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Lawrence Livermore National Laboratory,

Livermore, California 94550, USA

In this paper we present molecular dynamics (MD) calculations of the interdiffusion coefficient for
asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and Inertial Con-
finement Fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures
of 100-500 eV and a number density ∼ 1025 ions/cm3. The motion of 30000-120000 ions is simulated
in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the
electrons is included in this effective interaction; the electrons are not simulated explicitly. The
species diffusivity is then calculated using the Green-Kubo approach using an integral of the inter-
diffusion current autocorrelation function, a quantity calculated in the equilibrium MD simulations.
Our MD simulation results show that a widely used expression relating the interdiffusion coefficient
with the concentration-weighted sum of self-diffusion coefficients, over-estimates the interdiffusion
coefficient. We argue that this effect due to cross-correlation terms in velocities is characteristic of
asymmetric mixed plasmas. Comparison of the MD results with predictions of kinetic theories also
show a discrepancy with MD giving effectively a larger Coulomb logarithm.

PACS numbers: 52.25.Fi,52.27.Gr,52.29.Hq

I. INTRODUCTION

Transport processes in plasmas and warm dense mat-
ter are the subject of increasing interest [1–7]. These
transport processes have long been treated in the frame-
work of kinetic theories [1]. Chapman-Enskog theory pre-
dicts values for the transport coefficients, typically using
a binary collision operator. For bare Coulomb charges,
the resulting scattering integrals include a Coulomb log-
arithm in which long-range screening and short-range
quantum effects (or the classical turning point for re-
pulsive charges) cut off the otherwise divergent integral.
These calculations rely on weak coupling, and as the cou-
pling increases, the accuracy of the predicted transport
coefficient declines, often phrased as uncertainty in the
Coulomb logarithm. As computer power has increased,
it has become practical to calculate plasma transport
coefficients using molecular dynamics (MD) [2–4, 7–11].
MD does not rely approximations based on weak cou-
pling, binary collisions, or small-angle scattering. In fact,
MD performs better by some measures in strongly cou-
pled plasmas, and as computer power increases further,
MD may be extended up to new regimes of weak cou-
pling [12, 13]. Most of the MD work has focused on sim-
ulations of plasmas with at most one ionic species, with
or without explicit electrons. Here we use MD to sim-
ulate transport processes in an asymmetric plasma mix-
ture, a plasma with two ionic species with quite different
charges and masses. We focus on the species diffusiv-
ity in a case where the ion-ion coupling of one species is
strong while that of the other species is weak to mod-
erate. Various predictions for species diffusivity have
been made based on kinetic theories [1, 10, 14, 15] and
by using effective couplings in models derived from sin-
gle species self-diffusivity [4–6]. Some comparisons have
been made [16], but the question of the accuracy of the
kinetic and effective theories largely remains open. We

assess that question here.

The species diffusivity is important in mixing pro-
cesses. Mixing involves both advective stirring and mix-
ing at the atomic level due to the species diffusivity. Typ-
ically, the advection is the principal mechanism for mix-
ing material over longer length and time scales, but the
species diffusivity provides an important mechanism for
irreversibility and may dominate at short time scales. For
brevity, throughout the remainder of this Article we refer
to species diffusivity simply as diffusivity. Within plasma
physics, diffusion plays an important role in some well-
known systems. It is key to the purification of white
dwarf atmospheres through the gravitational sedimenta-
tion of heavy elements such as 22Ne [17–19]. Diffusion can
also have an effect in inertial confinement fusion (ICF),
since mixing can degrade the fuel both in conventional
hot spot ignition [20] and in double shell ignition [21].
Other systems exhibit diffusion of particles interacting
through screened Coulomb interactions, such as dust par-
ticles in plasmas and colloidal particles suspended in elec-
trolyte [22–25]. Diffusion in these systems spans a large
range of regimes. ICF plasmas are dense. The fuel starts
cold and at solid density ∼1 g/cm3, is rapidly compressed
to warm dense matter conditions, and ultimately while
burning should be at temperatures ∼1 keV and densities
of ∼1000 g/cm3 [20]. White dwarfs have temperatures
of 20 to 1000 eV and a broad range of densities. Dif-
fusion is of interest in plasmas that are weakly coupled
(white dwarf) to strongly coupled (early phase ICF). Un-
derstanding diffusion across this large range of conditions
is a challenge, and there are no direct experimental mea-
surements of diffusion in dense plasmas.

Diffusivity determines the relationship between the
mean-squared displacement |∆r|2 of a diffusing particle
to the time for that diffusion, ∆t: D = |∆r|2/(6∆t). To
be precise, this is the self-diffusivity. Dimensionally, it is
the product of a characteristic velocity and a scattering
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length, so a first estimate of the diffusivity of a rarefied
plasma is D ≈ vthlmfp, where vth is the thermal veloc-
ity and lmfp is the mean free path. The more precise
Chapman-Cowling formula [1] is:

D =
π

4

vth rWS

Γ2
12 ln Λ

(1)

Γ12 = Z1Z2Γ, (2)

where Zi is the charge on ion species i, e is the elec-
tron charge magnitude, vth =

√

8kBT/πmred, and Γ ≡
e2/ (4πǫ0 rWS kBT ). T is the temperature and kB is
the Boltzmann constant. The Wigner-Seitz radius is
rWS = (4πn/3)−1/3, n is the total ion number density
and mred is the reduced mass of the two ions involved in
the binary scattering events. Here lnΛ is the Coulomb
logarithm. This diffusivity formula due to Chapman and
Cowling [1] is for the Maxwell-Stefan diffusivity; i.e., the
interdiffusivity without the thermodynamic factor, a fac-
tor that accounts for non-ideal mixing contributions to
the free energy. Other kinetic model results based on
screened Coulomb interactions from Paquette et al. [14]
and Daligault [4] are also for the Maxwell-Stefan diffu-
sivity.
The first studies of diffusion using MD were for a

one component plasma (OCP), in which the ions in-
teracted via the bare Coulomb force [26]. These stud-
ies focused on the velocity autocorrelation function and
the self-diffusivity, i.e., the diffusivity of a tracer parti-
cle in the single-species plasma. The calculated diffu-
sivity at strong coupling was greater than predicted by
the Chapman-Cowling formula. The bare Coulomb in-
teraction effectively assumes that the electrons are just
a uniform, neutralizing background. Subsequent calcula-
tions have been done using a screened Coulomb (Yukawa)
interaction and other effective interactions between the
ions, relaxing the uniform background assumption [3, 5].
Here, too, the calculated self-diffusivity was greater than
predicted by the Chapman-Cowling formula.
In a few cases MD simulations of interdiffusion in bi-

nary ionic mixtures have been reported [9, 10, 16]. These
simulations have two ionic species and the ions interact
via the bare Coulomb force. Here the Maxwell-Stefan
diffusivity was calculated and multiplied by the thermo-
dynamic factor for ideal, ambipolar electrons to get the
interdiffusivity (mutual diffusivity). Bastea found that
the MD-derived Maxwell-Stefan diffusivity for a D-Au
mixture agreed well with the Paquette diffusivity [16].
Daligault proposed an interdiffusivity model based on his
self-diffusivity calculations, using an effective coupling
for the mixture and a Darken rule for combining self-
diffusivities into an interdiffusivity [4]. There have also
been some studies of diffusion using orbital-free density
function theory and quantum molecular dynamics [27–
29]. These approaches solve for the electron densities
and the forces arising from them explicitly using approx-
imate formulations of quantum mechanics. They hold
the promise of more accurate forces, but at greatly in-
creased computational cost which impacts the ability to

collect good statistics and have simulation boxes larger
than the ionic mean free path. Despite this body of work,
important questions remain unresolved: Is diffusion in
asymmetric binary plasma mixtures described well by
kinetic models like the Chapman-Cowling formula when
one component is strongly coupled? In those plasmas is
it possible to relate the interdiffusivity to the computa-
tionally facile self-diffusivity? How important are cross-
correlation effects in asymmetric plasmas? We address
some of those questions here.
The text is organized as follows. In Section II we briefly

describe the multispecies plasmas followed by a review of
the hydrodynamics equations, and as a continuation in
Section III we present the Green-Kubo approach that is
used in this work to extract diffusion coefficient. In Sec-
tion IV the methodology of the work and details of MD
are discussed, and in Section V results and comparison
with kinetic theories are presented. Finally, we conclude
with a summary in Section VI.

II. FORMALISM

A. Description of Mixed Plasma

We start our discussion with a review of the parameters
needed to describe mixed plasmas. We assume a mixture
of the ion species i = 1, 2, ... with mass and ionization Ai

and Z∗
i , respectively. The total number density of ions is

given by n =
∑

i ni, where ni is the number density of the
ions of species i. The Wigner-Seitz radius of the system is
given by rWS = (43πn)

−1/3. The strength of the ion-ion
Coulomb interaction–ratio of potential to kinetic energy–
for species i is characterized by the coupling parameter:

Γi =
(Z∗

i e)
2

4πǫ0rikBT
= (Z∗

i )
5/3〈Z∗〉1/3Γ, (3)

where ri =
(Z∗

i )
1/3

〈Z∗〉1/3
rWS is the ion sphere radius intro-

duced by Salpeter [30]. In a multicomponent mixed
plasma it is useful to introduce an effective coupling [4,
16, 31–33]:

Γeff =
∑

i

XiΓi = 〈(Z∗)5/3〉〈Z∗〉1/3Γ. (4)

In Eqs. (3) and (4) we use the definition for the angular
brackets 〈· · · 〉 as a number-weighted average of a param-
eter Ψ in a mixture of the type 〈Ψ〉 =

∑

i ΨiXi where
Xi = ni/n is the mole fraction of species i. For a plasma
mixture the effective coupling will change with the mole
fraction as well as temperature and density. In Fig. 1
we plot Γeff in a mixture of D and Ar ions as a func-
tion of composition and temperature, across the range
of conditions studied in this Article. The interspecies
coupling parameter Γ12 in Eq. (1) on the other hand is
independent of the composition mole fraction and cannot
effectively describe the mixture.
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FIG. 1. (Color online) Effective coupling Γeff using rela-
tion (4) as a function of Ar mole fraction in a D-Ar ionic
mixture at T = 100, 200 and 500 eV density 1025 ion/cm3

and ionization Z∗

D = 1 and Z∗

Ar = 13. As a reference the val-
ues of Γ12 are 6.5, 3.25 and 1.3 for T = 100, 200 and 500 eV,
respectively. These are represented with the short horizontal
lines around the value of the mole fraction where Γ12 = Γeff .

The ionic mixture is immersed in a neutralizing back-
ground of free electrons whose state is determined by the
electron number density ne and temperature T . From
the global charge neutrality of the mixture the number
density of the electrons is given by:

ne = 〈Z∗〉n. (5)

In charged fluids the electrons interact not only with their
immediate neighbors but with all the other electrons in
the system, therefore their motion cannot be decoupled
from one another. As a consequence plasmas exhibit a
strong collective behavior in the long wavelength limit,
k → 0, where the Fourier transform of the Coulomb po-
tential, e2/ǫ0k, diverges. A manifestation of this behav-
ior is the polarizability of the electrons which rearrange
themselves around the ions so that the plasma remains
locally neutral. This rearrangement leads to an effective
inter-ion potential that decays much faster than 1/r at
large distances. In this work we use the Yukawa potential
to describe the ionic effective potential. It captures the
electron polarizability in a linear response regime [34, 35].
Several recent articles [36, 37] have verified its validity in
warm and hot dense matter regimes, and it is expected to
provide an accurate description of the 100 eV and hotter
plasmas studied here. Polarizable BIM models [38–40]
have been developed for binary mixed plasmas based on
a similar motivation. We give more details for the ion-ion
effective potential in the Methodology Section (IV).
Defining parameters that describe the electron fluid is

integral to the description of ionic mixture. It is con-
venient to introduce the dimensionless length parameter
rs = re/a0, where re = (43πne)

−1/3 and a0 is the Bohr
radius. As T and ne change, the electrons span differ-

ent levels of the degeneracy which can be characterized
by the dimensionless parameter Θ ≡ kBT/EF [41, 42],

where EF ≡ ~
2

2me

(

3π2ne

)2/3
is the Fermi energy and me

the mass of the electron. In the high density and degen-
erate plasma limit, i.e. rs → 0 and Θ → 0 respectively,
the electrons form a rigid neutralizing background.
For fully to partially degenerate electrons, quantum

effects are important. To extend the coupling definition
to the quantum regime, we need to account for the fact
that electrons do not get arbitrary close to each other.
Here Γe is taken to be the ratio of the potential energy to
the Fermi energy Γe = e2/ (4πǫ0 re Ef ), whereas for non-
degenerate electrons Γe = e2/ (4πǫ0 re kBT ). For par-
tially degenerate case an interpolation form between the
two extremes may be employed [43]:

Γe =
1

4πǫ0

e2

re
√

(kBT )2 + E2
f

. (6)

The effective coupling for the D-Ar plasma mixtures
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FIG. 2. (Color online) Electron degeneracy Θ and warm dense
matter parameter W [43] as a function of Ar mole fraction in
a D-Ar ionic mixture at T = 100, 200 and 500 eV density
1025 ion/cm3 and ionization Z∗

D = 1 and Z∗

Ar = 13.

studied here ranges from ∼0.1 to ∼35, depending on
the temperature and the Ar mole fraction, as shown in
Fig. 1. They span a range of moderate couplings. In
Fig. 2 we plot the degeneracy parameter Θ as a function
of the Ar mole fraction for the same temperatures with
n = 1025 ion/cm3. The 100 eV and 200 eV plasmas have
Θ < 1, apart from the 200 eV nearly pure D plasmas
(X < 0.025). Θ = 0 corresponds to a fully degenerate
plasma, so the plasmas studied here are moderately de-
generate. For the 500 eV plasmas, Θ ranges from 0.8 to
∼3. In the same figure we plot the so called warm dense
matter (WDM) parameter W = S(Γe)S(Θ), introduced
by Murillo [43], with S(x) = 2/

(

x+ x−1
)

a function that
is symmetric under x → 1/x and peaks at unity. These
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FIG. 3. (Color online) Electron degeneracy Θ and warm dense
matter parameter W [43] as a function of Ar ionization in a
D-Ar ionic mixture at T = 100 eV, density 1025 ion/cm3 and
Ar mole composition XAr = 0.05, 0.1 and 0.2. The ionization
of D was kept fixed at Z∗

D = 1.

plasmas are approaching warm dense matter (W = 1).
In Fig. 3 we plot the degeneracy parameter Θ as well as
W as a function of Ar ionization for the same mixture
at 100 eV, for three values of Ar mole fraction. From an
average atom calculation (Section VB) we expect the
value of Z∗

Ar ∼ 10. We can deduce from Fig. 3 that the
value of Θ will be in the range 0.3−0.5 for these mixtures.

B. Hydrodynamics

In this Section we review the mixing in neutral and
ionic fluids in the hydrodynamic limit. In this limit
the local properties of the fluid vary slowly on micro-
scopic length and time scales; as such the fluid is de-
scribed by the equations of macroscopic fluid mechan-
ics [44, 45]. The conservation laws and dissipative fluxes
are described by the Navier-Stokes equations for multi-
component fluids. The complete set of these equations is
complicated and given in standard texts [46, 47]. Here
we consider the binary mixture case and write only equa-
tions that are relevant to the diffusion. The treatment of
a binary mixture can be extended to a multicomponent
mixture [48]. The conservation equations for mass and
momentum and the equation for the species flux are:

Dρ

Dt
= −ρ∇ · v, (7)

ρ
Dc

Dt
= −∇ · jc + r, (8)

ρ
Dv

Dt
= −∇P −∇ · τ + ρg, (9)

where D/Dt = ∂t + v · ∇ is the comoving derivative. In
this set of equations ρ(r) is mass density and c(r) is the
mass fraction of species 1. The equations are written for
a binary mixture so the indices in the previous definition
have been dropped. The center-of-mass velocity v(r) is
given by ρv = ρ1v1+ρ2v2 with ρi and vi being the mass
density and mean velocity of species i. The inter-diffusion
current, jc = ρ1(v1−v) = ρc(1−c)(v1−v2), is modeled.
Here τij is the energy-momentum tensor related to the
stress tensor σij by τij = ρvivj − σij . The rate of pro-
duction of mass of one species due to chemical reaction
or fusion events in dense plasmas, which will be ignored
in this study, is denoted by r; g is the gravitational ac-
celeration. The other fields are the internal energy per
unit mass E, pressure P = − 1

3σii, and temperature T .
The hydrodynamic variables obey phenomenological

equations relating species mass and heat fluxes (or cur-
rents) with gradients of local variables. More generally
we relate the mass fluxes to a driving force proportional
to the gradient of the difference chemical potentials per
unit mass µ of the two components:

µ =
µ1

m1
− µ2

m2
, (10)

with µi andmi the chemical potential and mass of species
i, respectively. In addition, there is a temperature gra-
dient term from collisional heat exchange (the Soret ef-
fect) [49]. The gradient in µ can be cast in terms of gra-
dients of different local variables. For a neutral binary
mixture ∇µ can be expressed as [44]:

∇µ(r, t) =

(

∂µ

∂c

)

P,T

∇c(r, t) +

(

∂µ

∂P

)

T,c

∇P (r, t)

+

(

∂µ

∂T

)

P,c

∇T (r, t). (11)

The temperature gradient term from the chemical poten-
tial is often combined with the Soret term. In the above
linear response approach, the mass flux jc can be written
as:

jc = −ρD12 [∇c+ (kT /T )∇T + (kP /P )∇P ] , (12)

where D12 is the interdiffusivity, kTD12 the thermal dif-
fusion coefficient and kPD12 the barodiffusion coefficient.
In isothermal-isobaric conditions, Eq. (12) reduces to
jc = −ρD12∇c, which combined with Eq. (8) gives the
familiar Fick’s law for diffusion in mixtures.
For ionic mixtures, which include plasmas, the situa-

tion is a bit more complicated since compositional gradi-
ents generate local electrical fields that attempt to main-
tain macroscopic charge neutrality and that tend to en-
hance the diffusion; this is the so-called ambipolar diffu-
sion effect. In this case, in the presence of free electrons,
a Lorentz-force term proportional to the locally induced
electric field E will be added to the RHS of Eqs. (11)
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and (12). If the electron current is ignored, which is what
it is assumed in the adiabatic approach for deriving the
Yukawa potential, then eE = −∇µe, where µe is the elec-
tron chemical potential, as well as a heat exchange term
proportional to the electron temperature gradient. The
chemical potential part adds the term

(

Z∗
1

m1
− Z∗

2

m2

)

∇µe

to Eq. (11) (for ionic and neutral components). This in-
troduces terms in Eq. (12) that can be expressed with
gradients of electron pressure Pe and electron tempera-
ture Te. The temperature gradient term is again usually
combined with the electronic heat exchange (Soret) term.
For an ideal, isothermal, nondegenerate binary mixture,
we obtain the well-known result [50–52] for barodiffusion:

jc = −ρD12

[

∇c+ c(1− c)
(m2 −m1)

〈m〉
∇Pi

Pi
(13)

+ c(1− c)
(m2Z

∗
1 −m1Z

∗
2 )

〈m〉
∇Pe

Pe

]

A noteworthy property of this result is that the diffusion
is enhanced over the Fickian component even when there
is total pressure balance (P ≡ Pi + Pe = constant); in
this case, assuming that the charge states do not vary,
one finds

jc = −ρD12Φe∇c, (14)

where,

Φe =
〈Z∗〉+ 〈(Z∗)2〉
〈Z∗〉+ 〈Z∗〉2 . (15)

This expression provides a more general form for the
electronic “thermodynamic factor” than Boercker inter
alia [10, 16], who assumed that 〈Z∗〉 ≫ 1. For a binary
mixture the factor Φe has a maximum value of

Φe|max = 1 +

(

√

(Z∗
1 )(1 + Z∗

2 )−
√

(Z∗
2 )(1 + Z∗

1 )

)2

,

(16)
at a given mole fraction that changes with the charge
asymmetry of the mixture. This value is unity when
Z∗
1 = Z∗

2 . Use of the more general barodiffusion ex-
pression automatically (and more accurately) accounts
for this enhancement. Modeling and measurement of the
thermodiffusivity coefficients that arise in the coupled
mass-heat diffusion problem are much more difficult and
will be deferred.

III. GREEN-KUBO TECHNIQUE FOR

EXTRACTING SELF AND INTERDIFFUSIVITY

The presence of an interface in a system of n-
component fluids imposes gradients on different thermo-
dynamic fields in the system. These gradients provide

the driving force that mixes the different components into
each other smearing out the initial interface and resulting
in an eventual uniform mix of the system. If one tracks
the interface as it smooths out in time we can extract
transport coefficients that enter in the hydrodynamics.
In a more simplistic approach we can address the ques-

tion of transport coefficient dependence by focusing se-
quentially in different given situations with a particu-
lar composition, temperature and density and allow the
system for occasional smooth fluctuations of the com-
position (or other fields) around the nominal value. By
assuming small fluctuations we can exploit the linear re-
sponse theory in the form of the Green-Kubo (GK) or
fluctuation-dissipation approach. These techniques have
been frequently used to extract the linear transport co-
efficients in equilibrium ensembles. The main hypothesis
is that the relaxation of a system from spontaneous fluc-
tuations is governed by the same transport coefficients as
the relaxation of a fully non-equilibrium system to equi-
librium in the limit of linear process.

A. Self-Diffusivity of a tagged particle

One of the most widely known and used GK expres-
sions determines the self-diffusion (or tracer diffusion in
mixtures). The self-diffusion coefficient Di(i = 1, 2) is
related to the random-walk motion of a tagged particle
of species i in a mixture. It can be calculated from the
velocity autocorrelation function Ci(t) via a Green-Kubo
integral [45, 47, 53–56],

Di =

∫ ∞

0

Ci(t)dt. (17)

For an isotropic fluid the velocity auto-correlation func-
tion of species i is defined as:

Ci(t) =
1

3
〈v(i)(t) · v(i)(0)〉, (18)

where in this case the angled brackets denote an en-
semble average, here an average of the dot product of
an ion’s velocity at time t with the same ion’s veloc-
ity at time 0 for ion type i. The autocorrelation func-
tion Ci(t) depends on the species as well as temperature,
density and composition. The autocorrelation starts at
Ci(0) = kBT/mi and decreases toward 0 with time. For
moderate to strong coupling mixtures the autocorrelation
function exhibits an oscillatory decay, including negative
correlations. Negative correlation is a manifestation of
the cage effect [57], where the tagged particle finds itself
momentary trapped by its immediate neighbors, and the
negative correlation results from the velocity reversal as
the particle bounces off the cage. At low enough cou-
pling the autocorrelation function decays monotonically,
absent the aforementioned many-body effects.
It is straightforward [45, 48] to verify the equivalence

of Eq. (18) with the equation relating the mean-squared
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displacement of a tagged diffusing particle time, in the
long-time limit. This is given by the well known relation
due to Einstein for Brownian motion [58]:

Di = lim
t→∞

1

6t
〈|ri(t)− ri(0)|2〉. (19)

This equivalence constitutes a simple example of the gen-
eral fluctuation − dissipation relation [59–62]. It also
relates the stochastic process of a random walk in which
the mean-square displacement of the walker becomes a
linear function of time after sufficiently many collisions
and displacements have occurred.

B. Interdiffusion; Maxwell-Stefan Equation

Although self-diffusion plays an important role in de-
scribing the kinetics during mixing, it is not sufficient to
quantify it. The appropriate quantity for Fickian mixing
is the interdiffusion current which involves the relative
transport of mass current with respect to another. In a
binary mixture this current at the center-of-mass frame
is given by [45, 47]:

jc = ρ1v1 − ρ2v2 = c(1− c)ρ(v1 − v2), (20)

with vi and ρi the center-of-mass velocity and mass den-
sity of species i. This is a special case to a more general
definition in the multicomponent mixture of the inter-
species mass flux in the center-of-mass frame [48, 63]. A
more conceptually feasible definition of interdiffusion is
often made in terms of a number flux X1X2n(v1 − v2)
instead of a mass flux. The interdiffusion process will
be described by the Maxwell-Stefan (MS) equation that
relates the number density to the gradient in chemical
potential µi of species i:

X1X2(v1 − v2)

D0
12

=
X1

kBT
∇µ1. (21)

The right-hand side of the MS Eq. (21) is proportional
to a negative driving force for diffusion of species 1, and
the left-hand side expresses an average retarding force on
particles of species 1 due to interaction with species 2.
The coefficient D0

12 - so-called Maxwell-Stefan diffusion
coefficient - is related to the Fickian diffusion D12 by a
thermodynamic factor that accounts for non-ideal mixing
contributions to the free energy.
The Green-Kubo formula for the interdiffusion sim-

ilar to self-diffusion is obtained by combining Fick’s
phenomenological equation with the mass conservation
Eq. (7), and solving these equations in the frequency
domain and reciprocal space. Details are given in
Ref. [45, 48]. For a binary mixture the result is:

D12 =
Φ

3NX1X2

∫ ∞

0

dt 〈j(t) · j(0)〉 = ΦD0
12, (22)

where N = N1+N2 is the total number of particles, and

D0
12 =

1

3NX1X2

∫ ∞

0

dt 〈j(t) · j(0)〉 =
∫ ∞

0

dtCMS(t).

(23)
In the above we have introduced the MS diffusivity corre-
lation function: CMS(t) = 〈j(t) · j(0)〉/(3NX1X2). Here
j(t) is given by:

j(t) = X2

N1
∑

α=1

vα −X1

N2
∑

β=1

vβ = NX1X2(v1 − v2), (24)

representing number flux instead of the mass flux jc(t) in
Eq. (20). The prefactor Φ is the thermodynamic fac-
tor whose presence stems from the definition of Fick-
ian diffusion in terms of the gradient in mass fraction
rather than gradient in chemical potential which enters
in Maxwell-Stefan diffusion. The thermodynamic fac-
tor in Eq. (22) is defined by Φ ≡ lim

k→0
X1X2/SXX(k).

In the above SXX(k) is the concentration structure fac-
tor defined in terms of partial structure factors Sij(k) =

1
N

Ni
∑

α=1

Nj
∑

β=1

〈exp ik·(rα − rβ)〉, with i, j the species indices,

by the following relation due to Bhatia & Thornton [64]:

SXX(k) = X2
2S11(k) +X2

1S22(k)− 2X1X2S12(k). (25)

In the long wavelength limit k → 0 all the structure fac-
tors can be derived by either thermodynamic fluctua-
tion theory or by calculation in a grand canonical en-
semble [65]. By following either of these approach the
concentration structure factor in isobaric-isothermal con-
ditions is given by:

SXX(0) = 1/

(

∂2(βG/N)

∂X2
1

)

P,T

, (26)

and therefore we can express the thermodynamic factor
as:

Φ = X1X2

[

∂2(βG/N)

∂X2
1

]

P,T

. (27)

With this new definition (27) it is clear that the ther-
modynamic factor Φ accounts for non-ideal mixing con-
tributions to the Gibbs free energy. For ideal mixtures
this factor is unity which results in Maxwell-Stefan and
Fickian diffusivity being identical. For ionic mixtures
this factor is larger than one, due to ambipolar effect,
depending on the symmetry of the mixture. For a mixed
plasma in a rigid background of electrons the difference
from the ideal mixture arises from entropic effect induced
by this neutralizing background as mixing occurs [10, 16].
As it was shown in the Hydrodynamics Section the ther-
modynamic factor is:

(

〈Z∗〉+ 〈(Z∗)2〉
)

/
(

〈Z∗〉+ 〈Z∗〉2
)

which in the limit 〈Z∗〉 ≫ 1 goes to 〈(Z∗)2〉/〈Z∗〉2. This
factor increases with the asymmetry of the mixture.
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For plasma mixtures immersed in a polarizable elec-
tron background, deriving this factor requires a full
knowledge of the plasma EOS. In this work we focus on
computing only the Maxwell-Stefan diffusivity.

IV. METHODS

An extremely powerful, albeit simple, tool to calculate
diffusion coefficients is MD simulation. MD simulations
follow the motion of atoms (ions) by integrating their
equations of motion while accounting for the pairwise
particle-particle interactions [66, 67]. The atoms move
according to the Newton’s Second Law:

mr̈i =
N
∑

i6=j

Fi,j(t). (28)

This set of 3N coupled ordinary differential equations
are integrated explicitly in time using the velocity Ver-
let [66] algorithm, with a time step that is related to the
characteristic time scale of the system. Here N is the
total number of particles in the system. In Eq. (28), Fi,j

is the force originating from the interaction of particle i
with particle j. We study an unconfined system of parti-
cles which entails use of the periodic boundary conditions
(PBC).
We use this general tool to study our plasma system as

a mixture of partially ionized deuterium (D) and argon
(Ar). The interaction force Fi,j among these ions has a
Coulombic nature. The presence of free electrons, that
act as a neutralizing background, results in an effective
ion-ion interaction potential. Within linear response the-
ories [34, 35] the interaction between ions is the Yukawa
potential:

φ(rij) =
ZiZje

2

4πǫ0rij
exp(−rijkD,e), (29)

where 1/kD,e is the screening length due to the electrons.

A. Effective ion-ion potential: Screening

This effective potential between the ions is derived
from the electron density distribution in space when the
ions are embedded in their midst. Finite temperature
Thomas-Fermi techniques start with consideration of the
Poisson equation:

ǫ0
e
∇2φ(r) =

∑

i

Z∗
i δ(r− ri)− 2

∫

d3p

(2π~)3
×

[

1 + exp

(

p2/2me + eφ(r) − µe

kBT

)]−1

,(30)

where µe is the chemical potential of the unperturbed
electron fluid. In the linear response limit the screening

length that enters in the Yukawa potential (29) is:

λD,e =

√

(

ǫ0Λ3
ekBT

e2I−1/2(µe/kBT )

)

=

= k−1
D,e ≈

√

√

√

√
ǫ0

√

(kBT )2 +
(

2
3EF

)2

nee2
, (31)

where I−1/2(y) =

∫ ∞

0

x−1/2dx

1 + exp(x− y)
, is the Fermi inte-

gral of order −1/2, Λe =
√

2π~2/kBTme is the electron
de Broglie wavelength. The last term in Eq. (31) repre-
sents a Debye-Hückel [68] form of the screening coefficient
with an effective temperature that accounts for the par-
tial degeneracy of the electrons by use of the Fermi energy
Ef = ~2(3π2ne)

2/3/2me [43, 69]. Considering the global
charge neutrality, the electron density can be related to
ion density and the average charge 〈Z∗〉 of the mixture
by ne = 〈Z∗〉n. In Fig. 4, we plot the electron screen-

0 0.1 0.2 0.3 0.4 0.5
Ar Mole Fraction

0.1

0.2

0.3

0.4

0.5

0.6

λ D
,e
 (

A
)

T = 100 eV
T = 200 eV
T = 500 eV
rWS
re

FIG. 4. (Color online) Electron screening length λD,e com-
puted using Eq. (31) as a function of Ar mole fraction in
a D-Ar mixture at T = 100, 200 and 500 eV, density 1025

ion/cm3, and ionization Z∗

D = 1 and Z∗

Ar = 13.

ing length computed from Eq. (31) for different temper-
atures and compositions. Also for comparison ionic and
electronic Wigner-Seitz radii are shown in the same plot.
In this case, as done for all this work, we vary the mole
fraction of the mixture keeping the ion number density
constant at 1025 ion/cm3. This is clearly indicated in
Fig. 4 where the Wigner-Seitz radius remains the same
with composition. Due to global neutrality, the electron
density on the other hand increases with the Ar mole
fraction, and as a result the screening length decreases.

B. Details of the MD simulations

The screening length sets an important length scale
for the system. Yukawa systems can be described by the
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dimensionless screening coefficient κ = rWS kD,e [3] and
the effective coupling Γeff . These are the only two dimen-
sionless parameters of a single-species Yukawa system.
When the screening coefficient κ ≥ 1 is large the Yukawa
potential is a short range potential. In this case it is
computationally advantageous to use a truncation of the
interaction potential, limiting the need to sum pairwise
ion-ion interactions only to those ions situated within a
(κ-dependent) cutoff radius.
The MD simulations [70] presented here are initiated

from a spatially random particle configuration, and par-
ticle velocities sampled from a Maxwellian distribution of
a given temperature T . The random configuration of the
particles of each component ensures a spatially uniform
mixture as well, suitable for equilibrium MD. The system
is initially equilibrated at the desired temperature using
a Nosé-Hoover [66, 71, 72] thermostat (constant number
of particles N , volume V and temperature T ). On aver-
age the system is left to equilibrate for 50000 timesteps
in this NVT ensemble. The subsequent production run
to calculate the diffusivity is done in a microcanonical
ensemble with constant N , volume V and total energy
E.
To calculate the diffusion coefficients of a binary mixed

plasma of D with Ar we have performed MD simulations
at temperatures T = 100, 200 and 500 eV, particle num-
ber density 1025/cm3. We input the ionization as a free
parameter independent of the thermodynamic conditions
of the mixtures. The physical ionization can be deter-
mined by an average atom Thomas-Fermi approximation
(Section VB), but we keep it as an adjustable param-
eter. We chose fully ionized deuterium and ionization
of Ar with values Z∗

Ar = 4, 8, 13 and 18. The screening
length that enters the Yukawa ion-ion potential was com-
puted by using relation (31). For each of the above condi-
tion we also consider mixtures whose Ar mole fraction is:
X = 0.01, 0.05, 0.1, 0.2 and 0.5. The calculations were
performed with enough particles (30000 ≥ N ≥ 120000)
over long enough time scales to ensure convergence with
insignificant statistical uncertainty (less than 5%).
The time scale of the system is set by the ionic plasma

frequency

ωp =

√

e2〈Z∗〉2n
ǫ0〈m〉 . (32)

The timestep in the runs was taken as ∆t ≃ 1/(̟ωE),
where ωE is the Einstein frequency, that physically de-
scribes the oscillatory motion of a caged particle in the
well potential created by its neighbors, and the coeffi-
cient ̟ had values in the range 100 ≤ ̟ ≤ 1000. The
values of ̟ were chosen such that the time step is small
enough to accurately resolve the trajectory of particles
before and after collisions. For most of the cases that
we studied the value of ̟ = 300 was used. However
for a few situations, with T = 500 eV, X ≤ 0.1 and
ZAr = 13, we needed to reduce the timestep by a fac-
tor of ten (̟ = 1000) to resolve strong binary collisions

events. In the limit of no screening κ → 0 we have
ωE = ωp/

√
3 [3], and for a finite screening we use a form√

3ωE(κ) = ωp exp(−0.2κ1.62) [69] fitted to the Ohta and
Hamaguchi MD results [3].
The autocorrelation functions were computed on the

fly as the simulation progressed. For the velocity au-
tocorrelation function (18), the initial velocity v(0) is
saved for each ion. The simulation was run in parallel
supercomputers and so the initial velocity together with
other ion attributes has to be communicated when an
ion moves from a spatial domain related to one processor
into another.
The correlation functions are saved as a table for a

sufficiently large time span tmax. The diffusivity was
then computed by postprocessing as:

D =

∫ ∞

0

dt C(t) ≈





tmax/∆t
∑

k

ak∆tC(tk)



+Ψ(tmax),

(33)
where the coefficients ak give the Simpson’s rule approx-
imation to the integral. The long-time tail contribution
was included by the second term in the right-hand side

of Eq. (33) with, Ψ(tmax) =

∫ ∞

tmax

dt C(t). The tail of

the correlation function is usually modeled by an analyt-
ical form. For the VAF of hard-spheres it was shown [73]
that the long-time tail decays as t−3/2. Rudd et al. [47],
accounted for a more general power law t−α decay in the
correlation function. They found that the value of expo-
nent α ranges from 3/2 up to α ∼ 2. In this case the
contribution to diffusion from the tail is:

Ψ(tmax) =
tmax

α− 1
C(tmax). (34)

For the conditions that we consider in our simulations
the tail contribution was small (less than 5%).
An approximation of the mean free path lmfp of each

species can be calculated from the self-diffusivity assum-
ing the relationship from the kinetic theory of gases:

lmfp =
3D
vth

. (35)

vth =
√

8kBT/πmred is the thermal velocity. We use the
self-diffusivities from our previous study [48] and Eq. (35)
to compute the mean free path of each component. For a
D-Ar mixture with 1% Ar mole fraction at T = 100 eV,
and ion density 1025/cc, the mean free path lmfp is 1.159

and 4.551 Å for Ar and D, respectively. The mean free
path decreases as the Ar mole fraction increases, with the
temperature and total number density fixed, so these are
the largest values of the mean free path in the Z∗

Ar = 13
systems. The 30000-ion simulation at n = 1025 ion/cm3

has box edges of 14.4 Å, which is 3.15 times larger than
the mean free path of the lighter species D. Also the mean
free path of Ar and D are 1.34 and 15.8 times larger
than the rWS at this density. So the simulation box is
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sufficiently large compared to the mean free path to avoid
Knudsen-like finite size effects. The Ar mean free path is
comparable to the inter-ionic spacing, especially at larger
Ar mole fractions, and the effects of this can be seen as
structure in the Ar velocity autocorrelation functions for
X ≥ 0.2 [48].

V. RESULTS AND DISCUSSIONS

We present results from MD of diffusivity in a binary
mixture for different conditions. The effect of compo-
sition on transport can initially be studied by comput-
ing the self-diffusion coefficient of each component in the
binary mixture for different compositions, temperatures
and densities. The self-diffusivity is related to the mo-
tion of tagged particle, which can be conveniently com-
puted by making use of the Green-Kubo approach, by
computing the velocity autocorrelation function (VAF)
of a tagged particle. Self-diffusivity in D-Ar mixtures
has been investigated with MD previously [48], showing a
general trend of the self-diffusivities to increase with tem-
perature and to decrease with the increasing density, Ar
ionization and Ar mole fraction. It was also observed that
at compositions with trace element Ar the self-diffusivity
of D is almost unaffected from the ionization of Ar.

A. Maxwell-Stefan diffusivity

To compute the Maxwell-Stefan (MS) diffusivity coef-
ficient using the Green-Kubo technique we need to eval-
uate the interdiffusion current correlation function

CMS(t) =
1

3
〈j(t) · j(0)〉 (36)

=
X1X2N

3
〈[v1(t)− v2(t)] · [v1(0)− v2(0)]〉,

where the interdiffusion current j(t) is given by Eq. (24).
In Fig. 5 we present plots of the CMS for different com-
positions at 100 eV. The ionizations of deuterium and
argon were kept constant at 1 and 13, respectively, while
the composition of the binary mixture varied from 1% to
50% argon mole fraction. The ion number density was
1025 ion/cm3. In Fig. 5 correlation functions are plot-
ted versus time for Ar mole fraction X = 0.01, 0.05 and
0.1. In general the correlation functions are expected to
decay exponentially initially and switch to slower power
law decay at long times due to memory effects and hy-
drodynamic modes [45]. Since the temperature is very
high, large fluctuations in the tail of the CMS correla-
tion function obscure the form of its long-time decay.
As seen in Fig. 5, the exponential decay of the correla-
tion function extends to 10 fs or more, and the contri-
bution from the long-time tail is insignificant. We can
therefore fit the correlation functions with exponential
expressions ∼ A0 exp (−t/τc), where A0 is a coefficient,
and τc is a characteristic correlation time. This form

indicates that the sequence of the collective collisions be-
tween different ions form a Poisson process [45, 62]. For
the dense plasma that we are considering here this is not
necessary true if we reduce T and increase the coupling
in which case we would need to fit the power-law tail or
invoke mode coupling theory to predict its form. With in-
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FIG. 5. (Color online) The interdiffusion current correlation
function CMS as a function of time that enters in the MS diffu-
sion plotted for different compositions of binary ionic mixture
at 100 eV and 1025 ion/cm3.

creasing argon mole fraction in the mixture, the electron
density increases so that the coupling and the screen-
ing coefficient entering the effective ion-ion Yukawa also
increase. As expected the exponential decay constant
τc decreases as we increase the mole fraction of Ar due
to stronger scattering. The faster decay of the CMS for
the highest Ar mole fraction demonstrates this decrease.
The correlation functions have been time averaged over
2 × 107 time steps to improve the statistics and reduce
the fluctuations at the tails.
Integrating CMS in time we can extract diffusion as a

function of time tmax, where tmax is the cutoff value in
the numerical integral.
In Fig. 6 we plot these partial integrals of the CMS

for the same cases as in Fig. 5. These can be fit with
functions of the form

Dfit(t) = A

[

1− exp

(

− t

τc

)]

, (37)

where A is a coefficient that gives the correct diffusion
value (D0

12 = A).
In Fig. 7, we plot the computed values of the MS dif-

fusivities as a function of composition for three different
T . As mentioned before, we kept the volume of the sys-
tem constant as the composition is changed. With this
choice it can be seen that the diffusion is not a strong
function of composition. At 100 eV the results are par-
ticularly flat, with the MS diffusivity at ∼ 0.004 cm2/s
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FIG. 6. (Color online) Time dependent Maxwell-Stefan dif-
fusivities from the partial integrals in time of the correlation
functions shown in Fig. 5.
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FIG. 7. (Color online) Maxwell-Stefan diffusion for different
temperatures and Ar composition in the mixtures. Ionization
of both D and Ar was entered as a free parameter and kept
constant at values 1 and 13, respectively.

for all of the compositions studied. At higher T the value
of MS diffusivity asymptotes to a constant beyond some
composition threshold value that increases with T . For
T = 500 eV the value of MS diffusivity is changing from
∼ 0.02 cm2/s at X = 0.01 to ∼ 0.045 cm2/s at X ≥ 0.2.
We ran the same simulations over different replicas, and
an error estimate for the diffusivity was derived from the
scatter, with the result shown as the error bars in the
figure.

B. Diffusivity as a function of mean ionization state

In the previous Section we computed the MS diffusiv-
ity at a given ion density by changing the temperature
and composition while keeping the ionization fixed. The
ionization was chosen near a physical value while also
providing a case study of an asymmetric mixture. Here
we assess the role of the ionization on MS diffusivity. Al-
though we choose the ionization as a free parameter it
is also very helpful to compare the physical value for the
ionization.
The mean ionization value in the warm and hot dense

plasma regimes may be computed through the use of av-
erage atom Thomas-Fermi approach [30, 43, 74–77]. For
the one-component ionic plasma the properties, including
ionization, are approximated with those of single neutral
spherically symmetric atom of radius rWS . The ioniza-
tion will be defined as

Z∗ = Z −
∫

d3r ne
b(r), (38)

where Z is the nuclear charge, and ne
b(r) is the density of

the bound electrons whose kinetic energy is smaller than
the potential such that p2/2me − eV (r) < 0. The elec-
trons satisfy the Fermi-Dirac statistics so their density in
space is given by

ne
b(r) =

8π

h3

√
−2meV (r)
∫

0

dp p2

1 + exp
(

p2/2me−eV (r)−µe

kBT

)

(39)
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FIG. 8. (Color online) Values of Ar and D ionization as a
function of composition of a D-Ar mixture at T = 100 eV and
ion number density 1025ion/cm3. The values were computed
using an average atom Thomas-Fermi approach.

In a binary mixture holding the total number density
of ions fixed, the mean ionization state of each species de-
pends on the composition. We have chosen to compute
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the ionization by combining single-species results from
Eqs. (38) and (39) using the so-called volume additivity
mixing rule [32, 78] or Agamat’s Law. At a given temper-
ature and pressure, the number densities and ionizations
of the two pure components are calculated. To get the
mixture equation of state, the reciprocals of the number
densities are added, weighted by the mole fractions, to
get the total volume and, hence, the total density. The
ionizations of the species in the plasma mixture are taken
to be the same as the ionizations in the pure plasmas. Re-
sults of this analysis are shown in Fig. 8, where we plot
values of the mean ionization state for the Ar and D in a
binary mixture at the temperature 100 eV and the den-
sity 1025 cm−3 as a function of Ar mole fraction. The
ionization of D is very close to 1, justifying our choice
of fully ionized D. However, the ionization of Ar is in-
creasing almost linearly with composition from a value
of 8.9 at 1% to 11.3 at 50% Ar. It should be noted that
these values of ionization are approximate and depend on
the definition of the bound electrons [43] and the mixing
scheme.

We turn now to computing the coefficient of diffusivity
with MD for a given set of conditions while varying the
ionization as a free parameter. In Fig. 9 we plot results
from such analysis. The results correspond to a partic-
ular composition with 10% Ar at 100 eV and number
density 1025 ion/cm3. We set the ionization of D at 1,
which is a reasonable approximation as suggested from
our average atom Thomas-Fermi analysis, and varied the
ionization of Ar as a free parameter. Results for the D
and Ar self-diffusivities are plotted along with MS dif-
fusivity in Fig. 9 and also shown in Table I. The MS
diffusivity follows a power law decay ∼ 1/Z∗

Ar with the
ionization. From relation (1) we would have expected a
∼ (Z∗)−2 decay with the assumption of constant lnΛ.
We show in the last part of this Article that this is not
the case. Similar qualitative behavior is observed from
the self-diffusivities.

This plot provides an helpful tool for mapping the
values of the ionizations with the expected value of
diffusivity. For example, from our Thomas-Fermi and
linear-mixing approach we expect that the ionization of
Ar at this thermodynamic conditions to be Z∗

Ar ≈ 10,
which for MS diffusivity interpolates from Fig. 9 a value
D0

12 ≈ 0.005 cm2/s.

C. Empirical models that relate Maxwell-Stefan

diffusivity with self-diffusivities

The relation between interdiffusion and self-diffusion
of the different species has been widely discussed in the
literature. The Green-Kubo form of interdiffusion can
be described in terms linear in the self-diffusion coeffi-
cients and complicated velocity cross-correlation terms.
If we group separately the velocity autocorrelation and
cross-correlation functions that appear in Maxwell-Stefan
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FIG. 9. (Color online) Values of self-diffusivities and mutual
diffusivity as a function of the ionization level of Ar. The
case presented here corresponds to a 10% Ar binary mixture
with deuterium, kept at T = 100 eV and number density
1025 ions/cm3. The ionization of deuterium was fixed at 1,
while that of Ar was varied.

TABLE I. Self-diffusivity and MS diffusivity values computed
from molecular dynamics for binary mixtures of 10% Ar with
D, at temperature 100 eV and number density 1025/cm3. Re-
sults are shown for different Ar ionization states Z∗

Ar.

Z∗

Ar DAr (cm2/s) DD (cm2/s) D0
12 (cm2/s)

1 0.04781

4 0.13416 0.01690 0.01095

8 0.09847 0.00805 0.00644

13 0.07889 0.00534 0.00409

18 0.06633 0.00406 0.00339

diffusion coefficient (23) we have the following [63]:

D0
12 =

[

X2D1 +X1D2 +X1X2

(

F11

X2
1

+
F22

X2
2

− 2
F12

X1X2

)]

,

(40)
where the F -factors are given by

Fαβ =
1

3N

Nα
∑

i=1

Nβ
∑

j 6=i

∫ ∞

0

〈vα
i (t) · vβ

j 〉dt. (41)

If we assume that velocity cross-correlations are negligi-
ble, i.e.,

F11

X2
1

+
F22

X2
2

− 2
F12

X1X2
= 0, (42)

a simple linear rule results, connecting the Maxwell-
Stefan diffusivity with self-diffusity in a binary system

D0
12 = X2D1 +X1D2. (43)
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This relation (43) is known in the condensed matter com-
munity as Darken’s equation [47, 63, 79, 80]. This rela-
tion has also been used in the plasma community mainly
for binary ionic mixtures [4, 9, 10, 33]. It has been tested
to some extent, but to our knowledge no one has done
a thorough numerical study to test its accuracy. For
many neutral and symmetric mixtures it works reason-
ably well [63, 81]. As an example, Rudd et al. [47] showed
that the computed MS diffusivities and the corresponding
diffusivities derived from the Darken relation (43) differ
by less than 15% for Al and Cu molten mixtures of any
composition across a broad range of pressures and tem-
peratures. The situation is quite different when consider-
ing ionic liquids. Computer simulations [45] have shown
that there is an appreciable positive correlation between
the velocities of neighboring ions which has the effect
of inhibiting interdiffusion. In cases where the Darken
relation holds or interdiffusivity can be related to the
self-diffusivities in a similarly explicit manner, it can be
computationally expedient. The Green-Kubo calculation
of the self-diffusivity converges more quickly than that of
the interdiffusivity. It is thus important to assess if this
relation provides a good approximation for the asymmet-
ric plasma mixtures that we are considering. Extending
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FIG. 10. (Color online) Velocity cross-correlation function
for 1, 5 and 10% Ar. The black solid line is related to the
MD calculated Maxwell Stefan diffusivity, the red dashed line
is the Darken relation and the blue dot-dashed lined is the
common force model.

the Darken relation to the level of correlation functions
would give the relation

CMS(t) = X2C1(t) +X1C2(t). (44)

If true, it provides a sufficient condition for the verity of
the Darken relation (43). So as a first step in Fig. 10 we
plot the velocity correlation function as computed from
a Darken-like linear combination of velocity autocorrela-
tion function VAF together with CMS. As seen from this
graph the cross-correlation terms play an important role

and that the interdiffusion current correlation function
has over all time a smaller value than the Darken-like lin-
ear combination of VAF. In Fig. 11 we plot the Maxwell-
Stefan diffusivity along with the Darken diffusivity. The
latter is a factor of 2 larger than the MS diffusivity for all
mole fraction which is a clear indication that correlation
between the velocities of neighboring Yukawa ions is sig-
nificantly reducing interdiffusion. This result contradicts
earlier work that found the Darken relation to provide a
good description of binary ionic mixtures [4, 9, 10, 33].
A second empirical relation between MS diffusivity and
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FIG. 11. (Color online) Maxwell-Stefan diffusivities from
MD in black, compared with the Darken combination of self-
diffusivities in red and Common Force model in blue for differ-
ent composition of D-Ar mixture at 100 eV and 1025 ion/cm3.
The ionizations of D and Ar were 1 and 13, respectively.

self-diffusivity that accounts to some extent for the cross-
correlations among neighboring ions can be derived by
the use of the common force model (CFM) [63]. In this
approach, although the thermodynamic forces on a given
ion arising from the motion of its neighbors is compli-
cated due to the cross-correlation terms, we can simplify
the problem by following a mean-field prescription and
replace the field of these forces with their average value.
For each species the individual number flux will be a
product of the species mobility Di/kBT and a thermo-
dynamic driving force. The driving force has two con-
tributions; from a diffusive term which is proportional
to −∇µi, and an advection term that accounts for the
cross-correlation terms at a mean-field level and which
we can set it constant to a common value ̥. Following
the above prescription each individual number flux can
be described as

ji = nXi
Di

kBT
(−∇µi +̥) , (45)

with n the ion number density. Like other empirical dif-
fusivity relations, the common force model effectively in-
troduces a background current that is set by imposing a
frame of reference. Here imposing no net flux, j1+j2 = 0,
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the common force ̥ should satisfy

̥ =
X1D1∇µ1 +X2D2∇µ2

X1D1 +X2D2
. (46)

By use of this form of the ̥ and the Gibbs-Duhem re-
lation X1∇µ1 + X2∇µ2 = 0, the diffusion flux is given
by

j = nX1

(

D1D2

X1D1 +X2D2

) ∇µ1

kBT
. (47)

Comparing Eq. (47) with the Maxwell-Stefan relation
Eq. (21) we come to the following CFM relation between
MS diffusivity and the self-diffusivities

D0
12 =

D1D2

X1D1 +X2D2
. (48)

If we compare Eq. (48) with Eq. (40) then in this ap-
proach the cross-correlation terms should satisfy the fol-
lowing relation

F11

X2
1

+
F22

X2
2

− 2
F12

X1X2
= − (D1 −D2)

2

X1D1 +X2D2
≤ 0. (49)

In Figs. 10 and 11, we have added the CFM combination
(48) of self-diffusivities to compare with the computed
MS. As expected CFM provides a better approximation
than Darken to MS diffusivity. For Ar mole fraction in
the range X ≥ 0.1, CFM model is satisfied with an un-
certainty of less than 20%. At very low Ar mole fraction
there still is a considerable discrepancy between CFM
and MS. One might expect this discrepancy to decrease
as the asymmetry of the mixture is reduced, but this is
not the case when the density and temperature are held
fixed. In Fig. 12 we plot MS along with Darken and CFM
diffusivities for a mixture with 10% Ar mole fraction as
a function of the Ar ionization Z∗

Ar. Interestingly, as we
decrease Z∗

Ar the discrepancy between the computed MS
diffusivity and the empirical models is increasing. The
ionic asymmetry of the mixture decreases with Z∗

Ar, but
the mass asymmetry remains the same, contributing to
an increase in cross-correlation of velocities.
A similarity exists between Eq. (44) and the Nernst-

Einstein relation, which is an empirical relation that links
the electrical conductivity of an ionic system to the self-
diffusion coefficients of the cations and anions in the sys-
tem [82]. In this case the electrical conductivity is related
to the same velocity correlation functions as the one that
expresses the interdiffusion coefficient.

D. Comparison with kinetic theories

In this Section we compare the MD results with ki-
netic theory computations of diffusion. As mentioned
in the introduction the kinetic equations are based on
many simplifying assumptions, like molecular chaos, and
binary collisions, while ignoring correlation effects. From
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FIG. 12. (Color online) Maxwell-Stefan diffusivities from
MD in black, compared with the Darken combination of self-
diffusivities in red and Common Force model in blue for a
D-Ar mixture with 10% Ar, as a function of Ar ionization
Z∗

Ar. The mixture was kept at 100 eV and number density
1025 ion/cm3. The ionizations of D was kept at 1.

a microscopic perspective, the hydrodynamic equations
can be derived from the Boltzmann equation [1, 49, 83]

[

∂

∂t
+ vi · ∇r + a · ∇v

]

fi =
∑

j

ĈB(fi, fj) ≡
dfi
dt

|coll,

(50)
fi(r,v, t) is the one particle distribution func-

tion in phase space of species i; ĈB(fi, fj) =
∫

d3vj
∫

dφ dθ sin θσij |vi − vj |
(

fi(vi)fj(vj)− fi(v
′
i)fj(v

′
j)
)

is the Boltzmann collision operator in the molecular
chaos assumption, with σij denoting the scattering cross
section. In the macroscopic limit the hydrodynamic
equations (7), (8), (9) are derived from velocity mo-
ments [83] of the aforementioned kinetic equation (50).
In the Chapman-Enskog [1] approach of solving the

Boltzmann Kinetic equation, transport coefficients are

given through the collision integrals Ω
(lk)
ij between par-

ticles of species i and j which are related to the total
cross section after integrating over a Maxwellian velocity
distribution. They are given by [1, 14]

Ωlk
(ij) =

√

(

kBT

2πmred

)
∫ ∞

0

e−g2

g2k+3σ
(l)
ij dg, (51)

where g ≡ |vi − vj |/vij , is a dimensionless velocity

with vij =
√

2kBT/mred. The reduced mass is mred ≡
mimj/(mi +mj) and σ

(l)
ij is the lth momentum transfer

cross section for a given energy

σ
(l)
ij = 2π

∫ ∞

0

(1− cosl χij)b db, (52)
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with the integration over the impact parameter b.
In Eq. (52) χij is the scattering angle given by

χij = π − 2

∫ ∞

rmin
ij

b dr

r2
[

1− b2

r2 − Vij(r)
g2kBT

]1/2
. (53)
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FIG. 13. (Color online) Comparison of MS Diffusion values
from MD at 100 eV, 1025 ion/cm3 for D-Ar mixture with
kinetic theories based on binary collision approach. The ion-
izations of D and Ar are 1 and 13, respectively. MD results
are represented by symbols connected with black dashed line.
Results from Chapman-Cowling (CC) kinetic model assuming
a pure Coulombic interaction are in solid red curve. The dot-
ted blue curve and the green dashed-dot curve correspond to
results from assuming screened Coulomb with electron screen-
ing only (as in MD) and all-particle screening, respectively.
For the screened Coulomb cases we used the collision integrals
tabulated in Ref. [14].

Here Vij(r) is the interaction potential between the
particle of type i and j, and rmin

ij is the distance of the
closest approach between the particles.
In the f irst Chapman-Enskog approximation to trans-

port properties [1], the interdiffusion coefficient is given
by

[

D0
12

]

1
=

3kBT

16nmredΩ
(11)
12

, (54)

where T and n are temperature and ion density. The
collision integral can be written as

Ω
(11)
12 =

√

π

mred

(

Z∗
1Z

∗
2e

2
)2

(2kBT )
3/2

ln Λ̄, (55)

where,

ln Λ̄ =
(2kBT )

2

2π (Z∗
1Z

∗
2e

2)
2

∫ ∞

0

e−g2

g5σ
(1)
12 dg, (56)

is a generalized Coulomb logarithm [6]. From Eq. (54)
we then have

[

D0
12

]

1
=

3

32n

(2kBT )
5/2

√
πmred

1

(Z∗
1Z

∗
2e

2)
2
ln Λ̄

=
π

4

vthrWS

Γ2
12 ln Λ̄

.

(57)
Comparing Eq. (57) with Eq. (1) shows ln Λ̄ → ln Λ in
the weak coupling limit. In the Chapman and Cowling
(CC) [1] approach using the Coulomb interaction poten-
tial Vij(r) = ZiZje

2/r and assuming the all-particle De-
bye screening length as the maximum value for the im-
pact parameter bmax =

√

(ǫ0kBT ) / (n〈Z2〉+ ne) e2, the
collision integrals can be computed analytically

ln Λ̄ =
ln
(

1 + γ2
12

)

2
, (58)

where γ12 = (4kBTλD) /
(

Z∗
1Z

∗
2e

2
)

. In the low-coupling

limit γ12 ≫ 1, the ln Λ̄ ≈ ln(γ12) = lnΛ.
In Fig. 13 we compare the diffusivity from Chapman

and Cowling with the MS diffusivity computed from MD.
The CC diffusivity overestimates the MS diffusivity by
more than an order of magnitude for much of the range
of compositions, which is to be expected since this theory
should work at the dilute and low-coupling limit, and
it only accounts for the screening in the cutoff value of
the Coulomb interaction. A better model with which
to compare our MD results is to assume that the ions
interact through the Screened Coulomb (SC) interaction
Vij(r) = ZiZje

2 exp(−r/λD,e)/r, with λD,e the screening
length due to electrons given by Eq. (31). In this case
collision integrals have been computed numerically by
Paquette et al. [14]. Other models of the screening are
also of interest, as discussed below. We plot the results in
Fig. 13. Although results from this model (plotted with
dotted blue curve) are on average a factor of 3 larger
than MD, they provide a marked improvement over the
CC diffusivity.
Both kinetic models ignore correlation effects. From

the Darken diffusivity plotted in Figs. 11 and 12 that
neglects cross-correlations, we see that much of the dis-
crepancy between the MS diffusivity from MD and the
diffusivity from the SC kinetics is already present in the
comparison of the MS diffusivity and the Darken diffusiv-
ity. This points to cross-correlation being a major con-
tributor to the discrepancy.
The Darken diffusivity does contain some kinds of cor-

relation, such as that due to the average neighborhood of
the scattering event which modifies the effective binary
collision operator [6, 14, 84]. This correlation is taken
into account by Paquette et al. [14] empirically by as-
suming an effective SC interaction among the ions [14].
The effective screening length λ that enters in the SC
potential is not allowed to drop below rWS , which we
implement by interpolating between a Debye length λD

in the dilute limit and rWS in dense case [85]:

λ =
√

(λ2
D + r2WS). (59)
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FIG. 14. (Color online) Comparison of MS Diffusion values
from MD at 100, 200 and 500 eV, 1025 ion/cm3 for D-Ar
mixtures with kinetic theories based on the binary collision
approximation. The ionizations of D and Ar are taken to be 1
and 13, respectively. MD results are represented by symbols
connected with lines as shown in the legend. Results from
kinetic theories based on a screened Coulomb effective ionic
interaction are shown with solid curves. For the screened
Coulomb cases we used the collision integrals tabulated in
Ref. [14]. The effective screening length λ is calculated from
Eq. (59).

If there is no screening from the electrons, λD

will be the Debye screening due to ions only
λD,i =

√

(n〈Z2〉e2) / (ǫ0kBT ). For the Yukawa parti-
cles (ions dressed by the electron cloud) used in the MD,
the appropriate screening coefficient will be one that in-
cludes the electron screening as well as all ions. In this
case the λD that enters in Eq. (59) is

λD =
1

√

λ−2
D,i + λ−2

D,e

, (60)

with λD,e the screening from partially degenerate elec-
trons from Eq. (31). Results from this analysis are plot-
ted (with dashed-dot green line) in Fig. 13. It gives the
best agreement with the MS diffusivity from MD.
In Fig. 14 the diffusivity from SC kinetics (solid lines)

is plotted along with the MS diffusivity from MD (sym-
bols) for the three temperatures 100, 200 and 500 eV.
Interestingly, there is better agreement between MD and
the kinetics models as the Ar mole fraction is increased.
Again, the same trend is seen between MS diffusivity and
Darken diffusivity from MD, pointing to the importance
of cross-correlation. As the screening increases, as with
increasing Ar mole fraction, the cross-correlated motion
decreases, and as demonstrated previously by Salin and
Gilles [11] a better agreement between MD and a good
kinetic description is achieved for transport coefficients.
In a recent parametric study of one component Yukawa
systems [86], it was shown that there is a critical value of

screening beyond which transport coefficient computed
from MD compares well with kinetics models, and this
critical value increases as the coupling of plasma is in-
creased. Referring to Fig. 4 we see that the screening
coefficient at a very low Ar concentration decreases by
less than a factor of two as we increase T from 100 to 500
eV. The value of the effective coupling Γeff decreases also
proportionally with T . Therefore changes in the screen-
ing have an important effect on the diffusivity, even at
T = 500 eV and low Ar mole fraction.
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FIG. 15. (Color online) Generalized Coulomb logarithm ln Λ̄
from MD as a function of Ar mole fraction for three tempera-
tures T = 100, 200 and 500 eV. For comparison we also show
the value ln Λ̄ from the kinetic theories that use SC potential
models with solid lines. The values of ln Λ̄ from the kinetics
are lower than the ones derived from MD

We have also extracted the generalized Coulomb log-
arithm ln Λ̄ from MD and SC kinetics using the form in
Eq. (57). The results are plotted in Fig. 15. The values
of ln Λ̄ are smaller than 2, which indicates a regime where
classic kinetic theories will not work well. In Fig. 16, we
plot ln Λ̄ for different ionizations of Ar at a mixture with
10% Ar mole fraction at 100 eV. In the same plot results
from MD are shown along with the ln Λ̄ values from SC
kinetics. As we decrease the value of the Ar ionization the
effective coupling of the mixture will decrease as well as
the screening coefficient. Due to cross-correlation effects
that were observed in Fig. 12 the discrepancy between
the values of ln Λ̄ from MD and SC kinetics increases
when Z∗

Ar decreases.
Daligault has recently published a model [5] for diffu-

sivity and generalized Coulomb logarithm ln Λ̄ based on
a MD study of one component Yukawa plasma. His ln Λ̄
is a function of the dimensionless screening κ:

ln Λ̄(κ,Γ) = ln

(

1 +
C(κ)√
3Γ3/2

)

, (61)

with C(κ) a function tabulated in Ref. [5], and Γ the
coupling of the single species plasma. To extend this
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FIG. 16. (Color online) Generalized Coulomb logarithm ln Λ̄
as a function of ionization for a 10% Ar mixture at 100 eV.
Values extracted from MD (symbols connected with dashed
line) are compared with the ones derived from kinetic theory
that use SC potential models (red solid line).

model to a plasma with two ionic species is ambiguous
since we need a unique relation of Γ to Γeff or Γ12 for
the mixture. However, for a mixture of ions with the
same charge this form can be used. For a 10% Ar mole
fraction and Z∗

Ar = Z∗
D = 1, from our MD (Fig. 16) we

get ln Λ̄ ≈ 2.1, which is in a good agreement (∼ 10%)
with Daligault model.

VI. SUMMARY

This Article has focused on the species diffusivity of
dense plasma mixtures where one component is moder-
ately weakly coupled and the other component is moder-
ately strongly coupled. We have used classical MD sim-
ulations based on the Yukawa interaction for D-Ar mix-
tures in the temperature range 100–500 eV and at the
number density of 1025/cc. MD does not rely on a small-
angle scattering approximation, and it does not suf-
fer from ill-defined Coulomb logarithms. The Maxwell-
Stefan diffusivity has been calculated using a Green-
Kubo relation. In comparing the MS diffusivity to simple
combinations of the D and Ar self-diffusivities in the mix-
ture as given by the Darken relation and the common
force model, we found that both of the simple models
over-predicted the diffusivity. The common force model
was in better agreement, but even it was off by a factor
of 2 as the Ar mole fraction goes to zero. The discrep-
ancy grows as Z∗

Ar is reduced, keeping the argon mass
fixed. The failure of these simple models is due to cross-
correlations in the D and Ar motion.
We have also compared the Maxwell-Stefan diffusivi-

ties calculated in MD with predictions from the kinetic

theory by Chapman and Cowling [1] and by Paquette et
al. [14]. The Paquette model assumes a Yukawa interac-
tion, thus avoiding the usual issues with the Coulomb log-
arithm. We find that the Paquette model over-predicts
the diffusivity as calculated in MD. This again points to
the model missing correlation effects. In this case we have
compared the diffusivity as a function of Ar mole fraction
at fixed temperature (100, 200, and 500 eV) and fixed to-
tal number density (1025/cc), in addition to as a function
of Z∗

Ar at fixed temperature (100 eV), total number den-
sity (1025/cc) and mole fraction (0.1). We found that the
kinetic model does not provide good agreement even as
the Ar charge is reduced, making the plasma more weakly
coupled. These calculations have been done in a regime
where the generalized Coulomb logarithm is small (< 2),
so it is not surprising that the kinetic theory has appre-
ciable error; it is surprising that the agreement does not
improve as the charge asymmetry is reduced. Evidently,
the mass asymmetry is sufficient to induce correlation ef-
fects that are not captured in the kinetic theory. We also
observe that the effective lnΛ has a stronger tempera-
ture dependence than predicted by Paquette et al. [14].
While not reported here, a comparison with the diffu-
sivity model of Chapman and Cowling [1] gives similar
results.

At this point there is no direct experimental data on
diffusion in these regimes. Recent experiments have in-
vestigated mixing in inertial confinement fusion experi-
ments [87]. In these experiments an inner part of the
plastic ablator was made with deuterated plastic. Dur-
ing an implosion, some of the deuterium mixed into the
tritium fuel and the resulting DT neutrons could be dif-
ferentiated from the TT and DD neutrons by their en-
ergy, and thus provided a measure of mixing. This mixing
includes diffusion and advected mixing due to Rayleigh-
Taylor instability and possibly other hydrodynamic pro-
cesses. The results of the experiment were compared
modeling of the Rayleigh-Taylor instability seeded by the
roughness on the exterior of the ablator, using a standard
diffusion model. The nature of laboratory experiments
that reach hot dense plasma conditions is such that hy-
drodynamic processes are ubiquitous. Direct measures
of mixing include both advection and diffusion, and the
data are integrated, relying on models distinguishing the
two contributions. In dense fluids at more modest tem-
peratures, it is possible to use scattering techniques to
measure the self-diffusivity directly, since the scattering
probes the velocity autocorrelation function [88]. Such
an experiment for plasma is challenging at the very least.
Until a direct experiment is formulated and carried out,
integrated experiments and the combination of theory
and modeling will provide the only guidance for species
diffusion in plasma. Classical MD simulations such as
those reported here provide a means to calculate trans-
port coefficients under moderate and strongly coupled
conditions. As we have seen in this study, the results of
these calculations provide an interesting test of existing
models, and there is much more to be learned.
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