30];
again, without loss of generality, it is assumed that
minφ V (φ) = 0, i.e., V (φ) ≥ 0 for all φ, which is always
true when kink solutions exist.
From the first integral of the equation of motion [31],

the shape of the kink can be found by quadrature:

√
2λx =

∫

dφ
√

(a2 − φ2)2(b2 − φ2)2
. (9)

As mentioned above, there are two kinds of kinks to be
considered, which leads to two possible choices in the
branch cut of the square root in (9). Let us consider the
two cases separately.
a. Kink connecting −a to +a In this case, |φ| < a

and b > a by convention, hence (9) becomes

√
2λx =

∫

dφ

(a2 − φ2)(b2 − φ2)
. (10)

The integral is evaluated using partial fractions to obtain
the implicit solution, which was also found by Lohe [5,
Eq. (63)]:

eµx =

(

a+ φ

a− φ

)(

b− φ

b+ φ

)a/b

, (11)

where µ = 2
√
2λa(b2 − a2). The approach to the asymp-

totes at φ = ±a can be shown to be exponential from
(11):

φ(x) ≃















−a+ 2a
(

b−a
b+a

)a/b

eµx, x→ −∞,

+a− 2a
(

b−a
b+a

)a/b

e−µx, x→ +∞,

(12)

from which it follows that this kink is symmetric. The
corresponding kink energy is obtained using (8):

E
(1)
k =

4
√
2

15
λa3(5b2 − a2). (13)

b. Kink connecting a to b (or −b to −a) In this case,
a < φ < b and b > a by convention, hence (9) takes the
form

√
2λx =

∫

dφ

(φ2 − a2)(b2 − φ2)
. (14)
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FIG. 2: (Color online.) φ8 field theory at the first-order phase transition, T = T I

c . (a) Example φ8 potential with four
degenerate minima (3) and a representative φ4 potential V (φ) = λ2(φ2 − a2)2 superimposed as the dotted curve. (b) Kink
solution (11) connecting −a to +a and the generic φ4 kink φ(x) = 1

2
(φ+∞ +φ−∞)+ 1

2
(φ+∞ −φ−∞) tanh(λx) = a tanh(λx) for

φ±∞ = ±a superimposed as the dotted curve. (c) Kink solution (15) connecting a to b. In all panels, a = (−1 +
√
3)/2 and

b = (1 +
√
3)/2.

The integral is again evaluated using partial fractions to
obtain the implicit solution

eµx =

(

φ− a

φ+ a

)(

b+ φ

b− φ

)a/b

, (15)

where µ = 2
√
2λa(b2−a2) as before. The approach to the

asymptotes at φ = a, b can be shown to be exponential
from (15):

φ(x) ≃



















a+ 2a

(

b− a

b+ a

)a/b

eµx, x→ −∞,

b− 2b

(

b− a

b+ a

)b/a

e−µxb/a, x→ +∞.

(16)

Note, however, that the rate at which φ asymptotes to a
is given by µ, while the rate at which φ asymptotes to
b is given by µb/a, hence this kink is asymmetric. The
kink’s energy is

E
(2)
k =

2
√
2

15
λ(b − a)3(b2 + 3ab+ a2). (17)

Comparing the energies of the two kink solutions [(13)

and (17)], we find that E
(1)
k T E

(2)
k if b/a S 2/(3−

√
5). In

particular, for b/a = 2/(3−
√
5), the two kinks have equal

energies. It would be of interest to study the interaction
between two kinks of the same type as well as two kinks of
different types in the case when their energies are equal.
As an illustration, consider the potential (3) with

a2 + b2 = 2 and a2b2 = 1/4 so that αc
2 = 1. This leads

to eight possible pairs (a, b) with four of them satisfying
b2 > a2. Without loss of generality, we also take a > 0
and b > 0, hence a = (−1 +

√
3)/2 and b = (1 +

√
3)/2.

Figure 2 shows the potential (3) and the two kink so-
lutions (11) and (15). The kink solution from (15) is
clearly asymmetric, consistent with the asymptotic be-
haviors given in (16).

2. T I

c < T < T II

c

For temperatures above the first-order phase transi-
tion, the potential (1) can be written as

V (φ) = λ2(φ2 − â2)2[φ4 − dφ2 + e], d2 < 4e, â < a,
(18)

and there exists a kink solution connecting the two de-
generate minima at φ = ±â, as x goes from −∞ to
+∞. As an illustration, consider the potential (7) with
α2 = 121/128. In this case, (18) takes the form

V (φ) = λ2[φ2 − (1/8)]2[φ4 − (15/4)φ2 + (227/64)]. (19)

3. T < T I

c

For temperatures below the first-order phase transi-
tion, the potential (1) can be written as

V (φ) = λ2(φ2 − b̂2)2[φ4 − dφ2 + e], d2 < 4e, b < b̂,
(20)

and there exists a kink solution connecting the two degen-

erate minima at φ = ±b̂, as x goes from −∞ to +∞. As
an illustration, consider the potential with α2 = 135/128.
In this case, (20) takes the form

V (φ) = λ2[φ2 − (15/8)]2[φ4 − (1/4)φ2 + (3/64)]. (21)

These kink solutions for T ≷ T I
c are illustrated in

Fig. 3. Notice that for the case T < T I
c (dashed kink

in right panel of Fig. 3), the kink “feels” the influence of

the two local minima at φ = ± 1
4

√

3(3−
√
5) ≈ ±0.378,

similarly to kinks in certain cases of φ6 field theory [32].

C. Three Degenerate Minima

A φ8 potential with three degenerate minima can have
two possible forms. In each case, there exist two kink so-
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FIG. 3: (Color online.) Away from the first-order phase tran-
sition, T 6= T I

c , in φ8 field theory. (a) The potentials (19)
(solid, T > T I

c ) and (21) (dashed, T < T I

c ). (b) The corre-
sponding kinks computed by solving the equation of motion
dφ/dx =

√

2V (φ) numerically subject to the symmetry con-
dition φ(0) = 0.

lutions, only one of which is distinct due to the symmetry
of the potential.

1. Case I: α2 = 0

Let

V (φ) = λ2φ4(φ2 − a2)2, (22)

which has degenerate minima at φ = 0,±a. In this case,
α6,4 > 0 while α2,0 = 0. The corresponding kink solution
(connecting 0 to a or −a to 0, as x goes from−∞ to +∞),
which was also obtained by Lohe [5, Eq. (67)], is given
implicitly by

µx = −2a

φ
+ ln

(

a+ φ

a− φ

)

, (23)

where µ = 2
√
2λa3. [It should be noted that there is a

typographical error in [5, Eq. (67)] that is evident upon
comparison with (23).] From (23), the approach to the
asymptotes at φ = 0, a can be shown to be

φ(x) ≃











− 2a

µx
, x→ −∞,

a− 2a

e2
e−µx, x→ +∞.

(24)

Note that this kink is asymmetric because the asymp-
totics as x → ±∞ differ, specifically the kink decays as
1/x as x→ −∞, while it approaches φ = a exponentially.
The corresponding kink energy is

Ek =
2
√
2

15
λa5. (25)

2. Case II: α2 < 0

Let

V (φ) = λ2φ2(φ2 − a2)2(φ2 + b2), (26)

which has degenerate minima at φ = 0,±a. Note that,
in this case,

α6 = b2 − 2a2,

α4 = a2(a2 − 2b2),

α2 = −a4b2,
α0 = 0.

(27)

It can be shown that α6 > 0 as long as
√
2a > b > a,

while α4,2 < 0. The corresponding kink solution (con-
necting 0 to a or −a to 0 as x goes from −∞ to +∞) is
given implicitly by

eµx =

(

√

b2 + φ2 − b
√

b2 + φ2 + b

)

√
b2+a2/b

×
(
√
b2 + a2 +

√

b2 + φ2√
b2 + a2 −

√

b2 + φ2

)

, (28)

where µ = 2
√
2λa2

√
b2 + a2. From (28), the approach to

the asymptotes at φ = 0, a can be shown to be

φ(x) ≃











2b
[

1 + 2b
a2 (b + σ)

]−b/(2σ)
eµxb/(2σ), x→ −∞,

a− 2σ
a

[

1 + 2b
a2 (b− σ)

]σ/b
e−µx, x→ +∞,

(29)

where σ =
√
b2 + a2. Note the differing rates µb/(2σ)

and µ at which the asymptotes at x→ ∓∞, respectively,
are approached, hence this kink is asymmetric in general.
The corresponding kink energy is

Ek =

√
2

15
λ
[

2(b2 + a2)5/2 − b3(2b2 + 5a2)
]

. (30)

As an illustration, consider a = 3/4 and b = 1. This
kink, as well as the one from the previous subsubsec-
tion, are illustrated in Fig. 4. Note that, in both cases,
the kinks are asymmetric as shown by the asymptotic
expressions given in (24) and (29). For Case I, the mis-
match between the φ8 and the φ6 kink is mainly due to
the slow algebraic decay (as x → −∞) of the tail of the
kink, see (24).

D. Two Degenerate Minima

A φ8 potential with two degenerate minima can have
two possible forms. In each case, there exist a kink solu-
tion connecting the degenerate minima at φ = ±a, as x
goes from −∞ to +∞.

1. α2 = 0

Let

V (φ) = λ2(φ2 − a2)4, (31)
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FIG. 4: (Color online.) φ8 field theory with three degenerate
minima. (a) The potentials (22) (bottom curve, blue online),
(26) (top curve, red online), and a representative φ6 potential
V (φ) = λ2φ2(φ2 − a2)2 (dotted). (b) The kink solutions (23)
(top curve, blue online) and (28) (bottom curve, red online)
connecting 0 to a, and the corresponding φ6 kink φ(x) =

a/
√

1 + e−2
√

2a2λx (dotted). In all panels, a = 3/4 and b = 1.

which has degenerate minima at φ = ±a. Note that in
this case α6,4,2,0 > 0. The kink solution is given implic-
itly by

µx =
2aφ

a2 − φ2
+ ln

(

a+ φ

a− φ

)

, (32)

where µ = 4
√
2λa3. From (32), the approach to the

asymptotes at φ = ±a can be shown to be algebraic:

φ(x) ≃











−a− a

µx
, x→ −∞,

+a− a

µx
, x→ +∞,

(33)

from which it follows that this kink is symmetric. The
corresponding kink energy is

Ek =
16

√
2

15
λa5. (34)

2. α2 > 0

Let

V (φ) = λ2(φ2 − a2)2(φ2 + b2)2, (35)

which has degenerate minima at φ = ±a. In this case,

α6 = 2(b2 − a2),

α4 = b4 − 4a2b2 + a4,

α2 = 2a2b2(b2 − a2),

α0 = a4b4.

(36)

Clearly, α6,2,0 > 0 for b > a, while α4 > 0 as long as

b
√

2−
√
3 > a.

The kink solution is given implicitly by

µx =
2a

b
tan−1

(

φ

b

)

+ ln

(

a+ φ

a− φ

)

, (37)

where µ = 2
√
2λa(b2 + a2). From (37), the approach to

the asymptotes at φ = ±a can be shown to be exponen-
tial:

φ(x) ≃







−a+ 2a eµx+(2a/b) tan−1(a/b), x→ −∞,

+a− 2a e−µx+(2a/b) tan−1(a/b), x→ +∞,

(38)
from which it follows that this kink is symmetric. The
corresponding kink energy is

Ek =
4
√
2

15
λa3(a2 + 5b2). (39)

This kink, as well as the one from the previous sub-
subsection, are illustrated in Fig. 5.

-1.0 -0.5 0.5 1.0
Φ

0.2

0.4

0.6

0.8

1.0
V �Λ2

-3 -2 -1 1 2 3
Λx

-0.5

0.5

Φ

(a) (b)

FIG. 5: (Color online.) φ8 field theory with two degenerate
minima. (a) The potentials (31) (bottom curve, blue online),
(35) (top curve, red online) and a representative φ4 potential
V (φ) = λ2(φ2 − a2)2 (dotted). (b) The corresponding kinks
(32) (inner curve, blue online) and (37) (outer curve, red on-
line) connecting −a to +a, and the corresponding φ4 kink
φ(x) = a tanh(λx) (dotted). In all panels, a = 4/5 and b = 1.

E. Phonons

Although we have considered, without loss of general-
ity, only stationary kink solutions, phonon modes super-
imposed onto the kinks or the equilibrium states (vacua)
can be time dependent. Therefore, to study phonons, we
must consider the nonlinear Klein–Gordon equation of
motion for the field [5, 30]:

�φ = −V ′(φ), (40)

where � ≡ ∂2/∂t2 − ∂2/∂x2 is the d’Alembertian op-
erator. This equation can be linearized about any of
the equilibrium states φe discussed above (e.g., φe = 0,
φe = ±a, etc.) to obtain an equation for the perturbation

φ̃ [30]:

�φ̃ = −V ′′(φe)φ̃. (41)

Now, seeking harmonic solutions of the form φ̃(x, t) ∝
ei(qx−ωqt), we arrive at the dispersion relation

ω2
q − q2 = V ′′(φe) (42)
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for phonon modes. Table I summarizes the possible right-
hand sides (RHS) in the dispersion relation (42) for the
φ8 field theories with kink solutions studied above. Since,
b > a (strictly) by assumption, cases in Table I for which
V ′′(φe) 6= 0 represent field theories with only an optical
phonon branch, while for cases with V ′′(φe) = 0 there
is only an acoustic phonon branch. The latter case in-
dicates the possibility of nonlinear phonons. This is a
novel feature of higher-than-sixth-order field theories.

TABLE I: Phonon modes of φ8 field theory. DM = degenerate
minima. RHS = dispersion relation right-hand side.

potential, V equilibrium, φe RHS, V ′′(φe)
4 DM, Eq. (3) ±a 8λ2a2(b2 − a2)2

4 DM, Eq. (3) ±b 8λ2b2(b2 − a2)2

3 DM, Eq. (22) ±a 8λ2a6

3 DM, Eq. (22) 0 0

3 DM, Eq. (26) ±a 8λ2a4(b2 + a2)
3 DM, Eq. (26) 0 2λ2a4b2

2 DM, Eq. (31) ±a 0
2 DM, Eq. (35) ±a 8λa2(b2 + a2)2

III. φ10 FIELD THEORY

A. The Various Phases

The φ10 potential (free energy) is given, generically, by

V (φ) = λ2(φ10−α8φ
8+α6φ

6−α4φ
4+α2φ

2−α0), (43)

where, without loss of generality, we assume the coeffi-
cient of φ10 to be +1 in units of λ2. The coefficients
of φ8,6,4,2 are, in general, arbitrary, and there are six-
teen different possibilities, depending on whether all four,
three, two, one or none of the coefficients are positive.
However, if one wants to consider a model describing a
succession of two first-order transitions then one must
take α8,6,4,2 > 0 in (43). As before, α0 in (43) is chosen
so that the minimum value of the potential is zero, i.e.,
minφ V (φ) = 0.
While there are four parameters (α8,6,4,2) describing

the potential, it can be shown, by scaling arguments,
that only three of them are truly independent. It may
be noted here that even after taking α8,6,4,2 > 0 in (43),
since there are three free parameters, there is more than
one possible “path” to describing successive phase tran-
sitions. For example, one possible path is to start from a
potential with five degenerate minima at φ = 0,±a,±b,
which is given by

V (φ) = λ2φ2 (φ2 − a2)2(φ2 − b2)2. (44)

As in the φ8 case, without any loss of generality, we
choose b > a throughout this section unless specified oth-
erwise. Now, what happens as α2 (i.e., coefficient of φ2)

is slowly increased or decreased from this critical value
(at five degenerate minima)? One finds that when α2 is
increased from this critical value, then φ = 0 is always
the absolute minimum while the minima at φ = ±a,±b
are only local minima. On the other hand, if α2 is de-
creased from this critical value, then one finds that the
potential has absolute minima at φ = ±b, while the min-
ima at φ = ±a and at φ = 0 are now local minima. Thus,
even with α8,6,4,2 > 0 in (43), if one starts with five de-
generate minima, then one does not get two first-order
transitions in succession.
However, if instead we start with a potential with

α8,6,4,2 > 0 but with four degenerate minima, given by

V (φ) = λ2(φ2 + c2)(φ2 − a2)2(φ2 − b2)2, (45)

and now we vary α2, there are indeed two successive first-
order transitions. For potentials of this form, (45), there
are three parameters, i.e., a, b, c. The four coefficients
α8,6,4,2 of the potential can be expressed in terms of the
parameters a, b, c as

α8 = 2(b2 + a2)− c2,

α6 = a4 + b4 + 4a2b2 − 2c2(b2 + a2),

α4 = 2a2b2(b2 + a2)− c2(a4 + 4a2b2 + b4),

α2 = a4b4 − 2a2b2c2(b2 + a2),

α0 = −a4b4c2.

(46)

Since the generic φ10 potential (43) is described by
the four coefficients α8,6,4,2, there must exist extra con-
straints on the coefficients α8,6,4,2 to ensure a unique
mapping from a, b, c to α8,6,4,2 [recall the constraints (2)
and (5) derived in Section IIA]. To this end, let

ã = b2 + a2, b̃2 = a2b2, c̃ = c2, (47)

then (46) becomes

α8 = 2ã− c̃,

α6 = ã2 + 2b̃2 − 2ãc̃,

α4 = 2ãb̃2 − c̃(ã2 + 2b̃2),

α2 = b̃2(b̃2 − 2ãc̃),

α0 = −b̃2c̃.

(48)

By definition, ã2 > 4b̃2 [i.e., (a2+ b2)2 > 4a2b2 or, equiv-
alently (b2 − a2)2 > 0], hence

4b̃− c̃ < α8 < 2ã,

2(3b̃2 − ãc̃) < α6 < ã2 + 2b̃2 − 4b̃c̃,

4b̃3 − ã2c̃ < α4 < 2(ã− 3c̃)b̃2,

b̃4 − c̃ã3/2 < α2 < (ãb̃2/4)(ã− 8c̃),

(49)

where b̃ is the positive root of b̃2 = a2b2. This set of
inequalities provides the signs of α8,6,4,2 in terms of a, b, c.
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FIG. 6: (Color online.) (a) Example potentials of the form (52) for various illustrative values of the coefficient of the quadratic
term, α2, showing the various phases and phase transitions in the φ10 theory. (b) Zoom-in of (a) near the origin.

Furthermore, we note that b̃ and c̃ can be eliminated
between the first four equations in (48) to obtain

4α2 + (5ã2 − α6 − 2ãα8)(3ã
2 + α6 − 2ãα8) = 0,

5ã3 + α4 + ãα6 + 2ãα2
8 − (6ã2 + α6)α8 = 0.

(50)

Then, it is possible to eliminate ã between the last two
equations to obtain the desired constraint [analogue of
(2) for the φ8 field theory with four degenerate minima]:

8000α3
2 + (27α2

4 + 4α3
6 − 18α4α6α8 − α2

6α
2
8 + 4α4α

3
8)

× (25α2
4 − 20α3

6 − 70α4α6α8 +37α2
6α

2
8 +4α4α

3
8 − 8α6α

4
8)

+8α2

[

15α2
4(15α6+26α2

8)+2α4(125α
2
6α8−262α6α

3
8+56α5

8)

+ (4α6 − α2
8)(35α

3
6 − 66α2

6α
2
8 + 48α6α

4
8 − 8α6

8)
]

= 16α2
2(325α

2
6 + 600α4α8 − 440α6α

2
8 + 88α4

8). (51)

This constraint ensures that a, b, c can be uniquely
mapped to α8,6,4,2.
As an illustration, in Fig. 6, we have plotted the po-

tential

V (φ) = λ2[φ10−5.75φ8+11.5φ6−8.75φ4+α2φ
2+1], (52)

for various values of the parameter α2, in units of λ2, to il-
lustrate the structure of the phases. For α2 = 1 = αc

2(II)
this has four degenerate minima [this is the second first-
order transition point, i.e., T = T I

c (II)]. In particular,
when α2 = 1, the potential (52) is of the form (45) with
a = 1, b = 2, c = 1/4.
If the temperature is increased slightly above T I

c (II),
i.e., α2 is increased slightly beyond αc

2 = 1, then the
potential (52) has two absolute minima at φ = ±â
(â < a = 1), local minima at φ = 0,±b̂ (b̂ < b = 2),
and there are four maxima between them. As α2 is fur-
ther increased [i.e., T is further increased beyond T I

c (II)],
there comes a point [αc

2(I) = 2.2 for the potential (52)],

at which the potential has degenerate minima at φ = 0
and at φ = ±a. Thus, this is the first first-order transi-
tion point T I

c (I). This is because, if the temperature is
increased beyond this critical value [i.e., if α2 is further
increased beyond αc

2(I)], then φ = 0 becomes the abso-
lute minimum, while the minima at φ = ±a disappear
completely.

As far as the two local minima at φ = ±b are con-
cerned, they disappear at some point as the temperature
is increased beyond T I

c (II), with the precise value of α2

depending on the values of the other parameters [in the
Fig. 6 they disappear at α2 = 4, much above T I

c (I)].

If, instead, α2 is decreased from αc
2(II) = 1, [i.e., tem-

perature is lowered below T I
c (II)], then the potential has

two absolute minima at φ = ±b̂ (b̂ > b = 2), local min-
ima at φ = 0,±â (â > a = 1), and there are four maxima
between them. As the temperature is further lowered so
that α2 approaches zero, the local minima at φ = ±a dis-
appear. For α2 ≤ 0, the potential only has two minima
at φ = ±b(= ±2), a maximum at φ = 0, and this picture
persists, no matter how much further the temperature is
lowered.

It is insightful to note that the structure near the first
first-order transition point T I

c (I) is similar to that in the
φ6 model for a first-order phase transition [26]. Mean-
while, the structure near the second first-order transition
point T I

c (II) is similar to that of the asymmetric double
well φ4 model of a first-order phase transition [2].
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B. Five Degenerate Minima

Consider the φ10 potential given in (44). In this case,

α8 = 2(b2 + a2),

α6 = a4 + b4 + 4a2b2,

α4 = 2a2b2(b2 + a2),

α2 = a4b4,

α0 = 0.

(53)

Clearly, α8,6,4,2 are strictly positive. This potential has
five degenerate minima at φ = 0,±a,±b, and, hence, four
kink solutions exist, only two of which are distinct due
to the symmetry of the potential.

1. Kink connecting 0 to a (or −a to 0)

This kink solutions is given implicitly by

eµx =
φ2(γ−1)(b2 − φ2)

(a2 − φ2)γ
, (54)

where µ = 2
√
2λb2(b2 − a2) and γ = b2/a2 (> 1 by

assumption). From (54), the approach to the asymptotes
at φ = 0, a can be shown to be exponential:

φ(x) ≃















aγ/(γ−1)

b1/(γ−1)
eµx/[2(γ−1)], x→ −∞,

a− a(b2 − a2)1/γ

2a2/γ
e−µx/γ , x→ +∞.

(55)

Note, however, that the rate at which φ asymptotes to 0
is given by µ/[2(γ−1)], while the rate at which φ asymp-
totes to a is given by µ/γ, hence this kink is asymmetric.
The corresponding kink energy is

E
(1)
k =

√
2

12
λa4(3b2 − a2). (56)

2. Kink connecting a to b (or −b to −a)

In this case, the kink solution is given implicitly by

eµx =
(φ2 − a2)γ

φ2(γ−1)(b2 − φ2)
, (57)

where µ = 2
√
2λb2(b2 − a2) and γ = b2/a2. From (57),

the approach to the asymptotes at φ = a, b can be shown
to be exponential:

φ(x) ≃















a+
(b2 − a2)1/γ

2a(2−γ)/γ
eµx/γ , x→ −∞,

b− (b2 − a2)γ

2b2γ−1
e−µx, x→ +∞.

(58)

Note, however, that the rate at which φ asymptotes to
a is given by µ/γ, while the rate at which φ asymptotes
to b is given by µ, hence this kink is asymmetric. The
corresponding kink energy is

E
(2)
k =

√
2

12
λ(b2 − a2)3. (59)

Note that E
(1)
k T E

(2)
k for b/a S

√
3. As for the similar

φ8 case (Section II B 1 b), it would be of interest to study
the interaction energy between two kinks of the same
type as well as two kinks of different types but with equal
energies.
As an illustration, consider a = 1/2 and b = 1. This

kink, as well as the one from the previous subsubsection,
are illustrated in Fig. 7. Since the potential (44) has five
degenerate minima, it is possible to fit a φ8 potential
with four degenerate minima (at φ = ±a and φ = ±b) to
it, and also a φ6 potential with three degenerate minima
(at φ = 0 and φ = ±a). As can be seen in Fig. 7, for
the parameters chosen, the shapes of the corresponding
kink solutions from the lower-order field theories closely
match those of the φ10 theory.

C. Four Degenerate Minima

1. T = T I

c (II)

Consider the φ10 potential given in (45). This potential has four degenerate minima at φ = ±a,±b, and, hence,
three kink solutions exist, only two of which are distinct due to the symmetry of the potential.

a. Kink connecting −a to +a This kink solution is given implicitly by

µx =

{

sinh−1

[

c+ αφ

α(a− φ)

]

− sinh−1

[

c− αφ

α(a+ φ)

]}

+
α
√
1 + α2

β
√

1 + β2

{

sinh−1

[

c− βφ

β(b+ φ)

]

− sinh−1

[

c+ βφ

β(b − φ)

]}

, (60)
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FIG. 7: (Color online.) φ10 field theory with five degenerate minima. (a) The potential (44) (solid), a representative φ8

potential with four degenerate minima (3) (gray, dotted) and a representative φ6 potential with three degenerate minima
V (φ) = λ2φ2(φ2 − a2)2 (black, dotted). (b) The kink solution (54) (solid) connecting 0 to a and the corresponding φ6 kink

φ(x) = a/
√

1 + e−2
√

2a2λx (black, dotted). (c) The kink solution (57) (solid) connecting a to b and the corresponding φ8 kink
(15) (gray, dotted). In all panels, a = 1/2 and b = 1.
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FIG. 8: (Color online.) φ10 field theory at the second first-order phase transition, T = T I

c (II). (a) The potential (45) (solid), a
representative φ8 potential with four degenerate minima (3) (gray, dotted) and a representative φ4 potential V (φ) = λ2(φ2−a2)2

(black, dotted). (b) The kink solution (60) (solid) connecting −a to +a and the corresponding φ4 kink φ(x) = a tanh(λx)
(black, dotted). (c) The kink solution (63) (solid) connecting a to b and the corresponding φ8 kink (15) (gray, dotted). In all
panels, a = 1/2, b = 1 and c = 3/4.

where µ = 2
√
2λα

√
1 + α2(β2 − α2)c4, β = b/c and α = a/c with β > α by assumption. From (60), the approach to

the asymptotes at φ = ±a can be shown to be exponential:

φ(x) ≃















−a+ 2(c+αa)
α exp

(

sinh−1
[

1
2 (1− α−2)

]

+ α
√
1+α2

β
√

1+β2

{

sinh−1
[

c−βa
β(b+a)

]

− sinh−1
[

c+βa
β(b−a)

]}

)

eµx, x→ −∞,

+a− 2(c+αa)
α exp

(

sinh−1
[

1
2 (1− α−2)

]

+ α
√
1+α2

β
√

1+β2

{

sinh−1
[

c−βa
β(b+a)

]

− sinh−1
[

c+βa
β(b−a)

]}

)

e−µx, x→ +∞.

(61)
Clearly, this kink is symmetric. The kink’s energy is

E
(1)
k =

√
2

24
λ

{

α
√

1 + α2(12a2b2 − 4a2c2 − 6b2c2 − 4a4 − 3c4) + 3c2[8a2b2 + 2(b2 + a2)c2 + c4] sinh−1 α

}

. (62)

b. Kink connecting a to b (or −b to −a) In this case, the kink solution is given implicitly by

µx = −
{

sinh−1

[

c+ αφ

α(φ − a)

]

− sinh−1

[

c− αφ

α(a+ φ)

]}

− α
√
1 + α2

β
√

1 + β2

{

sinh−1

[

c− βφ

β(b + φ)

]

− sinh−1

[

c+ βφ

β(b− φ)

]}

, (63)
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where µ, β and α are defined below (60). From (63), the approach to the asymptotes at φ = a, b can be shown to be
exponential:

φ(x) ≃



















a+ 2(c+αa)
α exp

(

sinh−1
[

α2−1
2α2

]

+ α
√
1+α2

β
√

1+β2

{

sinh−1
[

c−βa
β(b+a)

]

− sinh−1
[

c+βa
β(b−a)

]}

)

eµx, x→ −∞,

b− 2(c+βb)
β exp

(

sinh−1
[

β2−1
2β2

]

+
β
√

1+β2

α
√
1+α2

{

sinh−1
[

c−αb
α(b+a)

]

+ sinh−1
[

c+αb
α(b−a)

]}

)

e
−µ β

√
1+β2

α
√

1+α2
x
, x→ +∞.

(64)
Note, however, that the rate at which φ asymptotes to a is given by µ, while the rate at which φ asymptotes to b is

given by µβ
√

1 + β2/(α
√
1 + α2), hence this kink is asymmetric. The kink’s energy is

E
(2)
k =

√
2

48
λ

{

α
√

1 + α2(12a2b2 − 4a2c2 − 6b2c2 − 4a4 − 3c4)− β
√

1 + β2(12a2b2 − 4b2c2 − 6a2c2 − 4b4 − 3c4)

+ 3c2[8a2b2 + 2(b2 + a2)c2 + c4]
(

sinh−1 α− sinh−1 β
)

}

. (65)

Figure 8 shows the kink solutions from the previous
subsubsection. Note that, unlike the φ8 case in Fig. 2,
the match between the φ10 and φ4 theories for the sym-
metric kink connecting −a to +a is not very good for the
chosen parameters. The agreement between the two is
determined by the curvature of the potential near φ = 0,
which is controlled by c; for other values of c, these can
be made more similar. Specifically, as c→ 1 the φ10 and
φ4 kinks match well [Fig. 8(b)], while as c → 0, the φ10

and φ8 kinks match better [Fig. 8(c].

2. T I

c (II) < T < T I

c (I)

For temperatures between the two first-order phase
transitions [i.e., 1 < α2 < 2.2 for the example potential
(52)], the potential can be rewritten as

V (φ) = λ2(φ2 − â2)2(φ2 + β)[φ4 − γφ2 + δ], (66)

with β, γ > 0, â2 < a2 and δ > 4γ so that the minimum
of the potential is indeed at 0. We expect a kink solution
exists connecting the two degenerate minima φ = ±â, as
x goes from −∞ to +∞.
As an illustration, consider the factorized potential

V (φ) = λ2(φ2−0.9)2(φ2+0.2)[φ4−4.15φ2+4.45]. (67)

This potential has absolute minima at φ = ±â = ±
√
0.9

and local minima at φ = 0 and φ = ±b̂ (b̂2 < b2 = 2).

3. T < T I

c (II)

Below the second first-order phase transition [i.e., α2 <
1 for the example potential (52)], the potential can be
rewritten as

V (φ) = λ2(φ2 − b̂2)2(φ2 + β)[φ4 − γφ2 + δ], (68)

with β, γ > 0, b̂2 > 2 and δ > 4γ so that the minimum of
the potential is indeed at 0. We expect a kink solution

exists connecting the degenerate minima φ = ±b̂, as x
goes from −∞ to +∞.

As an illustration, consider the factorized potential

V (φ) = λ2(φ2−2.05)2(φ2+0.3)[φ4−1.97φ2+1.15]. (69)

This potential has absolute minima at φ = ±b̂ = ±
√
2.05

and local minima at φ = 0 and at φ = ±â (â2 > a2 = 1).

This kink solution for T < T I
c (II) and the previous one

for T I
c (II) < T < T I

c (I) are illustrated in Fig. 9. Notice
that for the case T < T I

c (II) [dashed curve in Fig. 9(b)],
the kink “feels” the influence of the two local minima at
φ ≈ ±1.17101, similarly to kinks in certain cases of φ6

field theory [32], and the kink near the first-order phase
transition in φ8 field theory (recall Section II B 3). How-
ever, for these choices of γ and δ, neither set of kinks in
Fig. 9 appears to “feel” the influence of the local mini-
mum at φ = 0.

-1.5-1.0-0.5 0.5 1.0 1.5
Φ

0.5

1.0

1.5
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V �Λ2
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FIG. 9: (Color online.) Kink solutions between the first and
second first-order phase transition [T I

c (II) < T < T I

c (I)] and
below the second first-order phase transition [T < T I

c (II)]
in φ10 field theory. (a) The potentials (67) (solid) and (69)
(dashed). (b) The corresponding kinks computed by solving

the equation of motion dφ/dx =
√

2V (φ) numerically subject
to the symmetry condition φ(0) = 0.
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D. Three Degenerate Minima

There are four possible forms of the φ10 potential with
three degenerate minima for which kink solutions can
be constructed. These potentials have three degenerate
minima, and, hence, two kink solutions exist, only one of
which is distinct due to the symmetry of the potential.

1. Case I

First, consider the potential

V (φ) = λ2φ2(φ2 − a2)2[φ4 − bφ2 + c], b2 < 4c, (70)

with b > 0, so that the potential has degenerate minima
at φ = 0,±a. In this case,

α8 = 2a2 + b,

α6 = a2(a2 + 2b) + c,

α4 = a2(a2b+ 2c),

α2 = a4c,

α0 = 0.

(71)

Clearly, α8,6,4,2 are strictly positive.

The corresponding kink solution connecting 0 to +a
(or −a to 0) is given implicitly by

µx =

√
c√

c+ a4
sinh−1

[

2c+ ba2 + (2a2 − b)φ2

(a2 − φ2)
√
4a2b− b2 + 4c

]

− sinh−1

(

2c− bφ2

φ2
√
4c− b2

)

, (72)

where µ = 2
√
2λa2

√
c. From (72), the approach to the

asymptotes at φ = 0, a can be shown to be exponential:

φ(x) ≃











2
√
c

(4c−b2)1/4
exp

(

−
√
c

2
√
c+a4

sinh−1
[

2c+ba2

a2
√
4a2b−b2+4c

])

eµx/2, x→ −∞,

a− 2(c+a4)

a
√
4a2b−b2+4c

exp
(

−
√
c+a4√

c
sinh−1

[

2c−ba2

a2
√
4c−b2

])

e−µx
√
c+a4/

√
c, x→ +∞.

(73)

Note, however, that the rate at which φ asymptotes to a
is given by µ/2, while the rate at which φ asymptotes to b

is given by µ
√
c+ a4/

√
c, hence this kink is asymmetric.

The kink’s energy is

Ek =

√
2

96
λ

{

2(3b2 + 4a4 − 4a2b− 8c)
√

a4 − ba2 + c

+ 16c3/2 + 6b(2a2 − b)
√
c+ 3(b2 − 4c)(2a2 − b)

× ln

[ −b+ 2
√
c

2a2 − b+ 2
√
a4 − ba2 + c

]}

. (74)

2. Case II

Now, let

V (φ) = λ2φ2(φ2 − a2)2(φ2 + b2)2. (75)

This potential has three degenerate minima at φ = 0,±a.
In this case,

α8 = 2(b2 − a2),

α6 = b4 + a4 − 4a2b2,

α4 = 2a2b2(b2 − a2),

α2 = a4b4,

α0 = 0.

(76)

Clearly, α8,4,2 > 0 for b > a, while α6 > 0 as long as

b
√

2−
√
3 > a.

The corresponding kink solution connecting 0 to +a
(or −a to 0) is given implicitly by

eµx =
φ2

(a2 − φ2)b2/(b2+a2)(b2 + φ2)a2/(b2+a2)
, (77)

where µ = 2
√
2a2b2λ. From (77), it can be shown that

the approach to the asymptotes at φ = 0, a is exponen-
tial:

φ(x) ≃











ab
2/(b2+a2)ba

2/(b2+a2)eµx/2, x→ −∞,

a− a1+2a2/b2

2(a2 + b2)a2/b2
e−µ(b2+a2)x/b2 , x→ +∞.

(78)
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Consequently, this kink is asymmetric due to its different
growth rates as x→ ±∞. The kink’s energy is

Ek =

√
2

12
λa4(a2 + 3b2). (79)

3. Case III

Next, consider

V (φ) = λ2φ6(φ2 − a2)2, (80)

In this case α8,6 > 0, while α4,2,0 = 0.
The corresponding kink solution connecting 0 to +a

(or −a to 0) is given implicitly by

µx = − a2

φ2
+ ln

(

φ2

a2 − φ2

)

, (81)

where µ = 2
√
2λa4. From (81), it can be shown that the

approach to the asymptotes at φ = 0, a is of mixed type:

φ(x) ≃







a√−µx, x→ −∞,

a− 1
2ae

−µx−1, x→ +∞.
(82)

Consequently, this kink is asymmetric due to the alge-
braic versus exponential approach as x → ±∞, respec-
tively. The kink’s energy is

Ek =

√
2

12
λa6. (83)

4. Case IV

Finally, consider the potential

V (φ) = λ2φ4(φ2 − a2)2(φ2 + b2), (84)

for which

α8 = 2a2 − b2,

α6 = a2(a2 − 2b2),

α4 = −a4b2,
α2 = α0 = 0.

(85)

In this case, α8, α6 > 0 as long as a >
√
2b, and α4 < 0.

The corresponding kink solution connecting 0 to +a
(or −a to 0) is given implicitly by

µx = −2a
√
b2 + a2

√

φ2 + b2

b2φ

+ sinh−1

[

b2 + aφ

b(a− φ)

]

− sinh−1

[

b2 − aφ

b(a+ φ)

]

, (86)
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FIG. 10: (Color online.) φ10 field theory with three degener-
ate minima. (a) The potentials: (70) (first curve from top to
bottom, blue online), (75) (second curve from top to bottom,
red online), (80) (fourth curve from top to bottom, yellow on-
line), (84) (third curve from top to bottom, green online),
and a representative φ6 potential V (φ) = λ2φ2(φ2 − a2)2

(dotted). (b) The kink solutions connecting 0 to a: (72)
(fourth curve from top to bottom, blue online), (77) (third
curve from top to bottom, red online), (81) (first curve from
top to bottom, yellow online), (86) (second curve from top
to bottom, green online), and the corresponding φ6 kink

φ(x) = a/
√

1 + e−2
√

2a2λx (dotted). In all panels, a = 4/5,
b = 1 and c = 1.

where µ = 2
√
2λa3

√
a2 + b2. From (86), it can be shown

that the approach to the asymptotes at φ = 0, a is of
mixed type:

φ(x) ≃















−
√
2

2a2bx
, x→ −∞,

a− 2a

b2
(b2 + a2)e−µx−2−2a2/b2 , x→ +∞.

(87)
Consequently, this kink is asymmetric due to the alge-
braic versus exponential approach as x → ±∞, respec-
tively. The kink’s energy is

Ek =

√
2

48
λ
[

a
√

b2 + a2(4a4 + 4a2b2 + 3b4)

− 3b4(2a2 + b2) sinh−1(a/b)
]

. (88)

All four kinks from this subsection are illustrated in
Fig. 10. Note that the plots for Cases III and IV are
distinct from those for Cases I and II in part due to the
algebraic decay of the corresponding kink solutions as
φ→ 0 [recall (82) and (87)].

E. Two Degenerate Minima

There are three possible forms of the φ10 potential with
two degenerate minima at φ = ±a for which kink solu-
tions can be constructed.
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1. Case I

Let

V (φ) = λ2(φ2 − a2)2(φ2 + b2)3. (89)

In this case,

α8 = a2 − 3b2,

α6 = 3b4 − 6a2b2 + a4,

α4 = b2(6a2b2 − 3a4 − b4),

α2 = a2b4(3a2 − 2b2),

α0 = −a4b6,

(90)

It can be shown that, α8 < 0 and α0 < 0, while α6,4 > 0

and α2 < 0 as long as a < b
√

3−
√
6 <

√
3a.

The kink solution is given implicitly by

µx =
2aφ

√
b2 + a2

b2
√

b2 + φ2

+ sinh−1

[

b2 + aφ

b(a− φ)

]

− sinh−1

[

b2 − aφ

b(a+ φ)

]

, (91)

where µ = 2
√
2λa(b2 + a2)3/2. From (91), the approach

to the asymptotes at φ = ±a can be shown to be expo-
nential:

φ(x) ≃











−a+ 2a

b2
(b2 + a2)eµx+2a2/b2 , x→ −∞,

+a− 2a

b2
(b2 + a2)e−µx−2a2/b2 , x→ +∞.

(92)
Clearly, this kink is symmetric. The kink’s energy is

Ek =

√
2

24
λ
[

a
√

b2 + a2(4a4 + 16a2b2 − 3b4)

+ 3b4(6a2 + b2) sinh−1(a/b)
]

. (93)

2. Case II

Let

V (φ) = λ2(φ2 − a2)4(φ2 + b2). (94)

In this case,

α8 = 4a2 − b2,

α6 = a2(6a2 − 4b2),

α4 = 2a4(2a2 − 3b2),

α2 = a6(a2 − 4b2),

α0 = −a8b2,

(95)

It can be shown that, α4,2,0 < 0, while α8,6 > 0 as long

as a
√
6/2 > b > a.

The kink solution is given implicitly by

µx =
2φa

√

b2 + φ2

(a2 − φ2)
√
b2 + a2

+

(

2a2 + b2

b2 + a2

)

×
{

sinh−1

[

b2 + aφ

b(a− φ)

]

− sinh−1

[

b2 − aφ

b(a+ φ)

]}

, (96)

where µ = 4
√
2λa3

√
b2 + a2. From (96), the approach to

the asymptotes at φ = ±a can be shown to be as 1/x:

φ(x) ≃











−a− a

x
, x→ −∞,

+a− a

x
, x→ +∞.

(97)

Clearly, this kink is symmetric. The kink’s energy is

Ek =

√
2

24
λ
[

a
√

b2 + a2(8a4 − 10a2b2 − 3b4)

+ 3b2(8a4 + 4a2b2 + b4) sinh−1(a/b)
]

. (98)

3. Case III

Let

V (φ) = λ2|φ2 − a2|5, (99)

In this case, α8,6,4,2,0 > 0. The kink solution is given
implicitly by

µx =
φ(3a2 − 2φ2)

(a2 − φ2)3/2
, (100)

where µ = 3
√
2λa4. From (100), the approach to the

asymptotes at φ = ±a can be shown to be algebraic:

φ(x) ≃











−a+ a

2(−µx)2/3 , x→ −∞,

+a− a

2(µx)2/3
, x→ +∞.

(101)

Clearly, this kink is symmetric. The kink’s energy is

Ek =
5
√
2π

16
λa6. (102)

All three kinks from this subsection are illustrated in
Fig. 11.

F. Phonons

The discussion from Section II E applies here as well.
Table II summarizes the properties of the phonon dis-
persion relation (42) for the φ10 field theories with kink
solutions studied above. As was the case for the φ8 field
theories considered above, there are once again poten-
tials for which the RHS of the dispersion relation van-
ishes; but, it cannot vanish in the other cases due to our
assumption b > a.
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FIG. 11: (Color online.) φ10 field theory with two degenerate
minima. (a) The potentials: (89) (top curve, blue online),
(94) (middle curve, red online), (99) (bottom curve, yellow
online), and a representative φ4 potential V (φ) = λ2(φ2−a2)2

(dotted). (b) The kink solutions connecting −a to a: (91)
(outer curve, blue online), (96) (inner curve, red online), (100)
(middle curve, yellow online), and the corresponding φ4 kink
φ(x) = a tanh(λx) (dotted). In all panels, a = 9/10 and
b = 1.

TABLE II: Phonon modes of φ10 field theory. DM = degen-
erate minima. RHS = dispersion relation right-hand side.

potential, V equilibrium, φe RHS, V ′′(φe)

5 DM, Eq. (44) 0 2λ2a4b4

5 DM, Eq. (44) ±a 8λ2a4(b2 − a2)2

5 DM, Eq. (44) ±b 8λ2b4(b2 − a2)2

4 DM, Eq. (45) ±a 8λ2a2(b2 − a2)2(c2 + a2)
4 DM, Eq. (45) ±b 8λ2b2(b2 − a2)2(c2 + b2)
3 DM, Eq. (70) 0 2λ2ca4

3 DM, Eq. (70) ±a 8λ2a4(a4 − ba2 + c)
3 DM, Eq. (75) 0 2λ2a4b4

3 DM, Eq. (75) ±a 8λ2a4(b2 + a2)2

3 DM, Eq. (80) 0 2λ2a4b4

3 DM, Eq. (80) ±a 8λ2a8

3 DM, Eq. (84) 0 2λ2a4b4

3 DM, Eq. (84) ±a 8λ2a6(b2 + a2)
2 DM, Eq. (89) ±a 8λ2a2(b2 + a2)3

2 DM, Eq. (94) ±a 0
2 DM, Eq. (99) ±a 0

G. Classical Free Energy Using the Transfer

Matrix Technique

Using the transfer matrix technique, it was shown by
Scalapino et al. [33, 34] that, in the thermodynamic
limit, the classical free energy of a given field theory
is essentially given by the ground state energy of the
Schrödinger-like equation whose potential is given by the
field theory’s potential V (φ). Now, it is well known that
while the ground state energy cannot be obtained ana-
lytically if the leading term of the potential is of the form
φ4n with n = 1, 2, . . .. On the other hand, if the leading
term in the potential is instead of the form φ4n+2, then it
leads to a quasi-exactly solvable (QES) problem for which
the eigenstates of the first few levels can be obtained an-

alytically. For example, this has been demonstrated for
the φ6 field theory in [26]. We would now like to show
that there is a specific set of coefficients of our φ10 poten-
tial of form (43) that lead to the classical free energy and
probability distribution function (PDF) being obtainable
analytically at a given temperature.
In particular, the Schrödinger-like eigenvalue problem

takes the form (m = c = ~ = 1):

−d
2ψ

dφ2
+ 2V (φ)ψ = 2Eψ, (103)

with potential V given by (43). Then, it is easily shown
that the exact ground state energy eigenvalue and eigen-
function can be obtained exactly for some special cases
of the coefficients αi of the potential V .
First,

E0 =
C

2
,

ψ0(φ) = exp

[

− λφ6

3
√
2
+
Bφ4

4
− Cφ2

2

] (104)

satisfy (103) provided B and C are related to λ, α8,6,4,2

via

α8 =

√
2B

λ
,

α6 =
B2 + 2

√
2Cλ

2λ2
,

α4 =
2BC + 5

√
2λ

2λ2
,

α2 =
C2 + 3B

2λ2
,

α0 = 0.

(105)

This solution corresponds to a ground state.
Second,

E1 =
C − F

2
,

ψ1(φ) = (φ2 +D) exp

[

− λφ6

3
√
2
+
Bφ4

4
− Cφ2

2

] (106)

satisfy (103) provided B, C and D are related to λ,
α8,6,4,2 via

α8 =

√
2B

λ
,

α6 =
B2 + 2

√
2Cλ

2λ2
,

α4 =
2BC + 9

√
2λ

2λ2
,

α2 =
C2 + 3B +G

2λ2
,

α0 = 0,

(107)
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where we have set F = 2/D and G = −2(1 + 2CD)/D2

for convenience. In addition, D must satisfy the cubic
equation

2
√
2λD3 + 2BD2 + 2CD + 1 = 0. (108)

It is clear that as long as B,C > 0 (so that α8,6 > 0),
then D < 0, and the solution (106) is for the second

excited state (having two roots at φ = ±
√
D). On the

other hand, if we allow B < 0, then D > 0 is possible
for certain values of C, and the solution corresponds to
another ground state. Note, however, that in that case
α8 < 0.
Third,

E2 =
C −G

2
,

ψ2(φ) = (φ4 +Dφ2 + J) exp

[

− λφ6

3
√
2
+
Bφ4

4
− Cφ2

2

]

(109)
satisfy (103) provided B, C, D and J are related to λ,
α8,6,4,2 via

α8 =

√
2B

λ
,

α6 =
B2 + 2

√
2Cλ

2λ2
,

α4 =
2BC + 13

√
2λ

2λ2
,

α2 =
C2 + 3B +H

2λ2
,

α0 = 0,

(110)

where we have set G = 2D/J and H = (6/D − 2D −
G/2)G for convenience. In addition, D and J must sat-
isfy

D2 + 2(JC +
√
2λJ2)D + 2J(2BJ − 3) = 0,

(111)

D3 + 2CJD2 + (2BJ − 7)DJ + 4J2(
√
2λJ − C) = 0.

(112)

The PDF for the classical field φ is just the square
of the (normalized) ground state eigenfunctions given in
(104), (106) or (109).

IV. φ12 FIELD THEORY

Finally, there are systems in which phase transitions
are only captured by going to the φ12 field theory (e.g.,
highly piezoelectric perovskite materials [11, 12]). De-
pending on the form of the potential, it can have six, five,
four, three or two degenerate minima, hence five, four,
three, two or one kink solution(s) exist, respectively. In
this section, we discuss these cases separately. However,
we do not provide a discussion of the various phases of
the φ12 theory because its complexity necessarily makes
such a discussion quite lengthy.

A. Six Degenerate Minima

Consider the potential

V (φ) = λ2(φ2 − a2)2(φ2 − b2)2(φ2 − c2)2, (113)

where c > b > a without loss of generality. This potential
has six degenerate minima at φ = ±a,±b,±c and, hence,
five kink solutions exist. Out of these five, only three are
distinct due to the symmetry of the potential.

1. Kink connecting −a to +a

In this case, the kink solution is given impicitly by

eµx =

(

a+ φ

a− φ

)(c2−b2)/a(
b− φ

b+ φ

)(c2−a2)/b(
c+ φ

c− φ

)(b2−a2)/c

, (114)

where µ = 2
√
2λ(b2 − a2)(c2 − b2)(c2 − a2). From (114), the approach to the asymptotes at φ = ±a can be shown to

be exponential:

φ(x) ≃



























−a+ 2a

[

(

b+ a

b− a

)(c2−a2)/b(
c− a

c+ a

)(b2−a2)/c
]−a/(c2−b2)

eµax/(c
2−b2), x→ −∞,

+a− 2a

[

(

b− a

b+ a

)(c2−a2)/b(
c+ a

c− a

)(b2−a2)/c
]a/(c2−b2)

e−µax/(c2−b2), x→ +∞.

(115)
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Clearly, this kink is symmetric. The corresponding kink energy is

E
(1)
k =

4
√
2

105
λa3

[

3a4 − 7(b2 + c2)a2 + 35b2c2
]

. (116)

2. Kink connecting a to b (or −b to −a)

In this case, the kink solution is given implicitly by

eµx =

(

φ− a

φ+ a

)(c2−b2)/a(
b+ φ

b− φ

)(c2−a2)/b(
c+ φ

c− φ

)(b2−a2)/c

, (117)

where µ is given below (114). From (117), the approach to the asymptotes at φ = a, b can be shown to be exponential:

φ(x) ≃



























a+ 2a

[

(

b+ a

b− a

)(c2−a2)/b (
c+ a

c− a

)(b2−a2)/c
]−a/(c2−b2)

eµax/(c
2−b2), x→ −∞,

b− 2b

[

(

b− a

b+ a

)(c2−b2)/a(
c+ b

c− b

)(b2−a2)/c
]b/(c2−a2)

e−µbx/(c2−a2), x→ +∞.

(118)

Due to the different growth rates, µb/(c2 − a2) versus µa/(c2 − b2) as x→ ±∞, respectively, this kink is asymmetric.
The corresponding kink energy is

E
(2)
k =

2
√
2

105
λ(b − a)3

[

7c2(b2 + 3ab+ a2)− (3b4 + 9b3a+ 11b2a2 + 9ba3 + 3a4)
]

. (119)

3. Kink connecting b to c (or −c to −b)

In this case, the kink solution is given implicitly by

eµx =

(

φ+ a

φ− a

)(c2−b2)/a(
φ− b

φ+ b

)(c2−a2)/b(
c+ φ

c− φ

)(b2−a2)/c

, (120)

where µ is given below (114). From (120), the approach to the asymptotes at φ = b, c can be shown to be exponential:

φ(x) ≃



























b+ 2b

[

(

b+ a

b− a

)(c2−b2)/a(
c+ b

c− b

)(b2−a2)/c
]−b/(c2−a2)

eµbx/(c
2−a2), x→ −∞,

c− 2c

[

(

c+ a

c− a

)(c2−b2)/a(
c− b

c+ b

)(c2−a2)/b
]c/(b2−a2)

e−µcx/(b2−a2), x→ +∞.

(121)

Due to the different growth rates, µc/(b2 − a2) versus
µb/(c2 − a2) as x→ ±∞, respectively, this kink is asym-
metric.
The corresponding kink energy is

E
(3)
k =

2
√
2

105
λ(c− b)3

[

3c4 + 9c3b+ 11c2b2 + 9cb3

+ 3b4 − 7a2(c2 + 3bc+ b2)
]

. (122)

To the best of our knowledge, this is the first instance
in which three kink solutions exist for the same values
of the potential’s parameters. It would be of interest to

determine values of the parameters a, b and c for which

E
(1)
k = E

(2)
k = E

(3)
k .

All three kinks from this subsection are illustrated in
Fig. 12 and compared to the kinks from the φ8 and φ4

field theories. Note that, while the agreement between
the φ8 kink connecting −a to +a and the corresponding
φ4 one was quite good in Fig. 2, the agreement between
the φ12 kink connecting −a to +a and the corresponding
φ4 is not. As in the previous examples, this is mainly due
to the curvatures of the potentials near φ = 0 being quite
different, hence the kinks having different widths. The
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FIG. 12: (Color online.) φ12 field theory with six degenerate
minima. (a) The potential (113) (solid), a representative φ8

potential (3) (gray, dotted), and a representative φ4 poten-
tial V (φ) = λ2(φ2 − a2)2 (black, dotted). (b) Kink solutions
connecting −a to +a (114) (bottom curve, blue online), a to
b (117) (middle curve, red online), b to c (120) (top curve,
yellow online), the corresponding φ8 kinks connecting −a to
+a (11) and a to b (15) (both gray, dotted), and the corre-
sponding φ4 kink φ(x) = a tanh(λx) (black, dotted). In all
panels, a = 1/4, b = 2/3 and c = 1.

agreement between the φ8 and φ12 kinks connecting −a
to +a, however, is so good that they are nearly indistin-
guishable for the chosen parameters. On the other hand,

the φ8 and φ12 kinks connecting a to b do not match as
well.

B. Five Degenerate Minima

There are two possible forms of the φ12 potential with
five degenerate minima for which we are able to obtain
the kink solutions. In this subsection, we discuss these
separately.

1. Case I

Consider the potential

V (φ) = λ2φ2(φ2 − a2)2(φ2 − b2)2(φ2 + c2). (123)

This potential has five degenerate minima at φ =
0,±a,±b and hence four kink solutions, two of which are
distinct due to the symmetry of the potential. As before,
we take b > a without any loss of generality.
a. Kink connecting 0 to a (or −a to 0) This kink

solution is given implicitly by

eµx =

(

√

c2 + φ2 − c
√

c2 + φ2 + c

)(√
c2 + b2 −

√

c2 + φ2√
c2 + b2 +

√

c2 + φ2

)a2c/(b2−a2)
√
c2+b2 (√

c2 + a2 +
√

c2 + φ2√
c2 + a2 −

√

c2 + φ2

)b2c/(b2−a2)
√
c2+a2

,

(124)

where µ = 2
√
2λa2b2c. From (124), it can be shown that the approach to the asymptotes at φ = 0, a is

φ(x) ≃



















2c
[

a2+2c(c+
√
c2+a2)

a2

]−b2c/2(b2−a2)
√
c2+a2 [

b2+2c(c−
√
c2+b2)

b2

]−a2c/2(b2−a2)
√
c2+b2

eµx/2, x→ −∞,

a− 2(c2+a2)
a

(√
c2+b2−

√
c2+a2√

c2+b2+
√
c2+a2

)

a2
√

c2+a2

b2
√

c2+b2
[

a2+2c(c−
√
c2+a2)

a2

](b2−a2)
√
c2+a2/b2c

e−µx(b2−a2)
√
c2+a2/b2c, x→ +∞.

(125)
Consequently, this kink is asymmetric due to the different growth rates as φ→ 0, a. The kink’s energy is

E
(1)
k =

√
2

105
λ
[

2(c2 + a2)3/2(4c4 + 7b2 − 3a2)− c3(35a2b2 + 14a2c2 + 14b2c2 + 8c4)
]

. (126)

b. Kink connecting a to b (or −b to −a) This kink solution is given implicitly by

eµx =

(

√

c2 + φ2 − c
√

c2 + φ2 + c

)(

√

c2 + φ2 −
√
c2 + a2

√

c2 + φ2 +
√
c2 + a2

)b2c/(b2−a2)
√
c2+a2 (

√

c2 + φ2 +
√
c2 + b2√

c2 + b2 −
√

c2 + φ2

)a2c/(b2−a2)
√
c2+b2

,

(127)

where µ = 2
√
2λa2b2c. From (127), it can be shown that the approach to the asymptotes at φ = a, b is

φ(x) ≃



















a+ 2(c2+a2)
a2

(√
c2+b2−

√
c2+a2√

c2+b2+
√
c2+a2

)

a2
√

c2+a2

b2
√

c2+b2
[

a2+2c(c−
√
c2+a2)

a2

]−(b2−a2)
√
c2+a2/b2c

eµx(b
2−a2)

√
c2+a2/b2c, x→ −∞,

b− 2(c2+b2)
b2

(√
c2+b2−

√
c2+a2√

c2+b2+
√
c2+a2

)

b2
√

c2+b2

a2
√

c2+a2

[

b2+2c(c−
√
c2+b2)

b2

](b2−a2)
√
c2+b2/a2c

e−µx(b2−a2)
√
c2+b2/a2c, x→ +∞.

(128)
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Consequently, this kink is asymmetric due to the different
growth rates as φ→ a, b. The kink’s energy is

E
(2)
k =

2
√
2

105
λ

[

(a2 + c2)3/2(4c2 + 7b2 − 3a2)

− (b2 + c2)3/2(4c2 − 3b2 + 7a2)

]

. (129)

2. Case II

Now, consider the potential

V (φ) = λ2φ4(φ2 − a2)2(φ2 − b2)2. (130)

In this case,

α10 = 2(b2 + a2),

α8 = b4 + 2b2a2 + a4,

α6 = 2a2b2(b2 + a2),

α4 = b4a4,

α2 = α0 = 0.

(131)

Clearly, α10,8,6,4 > 0.
a. Kink connecting 0 to a (or −a to 0) This kink

solution is given implicitly by

µx = −2a(b2 − a2)

b2φ
+ ln

[

(

a+ φ

a− φ

)(

b− φ

b+ φ

)a3/b3
]

,

(132)

where µ = 2
√
2λa3(b2−a2). From (132), it can be shown

that the approach to the asymptotes at φ = 0, a is

φ(x) ≃















2a(b2 − a2)

b2(−µx) , x→ −∞,

a− 2a
(

b−a
b+a

)a3/b3

e2a
2/b2−µx−2, x→ +∞.

(133)
Consequently, this kink is asymmetric due to the different
growth types (algebraic versus exponential) as φ → 0, a,
respectively. The kink’s energy is

E
(1)
k =

2
√
2

105
λa5(7b2 − 3a2). (134)

b. Kink connecting a to b (or −b to −a) This kink
is given implicitly by

µx =
2a(b2 − a2)

b2φ
+ln

[

(

φ− a

φ+ a

)(

b+ φ

b− φ

)a3/b3
]

, (135)

where µ = 2
√
2λa3(b2−a2). From (135), it can be shown

that the approach to the asymptotes at φ = a, b is

φ(x) ≃














a+ 2a
(

b−a
b+a

)a3/b3

eµx−2a(b2−a2)/ba , x→ −∞,

b− 2b
(

b−a
b+a

)b3/a3

eb
3−b(2b2/a2−µxbb/a3−2), x→ +∞.

(136)

Consequently, this kink is asymmetric due to the different
growth rates µb3/a3 versus µ as x → ±∞, repsectively.
The kink’s energy is

E
(2)
k =

2
√
2

105
λ(b−a)3

[

3b4 + 9b3a+ 11b2a2 + 9ba3 + 3a4
]

.

(137)
Comparing the energies of the two kink solutions [(134)

and (137)], we find that E
(1)
k T E

(2)
k if b/a S

√

7/3.

All four kinks from this subsection are illustrated in
Fig. 13.

C. Four Degenerate Minima

There are three possible forms of the φ12 potential with
four degenerate minima for which we are able to obtain
the kink solutions. In this subsection, we discuss these
separately.

1. Case I

Consider the potential

V (φ) = λ2(φ2 − a2)2(φ2 − b2)2(φ2 + c2)2, (138)

which has four degenerate minima at φ = ±a,±b (b > a
as before) and, hence, three kink solutions, only two of
which are distinct due to the symmetry of the potential.

a. Kink connecting −a to +a This kink solution is
given implicitly by

µx =
2a(b2 − a2)

c(c2 + b2)
tan−1

(

φ

c

)

+
a(a2 + c2)

b(c2 + b2)
ln

[(

a+ φ

a− φ

)(

b− φ

b+ φ

)]

, (139)
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FIG. 13: (Color online.) φ12 field theory with five degenerate minima. (a) The potentials: (123) (top curve, blue online), (130)
(bottom curve, red online), a representative φ8 potential with four degenerate minima (3) (gray, dotted), and a representative
φ6 potential with three degenerate minima V (φ) = λ2φ2(φ2 − a2)2 (black, dotted). (b) The kink solutions connecting 0 to

a: (124) (outer curve, blue online), (132) (inner curve, red online), and the corresponding φ6 kink φ(x) = a/
√

1 + e−2
√

2a2λx

(black, dotted). (c) The kink solutions connecting a to b: (127) (outer curve, blue online), (135) (inner curve, red online), and
the corresponding φ8 kink (15) (gray, dotted). In all panels, a = 1/2, b = 1 and c = 2.

where µ = 2
√
2λa(c2 + a2)(b2 − a2). From (139), it can be shown that the approach to the asymptotes at φ = ±a is

exponential:

φ(x) ≃



















−a+ 2a

(

b− a

b+ a

)

exp

[

(b2 + c2)µxb/a+ 2(b2 − a2) tan−1(a/c)b/c

c2 + a2

]

, x→ −∞,

+a− 2a

(

b− a

b+ a

)

exp

[−(b2 + c2)µxb/a+ 2(b2 − a2) tan−1(a/c)b/c

c2 + a2

]

, x→ +∞.

(140)

Clearly, this kink is symmetric. The kink’s energy is

E
(1)
k =

4
√
2

105
λa3[35b2c2 − 7a2c2 + 7a2b2 − 3a4]. (141)

b. Kink connecting a to b (or −b to −a) This kink solution is given implicitly by

µx = −2a(b2 − a2)

c(c2 + b2)
tan−1

(

φ

c

)

+
a(a2 + c2)

b(c2 + b2)
ln

[(

φ− a

φ+ a

)(

b+ φ

b− φ

)]

, (142)

where µ = 2
√
2λa(c2 + a2)(b2 − a2). From (142), it can be shown that the approach to the asymptotes at φ = a, b is

exponential:

φ(x) ≃



















a+ 2a

(

b− a

b+ a

)

exp

[

(b2 + c2)µxb/a+ 2(b2 − a2) tan−1(a/c)b/c

c2 + a2

]

, x→ −∞,

b− 2b

(

b− a

b+ a

)

exp

[−(b2 + c2)µxb/a− 2(b2 − a2) tan−1(b/c)b/c

c2 + a2

]

, x→ +∞.

(143)

Clearly, this kink is symmetric. The kink’s energy is

E
(2)
k =

2
√
2

105
λ(b − a)3

[

3b4 + 9b3a+ 11b2a2

+ 9ba3 + 3a4 + 7c2(b2 + 3ab+ a2)
]

. (144)

2. Case II

Consider the potential

V (φ) = λ2(φ2 − a2)4(φ2 − b2)2. (145)
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In this case,

α10 = 2(b2 + 2a2),

α8 = b4 + 8b2a2 + 6a4,

α6 = 4a2(b4 + 3a2b2 + a4),

α4 = a4(6b4 + 8a2b2 + a4),

α2 = 2a6b2(a2 + 2b2),

α0 = a8b4.

(146)

Clearly, α10,8,6,4,2,0 > 0.
a. Kink connecting −a and +a In this case, the kink

solution is given implicitly by

µx =
bφ(b2 − a2)

a2(a2 − φ2)
+ ln

(

b+ φ

b− φ

)

− b(3a2 − b2)

2a3
ln

(

a+ φ

a− φ

)

, (147)

where µ = 2
√
2λb(b2−a2)2. From (147), it can be shown

that the approach to the asymptotes at φ = ±a is alge-
braic:

φ(x) ≃















−a− b(b2 − a2)

2a2µx
, x→ −∞,

+a− b(b2 − a2)

2a2µx
, x→ +∞.

(148)

Clearly, this kink is symmetric. The kink’s energy is

E
(1)
k =

16
√
2

105
λa5(7b2 − a2). (149)

b. Kink connecting a to b (or −b to −a) In this case,
the kink solution is given implicitly by

µx = − bφ(b2 − a2)

a2(φ2 − a2)
+ ln

(

b+ φ

b− φ

)

+
b(3a2 − b2)

2a3
ln

(

φ− a

φ+ a

)

, (150)

where µ = 2
√
2λb(b2−a2)2. From (150), it can be shown

that the approach to the asymptotes at φ = a, b is of
mixed type:

φ(x) ≃















a− b(b2 − a2)

2a2µx
, x→ −∞,

b− 2b
(

b+a
b−a

)(κ−2−3)/(2κ)

e−µx−κ−2

, x→ +∞,

(151)
where κ = a/b. Consequently, the kink is asymmetric
due to the different growth types as x→ ±∞. The kink’s
energy is

E
(2)
k =

2
√
2

105
λ(b− a)4(3b3 +12b2a+16ba2 +4a3). (152)

3. Case III

Consider the potential

V (φ) = λ2(φ2 − a2)2(φ2 − b2)4. (153)

In this case,

α10 = 2(b2 + 2a2),

α8 = b4 + 8a2b2 + 6a4,

α6 = 4a2b2(b2 + 3a2) + 4a6,

α4 = a4(6b4 + 8a2b2 + a4),

α2 = a6b2(4b2 + 2a2),

α0 = a8b4.

(154)

Clearly, α10,8,6,4,2,0 > 0.
a. Kink connecting −a and +a In this case, the kink

solution is given implicitly by

µx = −aφ(b
2 − a2)

b2(b2 − φ2)
+ ln

(

a+ φ

a− φ

)

− a(3b2 − a2)

2b3
ln

(

b + φ

b − φ

)

, (155)

where µ = 2
√
2λa(b2−a2)2. From (155), it can be shown

that the approach to the asymptotes at φ = ±a is expo-
nential:

φ(x) ≃















−a+ 2a
(

b+a
b−a

)κ(κ2−3)/2

eµx−κ2

, x→ −∞,

+a− 2a
(

b+a
b−a

)κ(κ2−3)/2

e−µx−κ2

, x→ +∞,

(156)
where κ = a/b. Clearly, this kink is symmetric. The
corresponding kink energy is

E
(1)
k =

4
√
2

105
λa3(35b4 − 14a2b2 + 3a4). (157)

b. Kink connecting a to b (or −b to −a) In this case,
the kink solution is given implicitly by

µx =
aφ(b2 − a2)

b2(b2 − φ2)
+ ln

(

φ− a

φ+ a

)

+
a(3b2 − a2)

2b3
ln

(

b + φ

b − φ

)

, (158)

where µ = 2
√
2λa(b2−a2)2. From (158), it can be shown

that the approach to the asymptotes at φ = a, b is of
mixed type:

φ(x) ≃















a− 2a
(

b−a
b+a

)κ(κ2−3)/2

eµx−κ2

, x→ −∞,

b− a(b2 − a2)

2b2µx
, x→ +∞.

(159)
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FIG. 14: (Color online.) φ12 field theory with four degenerate minima. (a) The potentials: (138) (second curve from top
to bottom, blue online), (145) (third curve from top to bottom, red online), (153) (first curve from top to bottom, yellow
online), a representative φ8 potential with four degenerate minima (3) (gray, dotted), and a representative φ4 potential V (φ) =
λ2(φ2 − a2)2 (black, dotted). (b) The kink solutions connecting −a to +a: (139) (outer curve, blue online), (147) (inner curve
red, online), (155) (middle curve, yellow online), the corresponding φ8 kink (11) (gray, dotted), and the corresponding φ4 kink
φ(x) = a tanh(λx) (black, dotted). (c) The kink solutions connecting a to b: (142) (outer curve, blue online), (150) (inner curve,
red online), (158) (middle curve, yellow online), and the corresponding φ8 kink (15) (gray, dotted). In all panels, a = 1/2, b = 1
and c = 3/4.

where κ = a/b. Consequently, this kink is asymmetric
due to the different growth types as x→ ±∞. The kink’s
energy is

E
(2)
k =

2
√
2

105
λ(b− a)4(4b3 +16b2a+12ba2 +3a3). (160)

All six kinks from this subsection are illustrated in
Fig. 14. Note that the kink connecting a to b in Case
I is symmetric [see (143)], unlike the corresponding φ8

kink (15) [see also (16)].

D. Three Degenerate Minima

There are five possible forms of the φ12 potential with
three degenerate minima for which kink solutions can be
obtained analytically. In this subsection, we discuss these
cases separately.

1. Case I

Consider the potential

V (φ) = λ2φ8(φ2 − a2)2, (161)

which has three degenerate minima at φ = 0,±a. In this
case, α10,8 > 0, while α6,4,2,0 = 0. The kink solution,
which connects 0 to a (or −a to 0), as x goes from −∞
to +∞, is given implicitly by

µx = −2a

φ
− 2a3

3φ3
+ ln

(

a+ φ

a− φ

)

, (162)

where µ = 2
√
2λa5. From (162), it can be shown that

the approach to the asymptotes at φ = 0, a is of mixed

type:

φ(x) ≃











21/3a

(−3µx)1/3
, x→ −∞,

a− 2ae−µx−8/3, x→ +∞.

(163)

Consequently, this kink is asymmetric due to the different
growth types as x→ ±∞. The kink’s energy is

Ek =
2
√
2

35
λa7. (164)

2. Case II

Consider the potential

V (φ) = λ2φ4(φ2 − a2)4. (165)

In this case, α10,8,6,4 > 0, while α2,0 = 0. The kink
solution, which connects 0 to a (or −a to 0), as x goes
from −∞ to +∞, is given implicitly by

µx =
2a(3φ2 − 2a2)

3φ(a2 − φ2)
+ ln

(

a+ φ

a− φ

)

, (166)

where µ = (4/3)
√
2λa5. From (166), it can be shown that

the approach to the asymptotes at φ = 0, a is algebraic:

φ(x) ≃











− a√
2a5λx

, x→ −∞,

a− a

4
√
2a5λx

, x→ +∞.
(167)

Consequently, this kink is asymmetric due to the different
growth rates as x→ ±∞. The kink’s energy is

Ek =
8
√
2

105
λa7. (168)



23

3. Case III

Consider the potential

V (φ) = λ2φ4(φ2 − a2)2(φ2 + b2)2. (169)

In this case,

α10 = 2(b2 − a2),

α8 = b4 − 4a2b2 + a4,

α6 = 2a2b2(b2 − a2),

α4 = a4b4,

α2 = α0 = 0.

(170)

It can be shown that α10,8,6,4 > 0 as long as b
√

2−
√
3 >

a.
The kink solution, which connects 0 to a (or −a to 0),

as x goes from −∞ to +∞, is given implicitly by

µx = −2a(b2 + a2)

b2φ
− 2a3

b3
tan−1

(

φ

b

)

+ ln

(

a+ φ

a− φ

)

,

(171)

where µ = 2
√
2λa3(b2+a2). From (171), it can be shown

that the approach to the asymptotes at φ = 0, a is of
mixed type:

φ(x) ≃











− 1√
2b2a2λx

, x→ −∞,

a− 2ae−µx−2(1+κ2+κ3 tan−1 κ), x→ +∞,

(172)

where κ = a/b. Consequently, this kink is asymmetric
due to the different growth types as x→ ±∞. The kink’s
energy is

Ek =
2
√
2

105
λa5(7b2 + 3a2). (173)

4. Case IV

Consider the potential

V (φ) = λ2φ2(φ2 − a2)2(φ2 + b2)3. (174)

In this case,

α10 = 2a2 − 3b2,

α8 = 3b4 − 6a2b2 + a4,

α6 = b2(6a2b2 − 3a4 − b4),

α4 = a2b4(3a2 − 2b2),

α2 = −a4b6,
α0 = 0.

(175)

It can be shown that α10,2 < 0, while α8,6 > 0 and α4 < 0

as long as a < b
√

3−
√
6 <

√
3a.

The kink solution, which connects 0 to a (or −a to 0)
as x goes from −∞ to +∞, is given implicitly by

µx =
2a2

√
b2 + a2

b2
√

b2 + φ2
+

(b2 + a2)3/2

b3
ln

[(√
b2 + a2 +

√

b2 + φ2√
b2 + a2 −

√

b2 + φ2

)(

√

b2 + φ2 − b
√

b2 + φ2 + b

)]

, (176)

where µ =
√
2λ(b2 + a2)3/2. From (176), it can be shown that the approach to the asymptotes at φ = 0, a is

exponential:

φ(x) ≃



























2ab
√

a2 + 2b
(

b+
√
b2 + a2

)

exp

[

− a2

b2 + a2
+

b3µx

2 (b2 + a2)
3/2

]

, x→ −∞,

a
(

b+
√
b2 + a2

)2

{

a2 + 2b
(

b +
√

b2 + a2
)

− 2
(

b2 + a2
)

exp

[

2a2b− b3µx

(b2 + a2)
3/2

]}

, x→ +∞.

(177)

Consequently, this kink is asymmetric due to the different
growth rates as x→ ±∞. The kink’s energy is

Ek =

√
2

35
λ
[

2(b2 + a2)7/2 − b5(7a2 + b2)
]

. (178)

5. Case V

Consider the potential

V (φ) = λ2φ6(φ2 − a2)2(φ2 + b2), (179)
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which has three degenerate minima at φ = 0,±a. In this
case,

α10 = b2 − 2a2,

α8 = a4 − 2a2b2,

α6 = −a4b2,
α4 = α2 = α0 = 0.

(180)

It can be shown that α10 > 0 as long as
√
2a > b > a,

while α8,6 < 0.

The kink solution, which connects 0 to a (or −a to 0),
as x goes from −∞ to +∞, is given implicitly by

µx = −a
2
√
b2 + a2

√

b2 + φ2

b2φ2
+

(2b2 − a2)(b2 + a2)1/2

b3
ln

[(

√

b2 + φ2 +
√
b2 + a2√

b2 + a2 −
√

b2 + φ2

)(

√

b2 + φ2 − b
√

b2 + φ2 + b

)]

, (181)

where µ = 2
√
2λa4(b2 + a2)1/2. From (181), it can be shown that the approach to the asymptotes at φ = 0, a is of

mixed type:

φ(x) ≃











a(b2 + a2)1/4√
−bµx , x→ −∞,

a− a−3
[

2a4 + 6a2b2 + 4b4 − 4b(b2 + a2)3/2
]

e−µx−1−a2/b2 , x→ +∞.

(182)

Consequently, this kink is asymmetric due to the different
growth types as x→ ±∞. The kink’s energy is

Ek =
2
√
2

105
λ
[

(4b2 + 7a2)b5 − (4b2 − 3a2)(b2 + a2)5/2
]

.

(183)
All five kinks from this subsection are illustrated in

Fig. 15. Note that the plots for Cases II and IV are
distinct from those for Cases I, III and V in part due to
pure algebraic and pure exponential versus mixed type,
respectively, decay of the corresponding kinks’ tails as
φ→ 0, a [recall (167) and (177)].

E. Two Degenerate Minima

There are three possible forms of the φ12 potential with
two degenerate minima for which we can obtain a kink
solution that connects φ = −a to φ = +a, as x goes from
−∞ to +∞. We discuss these separately.

1. Case I

Consider the potential

V (φ) = λ2(φ2 − a2)2(φ2 + b2)4. (184)

In this case,

α10 = 2(2b2 − a2),

α8 = 6b4 − 8a2b2 + a4,

α6 = 4b2(b2 + ab− a2)(a2 + ab− b2),

α4 = b4(b4 − 8a2b2 + 6a4),

α2 = 2a2b6(b2 − 2a2),

α0 = a4b8.

(185)
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FIG. 15: (Color online.) φ12 field theory with three degen-
erate minima. (a) The potentials: (161) (fourth curve from
top to bottom, blue online), (165) (fifth curve from top to
bottom, red online), (169) (second curve from top to bottom,
yellow online), (174) (first curve from top to bottom, green
online), (179) (third curve from top to bottom, black online),
and a representative φ6 potential V (φ) = λ2φ2(φ2 − a2)2

(gray, dotted). (b) The kink solutions connecting 0 to a:
(162) (first curve from top to bottom, blue online), (166)
(third curve from top to bottom, red online), (171) (fourth
curve from top to bottom, yellow online), (176) (fifth curve
from top to bottom, green online), (181) (second curve from
top to bottom, black online), and the corresponding φ6 kink

φ(x) = a/
√

1 + e−2
√

2a2λx (gray, dotted). In all panels,
a = 4/5 and b = 1.

It can be shown that α10,0 > 0, while α8,6,2 > 0 and

α4 < 0 as long as 2a/(
√
5− 1) > b >

√
2a.
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The kink solution is given implicitly by

µx =
a(b2 + a2)φ

b2(b2 + φ2)
+
a(a2 + 3b2)

b3
tan−1

(

φ

b

)

+ ln

(

a+ φ

a− φ

)

, (186)

where µ = 2
√
2λa(b2 + a2)2. From (186), the approach

to the asymptotes at φ = ±a can be shown to be expo-
nential:

φ(x) ≃







−a+ 2aeµx+κ2+(κ2+3)κ tan−1 κ, x→ −∞,

+a− 2ae−µx+κ2+(κ2+3)κ tan−1 κ, x→ +∞,

(187)
where κ = a/b. Clearly, this kink is symmetric. The
kink’s energy is

Ek =
4
√
2

105
λa3(35b4 + 14a2b2 + 3a4). (188)

2. Case II

Consider the potential

V (φ) = λ2(φ2 − a2)4(φ2 + b2)2. (189)

In this case,

α10 = 2(2a2 − b2),

α8 = b4 − 8a2b2 + 6a4,

α6 = 4a2(a2 − ab− b2)(a2 + ab− b2),

α4 = a4(6b4 − 8a2b2 + a4),

α2 = 2a6b2(2b2 − a2),

α0 = a8b4.

(190)

It can be shown that α10 < 0 and α8,6,4,2 > 0 as long as

b
√

4−
√
10 >

√
6a, while α0 > 0.

The kink solution is given implicitly by

µx =
2a(b2 + a2)φ

(3a2 + b2)(a2 − φ2)
+

4a3

b(3a2 + b2)
tan−1

(

φ

b

)

+ ln

(

a+ φ

a− φ

)

, (191)

where µ = 4
√
2λ(b2 + a2)2/(3a2 + b2). From (191), the

approach to the asymptotes at φ = ±a can be shown to
be algebraic:

φ(x) ≃











−a− a

4
√
2(b2 + a2)λx

, x→ −∞,

+a− a

4
√
2(b2 + a2)λx

, x→ +∞.
(192)

Clearly, this kink is symmetric. The kink’s energy is

Ek =
16

√
2

105
λa5(7b2 + a2). (193)
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FIG. 16: (Color online.) φ12 field theory with two degenerate
minima. (a) The potentials: (184) (top curve, blue online),
(189) (middle curve, red online), (194) (bottom curve, yellow
online), and a representative φ4 potential V (φ) = λ2(φ2−a2)2

(dotted). (b) The kink solutions connecting −a to +a: (186)
(outer curve, blue online), (191) (middle curve, red online),
(195) (inner curve, yellow online), and the corresponding φ4

kink φ(x) = a tanh(λx) (dotted). In all panels, a = 9/10 and
b = 1.

3. Case III

Consider the potential

V (φ) = λ2(φ2 − a2)6. (194)

In this case, α10,8,6,4,2,0 > 0. The kink solution is given
implicitly by

µx =
a(7a2 − 3φ2)φ

3(a2 − φ2)2
+ ln

(

a+ φ

a− φ

)

, (195)

where µ = (16/3)
√
2a5λ. From (195), the approach to

the asymptotes at φ = ±a can be shown to be algebraic:

φ(x) ≃











−a+ a√−3µx
, x→ −∞,

+a− a√
3µx

, x→ +∞.
(196)

Clearly, this kink is symmetric. The kink’s energy is

Ek =
32

√
2

35
λa7. (197)

All three kinks from this subsection are illustrated in
Fig. 16.

F. Phonons

The discussion from Section II E applies here as well.
Table III summarizes the properties of the phonon dis-
persion relation (42) for the φ12 field theories with kink
solutions studied above. As was the case for the φ8 and
φ10 field theories considered above, there are once again
potentials for which the RHS of the dispersion relation
vanishes; but, it cannot vanish in the other cases due to
our assumption c > b > a.
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TABLE III: Phonon modes of φ12 field theory. DM = degen-
erate minima. RHS = dispersion relation right-hand side.

potential, V equilibrium, φe RHS, V ′′(φe)

6 DM, Eq. (113) ±a 8λ2a2(b2 − a2)2(c2 − a2)2

6 DM, Eq. (113) ±b 8λ2b2(b2 − a2)2(c2 − b2)2

6 DM, Eq. (113) ±c 8λ2c2(c2 − a2)2(c2 − b2)2

5 DM, Eq. (123) 0 2λ2a4b4c2

5 DM, Eq. (123) ±a 8λ2a4(b2 − a2)2(c2 + a2)
5 DM, Eq. (123) ±b 8λ2b4(b2 − a2)2(c2 + b2)
5 DM, Eq. (130) 0 0
5 DM, Eq. (130) ±a 8λ2a6(b2 − a2)2

5 DM, Eq. (130) ±b 8λ2b6(b2 − a2)4

4 DM, Eq. (138) ±a 8λ2a2(b2 − a2)2(c2 + a2)2

4 DM, Eq. (138) ±b 8λ2b2(b2 − a2)2(c2 + b2)2

4 DM, Eq. (145) ±a 0
4 DM, Eq. (145) ±b 8λ2b2(b2 − a2)4

4 DM, Eq. (153) ±a 8λ2a2(b2 − a2)4

4 DM, Eq. (153) ±b 0
3 DM, Eq. (161) 0 0
3 DM, Eq. (161) ±a 8λ2a10

3 DM, Eq. (165) 0 0
3 DM, Eq. (165) ±a 0
3 DM, Eq. (169) 0 0
3 DM, Eq. (169) ±a 8λ2a6(b2 + a2)2

3 DM, Eq. (174) 0 2λ2a4b6

3 DM, Eq. (174) ±a 8λ2a4(b2 + a2)3

3 DM, Eq. (179) 0 0
3 DM, Eq. (179) ±a 8λ2a8(b2 + a2)
2 DM, Eq. (184) ±a 8λ2a2(b2 + a2)4

2 DM, Eq. (189) ±a 0
2 DM, Eq. (194) ±a 0

V. LIMITING BEHAVIORS AS n → ∞

As the degree of the even polynomial field theories con-
sidered herein becomes large, there are two limiting cases
to be considered. The potentials have the general form

V2m(φ) = λ2
m
∑

i=0

(−1)m−iα2iφ
2i, (198)

where for m = 2n (even) we obtain the φ4, φ8, φ12, etc.
field theories, whereas for m = 2n + 1 (odd) we obtain
the φ6, φ10, etc. field theories.
Now, there are two paths to obtaining the limiting field

theory as m → ∞. First, for m = 2n (even), we choose
α0 = 2 and α2i = 1/(2i)!, then

lim
n→∞

V4n(φ) = λ2(1 + cosφ), (199)

which satisfies both minφ V (φ) = 0, α2i > 0 for all i,
and the coefficient of φ4n is α4n > 0 as needed to ensure
V4n(φ) → +∞ as |φ| → ∞. For these theories, the max-
imum number of degenerate minima is even and, hence,
there is no degenerate minimum at φ = 0, unlike the
sine-Gordon theory.

Second, for m = 2n+ 1 (odd), we choose α0 = 0 and
α2i = 1/(2i)!, then

lim
n→∞

V4n+2(φ) = λ2(1− cosφ) ≡ Vsine-Gordon(φ), (200)

which satisfies both minφ V (φ) = 0, α2i > 0 for all i,
and the coefficient of φ4n+2 is α4n+2 > 0 as needed to
ensure V4n+2(φ) → +∞ as |φ| → ∞. For these theories,
the maximum number of degenerate minima is odd and,
hence, there is a degenerate minimum at φ = 0, as in the
sine-Gordon theory.
Lohe [5] argued that both the φ4n and φ4n+2 field the-

ories limit onto the sine-Gordon theory with potential
λ2(1− cosφ), while we showed that they limit onto field
theories with potentials λ2(1±cosφ), respectively. This is
because Lohe [5] only considered φ4n field theories with a
degenerate minimum at φ = 0, i.e., V4n(φ) = φ2V4n−2(φ)
(see [5, Eq. (10)]), while this does not have to be the case
in general [recall, e.g., the φ12 potential in (138)]. Nev-
ertheless, the the two limiting theories are indeed equiv-
alent, as shown below.
The limiting kink structures are easily found to be

tan(φ/4) =

{

tanh(λx/2), V (φ) = λ2(1 + cosφ),

eλx, V (φ) = λ2(1− cosφ),

(201)
and both field theories are fully-integrable. These two
kinks are illustrated in Fig. 17. The two limiting the-
ories are equivalent through the transformation φ 7→
φ − π, since cos(φ − π) = − cosφ and tan(φ/4 − π/4) =
[tan(φ/4) − 1]/[1 + tan(φ/4)] , which upon equating to
tanh(λx/2) and solving gives tan(φ/4) = eλx. Similarly,
kink lattice solutions can also be obtained.
We expect the corresponding statistical mechanics,

correlation functions and PDFs of the φ4n+2 theories to
approach, asymptotically as n → ∞, those of the sine-
Gordon theory derived in [29].

-4 -2 2 4
Λx

1

2

3

4

5

6

Φ

-4 -2 2 4
Λx

-3

-2

-1

1

2

3

Φ

FIG. 17: (Color online.) Kink solutions (201) of the n → ∞
limiting field theories.

VI. CONCLUSION

We have systematically studied high-order polynomial
field theories (specifically, φ8, φ10 and φ12) describing
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successions of phase transitions, and we obtained exact
analytical (albeit implicit) kink solutions in different spe-
cial cases of the theories with degenerate minima. In view
of [31], steadily-translating kink solutions (with velocity
v and initial location x0) can be obtained from the static
kinks found herein through the Lorentz boost

{x, t} 7→
{

x− x0 − vt√
1− v2

, t

}

. (202)

Similarly anti-kink solutions can be obtained through the
transformation

{x, φ} 7→ −{x, φ}. (203)

Some novel features of the kink solutions found herein
include asymmetry, power-law decay of their tails, pos-
sibility of different kink types to have equal energy, and
nonlinear phonons. The tail asymptotics that we derived
for the kinks above could be used, in conjunction with
Manton’s approach [35], to compute (asymptotically, for
large separations) kink–kink and kink–anti-kink interac-
tion energies [36]. It would also be of interest to de-
termine whether the implicit kink solutions can be used
to study interactions via the collective-coordinate vari-
ational approximation techniques previously applied to
the φ4 [37, 38], φ6 [39] and sine-Gordon [40, 41] field
theories.

The field theories considered above also possess pulse
solutions confined to individual minima of the relevant
potentials, however, such pulse solutions are beyond the
scope of this work.

Beyond meson physics [5, 14], the kink solutions ob-
tained here correspond to domain walls in different fer-
roic materials such as ferroelectric and ferroelastic ones
[3, 7–9, 11, 12]. It would be instructive to explore how
asymmetric domain walls and nonlinear phonons affect
the thermodynamic and physical properties of these ma-
terials.
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