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The efficiency of the internal combustion engine might be enhanced by employing spinning gas.
A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical
fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency.
A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel
cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.

PACS numbers: 05.70.Ce, 47.55.Ca, 07.20.Pe

I. INTRODUCTION

Optimizing the internal combustion engine to achieve
the highest possible fuel efficiency can be approached
both from a theoretical perspective and from a practi-
cal perspective [1]. From the practical perspective, which
has attracted the most attention, research has focused on
the optimization of the irreversible processes that occur
in the working engine, by considering finite time thermo-
dynamics [2] and irreversible thermodynamics [3]. These
processes include friction losses [4], inhomogeneous com-
bustion and heat transfer to the wall [5, 6], optimal piston
trajectory [7], and other non-ideal effects in combusting
gas [8]. From a theoretical perspective, equilibrium ther-
modynamics places upper bounds on efficiencies, which
in practice are not nearly reached.

Recently, it was shown that spinning a gas equips it
with an effectively higher, spin-dependent heat capacity,
with sonic speeds giving the largest heat capacity [9]. It
is shown here that this effect may be exploited in the
internal combustion engine. Specifically, in practical fuel
cycles, like the Otto and Diesel cycles, by spinning the
working gas, the theoretical limit in fuel efficiency may
be increased by as much as 10 to 40 percent. The new
theoretical limits rely only on the equilibrium thermody-
namics of spinning gases.

It is assumed here that the working fluids are ideal
Boltzmann gases and that the chemical reactions of com-
bustion do not change the gas constituents significantly.
The gases may be compressed axially in a cylindrical con-
tainer, like in a typical engine cycle. The only difference
is that the gases may be spinning around the axis of
the cylinder. For simplicity, the cylinder is considered
in the large aspect ratio limit, where end effects can be
neglected. The gas angular momentum is assumed to be
conserved on the time scale of the compression; in other
words, the cylinder is assumed to be frictionless. The
compression or expansion cycles, however, are assumed
to be slow enough that equilibrium thermodynamics pre-
vails, under the constraint imposed by the conservation
of the angular momentum. Note that the enhanced heat
capacity utilized here arises from this constraint on the
collective motion of the gas constituents, rather than the
spin properties of individual atoms.

FIG. 1: (Color online) Otto cycle 1 → 2′ → 3 → 4 and Diesel
cycle 1 → 2 → 3 → 4. Heat is transferred at 1 → 2′ or 1 → 2
phase.

II. ENGINE EFFICIENCY

Consider two practical cycles for engines, namely the
Otto cycle and the Diesel cycle. The P-V diagrams of
these cycles are shown in Fig. 1. The Otto cycle con-
sists of adiabatic compression and expansion processes,
separated by ignition and rejection of heat processes at
constant volume. The Otto cycle efficiency depends only
on the volumetric compression ratio n = Vmax/Vmin, and
is given by

ηo = 1− n1−γ , (1)

where γ = cp/cv is the specific heat ratio. In the Diesel
cycle, the heating occurs at constant pressure, rather
than constant volume, as in the Otto cycle. If the ratio of
the volumes after heating and before heating is p = V2/V1

and the total volume compression ratio is n = Vmax/Vmin,
the Diesel cycle efficiency may be written as

ηd = 1−
1

γnγ−1

pγ − 1

p− 1
. (2)

Depending on what constraints are imposed, any of these
types of engines might be the most efficient. Given say
maximum and minimum volumes, the Otto cycle would
be most fuel efficient, even more so than the Carnot cycle.
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However, constraints on the temperature appear to be
the most fundamental from a practical viewpoint. Con-
straints on the volume are likely less important, since
usually there is ample room for the engine. Constraints
on pressure might be circumvented by the use of com-
pressors. On the other hand, material properties limit
temperature on the high side; while the ambient temper-
ature marks the low temperature limit. Given two limit-
ing temperatures, namely a maximum temperature Tmax

and a minimum temperature Tmin, the Carnot cycle gives,
of course, the optimum fuel efficiency, ηc = 1−Tmin/Tmax.
In practice though, the Carnot cycle is impossible, be-

cause, first, it contains isothermal processes that are not
implementable, and second, it requires a heat reservoir
at Tmax that is not present in real engines. Thus, con-
sider instead the Otto and Diesel cycles, but constrained
by maximum and minimum temperatures. To render the
efficiency of these cycles, Eq. (1) and Eq. (2), in terms
of the temperature extrema, introduce the ratio of min-
imum and maximum temperatures, δ = Tmin/Tmax, and
the ratio of total heat per particle and maximum tem-
perature, q = Q/NTmax, so that the efficiencies of the
Otto and Diesel cycles can be put as

ηo = 1−
δ

1− q/cv
, (3)

ηd = 1−
δcv
q

(

1

(1− q/cp)γ
− 1

)

, (4)

respectively. Note that, for q large enough, a singularity
appears in the denominators, indicating that such pro-
cesses are not feasible, namely, that more heat is intro-
duced than can be accommodated by the temperature
difference. For small q, the Otto cycle efficiency can be
approximated as ηo ≈ 1− δ − qδ/cv and the Diesel cycle
efficiency as ηd ≈ 1−δ− (qδ/cv)(γ+1)/2γ, so that it can
be seen that, as q → 0, the Diesel cycle is more efficient
than the Otto cycle for all temperature ratios.

III. SPINNING GAS

Consider now the effect of spinning the working gas in
each of these thermal cycles. Two types of compression
may now be distinguished, axial and perpendicular, since
a centrifugal force now acts on the gas. However, here
only the longitudinal compression (along the axis of the
spinning) will be considered, since radial compression is
very hard to realize practically.
The thermodynamic properties of spinning gas are cap-

tured entirely by one parameter, what we call the spin-
ning parameter ϕ = mω2r20/2T , which measures the
spinning energy compared to the thermal energy [9].
Here m is the mass of gas molecule, r0 is radius of the
cylinder, ω is angular frequency, and T is the gas temper-
ature. For negligible friction losses over a thermal cycle,

FIG. 2: (Color online) Modification of Otto cycle for spinning
gas. Dotted red curve is the temperature constraint. Black
curve denotes a non-spinning case; dashed blue curve denotes
spinning case.

the angular momentum of the gas, given by

Mg = Nmr20ωA(ϕ), (5)

is conserved, where the function A(ϕ),

A(ϕ) =
eϕ(ϕ− 1) + 1

ϕ(eϕ − 1)
(6)

is the normalized moment of inertia of the gas, changing
from 1/2 to 1 as ϕ goes from 0 to ∞. The gas energy is

E = cvNT + ωMg/2, (7)

where the second term denotes the energy of rotation.
The physical picture is as follows: Rotation flings the

gas molecules to the cylinder walls, an effect counteracted
by high temperature. Under compression, the gas adia-
batically heats up, forcing molecules away from the walls,
thereby decreasing the moment of inertia A(ϕ). Since an-
gular momentum is conserved, the angular velocity must
increase, as does the energy of rotation. This effect can
be described as a rotation-dependent heat capacity that
now goes from cv to cv +B(ϕ), where B(ϕ) is a smooth
compression function that goes from 0 to 1 as ϕ goes from
0 to ∞ [9]. For small ϕ, the system behavior is very close
to the non-spinning case; only for ϕ ≥ 1 is the difference
noticeable. The parameter ϕ changes under compression
or heating of the gas, but the change is modest. Thus,
under axial compression, in the limit of high ϕ, the effect
of rotation is to increase the specific heat cv by 1.
Note that, if constrained by a fixed compression ratio,

it is inefficient to compress rotating gas axially in the
Otto cycle, where the efficiency increases with γ. For
example, for a monatomic gas with cv = 3/2 and γ = 5/3,
the specific heat increases to 5/2, meaning that γ = 7/5
in the limit of supersonic spinning. For compression ratio
n = 2, the efficiency η ≈ 0.24 for the spinning gas is less
than the efficiency η ≈ 0.37 for non-spinning gas. In
contrast, if constrained by a fixed temperature ratio, as
seen from Eq. (3), the Otto cycle is more efficient under
spinning by

η̂o − ηo ≈ qδ/cvcp. (8)
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This difference can lead to remarkable increases in effi-
ciency. Fig. 2 demonstrates how the Otto cycle, under
spinning, traces a modified, larger area, P-V curve. The
larger heat capacity accommodates the maximum tem-
perature constraint, while the volume ratio increases in
order to increase the cycle efficiency.
Fig. 3 shows how the efficiency increases with the

spinning parameter ϕ for parameters pertinent to actual
modern vehicle engines, namely, with diatomic buffer gas
(nitrogen and oxygen) with γ = 7/5, temperature ratio
δ = 300/2000, and a compression ratio of about 10:1,
which corresponds to q ≈ 1.5. Since the Diesel cycle
begins with somewhat better efficiency, particularly for
q small, there is somewhat less room for improvement.
However, as can be seen from Eq. (4), like for the Otto
cycle, the efficiency grows with ϕ up to saturation. For
either cycle, strong gas rotation ϕ ≥ 1 achieves the great-
est improvement in the efficiency.
Note, however, the efficiency increase from the baseline

efficiency can be remarkably on the order of 10-40 per-
cent, and that the efficiency increase can be very large
even for sonic or near sonic velocities. For example, with
q = 1.75, the increase in the theoretical efficiency for the
Otto cycle rises about 24% with ϕ = 2, but also as much
as 14% for sonic speeds ϕ = 1.
Note from Eq. (8) that greater efficiency improvement

through spinning occurs specifically for larger heat trans-
fer q and higher δ (smaller temperature differences).
While the efficiency increases with ϕ for all q, lower q
signifies a cycle closer to the ideal Carnot cycle, so in-
creasing the efficiency is difficult. However, to overcome
fixed inefficiencies in actual devices, q is generally de-
signed to be finite, like q = 1.5, where spinning can be
helpful. Moreover, there are niche applications, like low-
temperature engines, for which δ might be much higher,
and the base efficiency smaller, so that the relative im-
provements can be greater. Low-temperature engines,
although less efficient because of small temperature dif-
ferences, are attractive because of greatly reduced NOX

emissions [10]. Engines operating at 1500 ◦K rather than
at 2000 ◦K feature a maximum increase in theoretical ef-
ficiency of the Otto cycle engine of 30% rather than 18%;
for q = 1.75, the maximum increase is 80% rather than
40%. For even lower temperature engines, like 1000 ◦K,
the increase at q = 1.5 is already over 100%.

IV. INITIATING THE SPINNING

The key technical issue is how to introduce angular mo-
mentum to the system. One possibility is to bleed com-
pressed gas into the cylinder along the cylinder wall in the
tangential direction, so that the incoming gas follows the
side cylinder wall. This initiation of the spin is similar to
techniques used in vortex tubes [11, 12]. The initial gas
compression might be done, for example, by use of turbo
compressors, similar to that installed in many modern
engines.

FIG. 3: (Color online) Efficiency of Otto (solid line) and
Diesel (dashed line) cycles as function of spinning parame-
ter ϕ at maximum temperature of the cycle for cv = 2.5 and
δ = 3/20. Black q = 1.75, green q = 1.5, red q = 1.25.

V. FLYWHEEL CONTROL

The spinning energy need not, in principle, be re-
freshed at each thermal cycle, such as, for example, if
the spent gases are released at very small radius such
that little angular momentum is lost with the gas. Al-
ternatively, the spinning energy might be introduced and
recovered through a flywheel, which we now consider in
detail. Suppose then an ideal, frictionless flywheel, with
blades rotating inside the cylinder all the time, even be-
tween thermal cycles, such that the gas and the flywheel
equilibrate to the same angular rotation velocity. The
flywheel exchanges with the gas the mechanical energy
of rotation. Suppose the flywheel has moment of inertia
I, so that the total angular momentum becomes

Mtot = Iω +Mg, (9)

whereMg is given by Eq. (5). The flywheel kinetic energy
can then be added to the gas energy given by Eq. (7) to
give the total energy,

Etot = cvNT +Mtotω/2 =

Iω2/2 + cvNT +Nmω2r20A(ϕ)/2. (10)

Using now Eq. (10) together with Eq. (9), and assuming
conservation of angular momentum, a generalized com-
pression function B̃ can be found

B̃ =
ϕ2A(ϕ)H(ϕ) (1 + J/A(ϕ))

J/A(ϕ) + 1 + 2ϕH(ϕ)
, (11)

where the dimensionless parameter, J = I/Nmr20 , mea-
sures the moment of inertia of the flywheel compared
to that of the spinning gas. In the limit J → 0, the
compression function reduces to the gas-only compres-
sion function B, found previously [9]. For finite J , B̃(ϕ),
like B(ϕ), vanishes for ϕ = 0 and asymptotes to 1 for
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ϕ ≫ 1, with the inflection point occurring at somewhat
lower ϕ as J grows.
Now consider what happens if the flywheel is given

angular velocity ω1 while the gas has ω0. Equilibrium
is established at the final angular velocity ω, with gas
temperature changing from T0 to T , where ω and T may
be found using Eqs. (9) and (10), to get

Mtot = Iω1 +Nmr20A(ϕ0)ω0

= ω(I +Nmr20A(ϕ)), (12)

cvNT0 +
Iω2

1

2
+

Nmr20A(ϕ0)ω
2
0

2

= cvNT +
Iω2

2
+

Nmr20A(ϕ)ω
2

2
. (13)

It is more convenient to express quantities in terms of
a new spinning parameter ϕ instead of the frequency ω.
After some algebra, ϕ at equilibrium may be written as

ϕ = ϕ0
(JR +A(ϕ0))

2(J +A(ϕ))−2

[

1 + ϕ0

cv

(

JR2 +A(ϕ0)−
(JR+A(ϕ0))2

J+A(ϕ)

)] , (14)

where ϕ0 = mω2
0r

2
0/2T0 and R = ω1/ω0. For T we have

T =
T0ϕ0

ϕ

(

JR+A(ϕ0)

J +A(ϕ)

)2

. (15)

Note that the mechanical energy required to change the
angular velocity of the flywheel from ω1 to ω0 is given by

∆E =
Iω2

0

2
−

Iω2
1

2
= JNT0ϕ0(1−R2). (16)

Eqs. (14) and (15) describe how gas is spun up or
slowed down by the flywheel. In effect, these equations
describe removing the flywheel from the gas, changing
its angular velocity from ω0 to ω1, then again making
contact with the gas until a new equilibrium is reached.
Note that the gas heats up when it is spun up and cools
down when the rotation is slowed. In the limit of differ-
entially small changes, this process can be shown to be
reversible, since differential changes in E and T can be
put as functions of ϕ only.
The spinning gas thermal cycle thus can operate as fol-

lows. First, the flywheel initiates some rotation. The gas
is then compressed and heated. The fuel is then burned
and the gas expands. Lastly, the gas is slowed down by
the flywheel, which cools it further. The total amount
of work done in the cycle is the sum of two adiabatic
compressions and two gas rotations with the flywheel.
After the first stage of spinning injection, the gas heats
up, thereby increasing the minimum temperature from
where the adiabatic compression starts. Since the max-
imum temperature is constrained, the total amount of
heat q received from the combustion is also constrained.
The best way to cool is while spinning up, such that

temperature remains constant. A completely isothermal

FIG. 4: (Color online) Efficiency of Otto cycle for vs. ϕ for
J = 1. Black: δ = 4/3, q = 1/2, dotted red: δ = 5/3, q = 2/5,
dashed blue: δ = 2, q = 1/3.

process is not feasible because it would take infinitely
long, but, to the extent that it can be reached, it gives
the highest efficiency. The process of spinning while cool-
ing is not completely infeasible, because it is done at the
ambient temperature, for which a thermal reservoir with
infinite heat capacity ant Tmin is available. Of course,
higher efficiency yet would be reached to slow down the
spinning also at constant temperature, but for that pro-
cess there is no readily available heat reservoir.

In summary, the Otto cycle modified with spinning
gas comprises the processes: 1. isothermal spinning in-
jection; 2. adiabatic compression; 3. isochoric heating;
4. adiabatic expansion; and 5. adiabatic spinning ejec-
tion. These processes depend on four dimensionless pa-
rameters: δ, q, J , and ϕ. The efficiency weakly depends
on J ; there are almost no significant changes in varying
J from 0.1 to 10. The efficiency dependence on the other
three parameters is shown in Fig. 4, where the depen-
dence of η as a function of ϕ is plotted for fixed δ and q.
Note that the peak of the efficiency is reached at lower
values of ϕ, likely making it easier to reach under real
conditions, since spinning injection might be an issue in
real devices. Note also that the maximum value of the
efficiency is somewhat greater than estimated by Eq. (8).

An important caveat is that the there are likely practi-
cal inefficiencies both in the transfer of angular momen-
tum transfer from flywheel to the gas and from the gas
to the flywheel. For an ideal flywheel and the nominal
case Otto cycle (cv = 2.5, q = 1.5, and δ = 3/20), the
efficiency for sonic spinning ϕ = 1 will be approximately
71.7% while the base efficiency is 62.5%. With 1% energy
transfer losses in the flywheel, the efficiency will only de-
crease to 69.6%, which still represents a relative efficiency
of 11.4%. However, in this case, 5% energy transfer losses
would eliminate the benefits of using spinning gas. On
the other hand, for higher q, higher flywheel losses are
tolerable. For example, for q = 2 but all the other pa-
rameters the same, it would take 16% energy transfer
losses to eliminate the benefits of the spinning gas.
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VI. CONCLUSION

The equilibrium thermodynamic limits of internal com-
bustion engine efficiency is reconsidered by exploiting the
rotation-dependent heat capacity of a spinning working
gas. For practical engine cycles, such as the Otto or
Diesel cycles, spinning the gas around the axis of the
cylinder, while compressing and expanding axially, is
shown to give remarkable theoretical efficiency gains, as
much as 10 to 40 percent for typical Otto cycle engines,
and more for low-temperature engines. As a practical

matter, the spinning might be initiated through compres-
sors or though a flywheel. In arriving at the new theo-
retical limit, many of the important non-ideal effects of
real engines were neglected, including friction, insufficient
mixing, flywheel efficiency, and heat transfer. However,
it is hoped that the remarkable increase in the theoretical
maximum efficiencies might be large enough to overcome
the neglected inefficiencies in practical settings.
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