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Abstract

Exact explicit rogue wave solutions of the Sasa-Satsuma equation are obtained by use of a

Darboux transformation. In addition to the double-peak structure and an analog of the Peregrine

soliton, the rogue wave can exhibit an intriguing twisted rogue-wave pair that involves four well-

defined zero-amplitude points. This novel structure may enrich our understanding on the nature

of rogue waves.
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Sasa-Satsuma equation (SSE), which is so called due to the pioneering work of Sasa

and Satsuma [1], is one of a limited number of integrable models and has been a field of

active research for the past two decades [1–6]. Thanks to the integrability, the sophisticated

soliton construct underlying this wave equation can therefore be achieved using an array of

mathematical tools such as inverse scattering transform [1, 2], Riemann problem method

[3], Darboux transformation [4], Hirota bilinear method [5], and others. As an extension

of the nonlinear Schrödinger (NLS) equation, the SSE contains additional terms explaining

the third-order dispersion, the self-steepening, and the self-frequency shift as often found

in many important physical applications (e.g., ultrashort pulse propagation in optical fibers

[6, 7] and dynamics of deep water waves [8]). In dimensionless form, this equation reads

[2, 3]

iψt +
ψxx

2
+ |ψ|2ψ + iǫ[ψxxx + 3(|ψ|2)xψ + 6|ψ|2ψx] = 0, (1)

where ψ(t, x) represents the complex envelope of the wave field, and t and x are the two in-

dependent variables. The subscripts stand for the partial derivatives and the real parameter

ǫ (> 0) scales the integrable perturbations of the NLS equation. As ǫ = 0, Eq. (1) reduces

to the NLS equation which involves only the terms describing the group-velocity dispersion

and the self-phase modulation.

With the higher order terms included (although in fixed proportions), Eq. (1) naturally

allows for complex intriguing wave dynamics beyond the reach of the NLS equation. Com-

pared to solitons that have been explored over years [1–6], the rational solutions, which are

thought of as prototypes of rogue waves [9], are reported only recently. In Ref. [10], Bande-

low and Akhmediev pointed out that the lowest-order rogue wave in the SSE can feature a

double-peak structure as well as an analog of the Peregrine soliton [11–13], depending on the

parameters chosen for the modulationally unstable plane wave. This is distinctly different

from that occurred in the Hirota equation where only a tilted Peregrine soliton structure

is allowed [14]. However, the rational solution presented in Ref. [10] is overcompacted in

form which hinders the broader physics community from understanding the rich dynamics.

In this paper, we revisit the fundamental rogue wave in the SSE using a Darboux dressing

technique [4] and wish to present an easy-to-catch solution form. More importantly, with

the aid of this explicit form, we reveal a novel rogue wave structure—a twisted rogue-wave

(TRW) pair, which, to our best knowledge, was never reported before.
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As a starting point, we first cast Eq. (1) into a 3× 3 linear eigenvalue problem

Rx = UR, Rt = VR, (2)

where R = (r, s, w)T (T means a matrix transpose) and

U = λU0 +U1, (3)

V = λ3V0 + λ2V1 + λV2 +V3, (4)

with

U0 =
1

6ǫ











−2i 0 0

0 i 0

0 0 i











, (5)

U1 =











0 −e−iϑψ −eiϑψ∗

eiϑψ∗ 0 0

e−iϑψ 0 0











, (6)

V0 =
1

4ǫ
U0, V1 =

1

4ǫ
U1, (7)

V2 = − 1

12ǫ
U0 + ǫ [U1x, U0] + ǫU1 [U1, U0] , (8)

V3 = − 1

12ǫ
U1 + ǫ [U1x, U1]− ǫU1xx + 2ǫU3

1. (9)

Here ϑ = x
6ǫ
− t

108ǫ2
, λ is the complex spectral parameter, and [ , ] denotes the usual matrix

commutator. It is easy to show that by virtue of the matrices (3) and (4), Eq. (1) can be

exactly reproduced from the compatibility condition Ut − Vx + UV − VU = 0. Then,

following the standard dressing procedure as in Ref. [4], we can write the resultant Darboux

transformation as

ψ = ψ0 +
ieiϑ(λ− λ∗)

2ǫ

(αr + βr∗)s∗ + (αr∗ + β∗r)w

α2 − |β|2 , (10)

with

α = |r|2 + |s|2 + |w|2, (11)

β =
λ∗ − λ

2λ

(

r2 + 2sw
)

, (12)

where ψ0 and ψ denote the seeding and the new solutions of Eq. (1), respectively, and r, s

and w are λ-dependent functions determined by the seeding solution ψ0.
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As is well known, the rogue wave solutions represent the limiting case of either Ma

solitons [15] or Akhmediev breathers [16], and are tightly related to the modulationally

unstable plane waves [4, 9, 10, 12]. Hence, we start directly with the plane-wave solution

ψ0(t, x) =
c

2ǫ
exp

[

− i

2ǫ

(

kx− ω

4ǫ
t
)

]

, (13)

where c > 0 and the dispersion relation reads

ω = 2c2(1 + 3k)− k2 − k3. (14)

Substitution of Eq. (13) into Eq. (2) followed by some algebraic simplification yields

r(λ) = eiθ1 + Γ1e
iθ2 + Γ2e

iθ3 , (15)

s(λ) =
2ǫ

c
eiϑf1ψ

∗

0r(λ), (16)

w(λ) =
2ǫ

c
e−iϑf2ψ0r(λ), (17)

where Γ1 and Γ2 are arbitrary constants, and

θj =
µj

6ǫ
x− νj

216ǫ2
t, (18)

νj = 3λµ2
j + (3 + 36c2 −K2 − 6λ2)µj

−6λ3 − 2λ(18c2 +K2), (19)

f1 =
r11e

iθ1 + Γ1r12e
iθ2 + Γ2r13e

iθ3

eiθ1 + Γ1eiθ2 + Γ2eiθ3
, (20)

f2 =
r21e

iθ1 + Γ1r22e
iθ2 + Γ2r23e

iθ3

eiθ1 + Γ1eiθ2 + Γ2eiθ3
, (21)

with

r1j = − 3ic

µj − λ+K
, r2j = − 3ic

µj − λ−K
. (22)

Here K ≡ 1 + 3k, the index j runs over 1, 2, and 3, and µj are three roots of the cubic

equation

µ3 −
(

3λ2 + 18c2 +K2
)

µ+ 2λ
(

λ2 + 9c2 −K2
)

= 0. (23)

At this stage, by substituting Eqs. (15)–(17) into the Darboux transformation (10), one

can readily obtain the general breather solutions of Eq. (1) termed Ma solitons or Akhmediev

breathers, depending on the choice of the arbitrary complex parameter λ. Interestingly, a
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special choice of the value of λ such that Eq. (23) has two equal roots can reduce these two

kinds of breather solutions, which always take an otherwise exponential form, into the same

rational solutions termed rogue waves. For that purpose, we inspect the cubic equation (23)

and find that as

λ =
κ

6

(

3− κ2 + η2

K2

)

± iη

6

(

3 +
κ2 + η2

K2

)

≡ λ′, (24)

where

κ =

√
2

2

[

√

K2(18c2 +K2)− 9c2 +K2
]1/2

, (25)

η =

√
2

2

[

√

K2(18c2 +K2) + 9c2 −K2
]1/2

, (26)

it will allow a special set of roots

µ1 = µ2 = −µ3/2 = µ′, (27)

with

µ′ = − κη2

27c2

(

1 +
κ2 + η2

K2

)

± iκ2η

27c2

(

1− κ2 + η2

K2

)

. (28)

It is noteworthy that we have exactly separated the complex parameter λ′, and hence µ′,

into the real and imaginary parts. Obviously, in order for κ and η to be real, the parametric

condition 4K2 > 9c2 should hold, which defines the allowed regime of k. Under the circum-

stances, by setting Γ1 = −1 and Γ2 = 0 in Eqs. (20) and (21), f1 and f2 will take the simple

rational forms

f1(λ
′) = − 3ic

µ′ − λ′ +K
− 36ǫ2(2µ′ + λ′ −K)

cKχ
, (29)

f2(λ
′) = − 3ic

µ′ − λ′ −K
+

36ǫ2(2µ′ + λ′ +K)

cKχ
, (30)

where χ is a linear function of t and x, given by

χ = (6λ′µ′ − 6λ′2 + 3 + 36c2 −K2)t− 36ǫx. (31)

Consequently, we insert Eqs. (15)–(17) into Eq. (10) for this specific value λ′ and, with

tedious manipulations, we obtain the exact fundamental rogue wave solution

ψ(t, x) = ψ0(t, x)

(

1− G+ iH

D

)

, (32)

where

G =
ǫ2(9c2 + 2K2)

2c2K2

(

ξ +
4κ2η2

9c2 + 2K2
t

)2

+
8ǫ2κ2η2(κ2 − η2)

c2(9c2 + 2K2)
t2 +

162ǫ6(9c2 + 2K2)3

c2κ2η2(κ2 + η2)2
, (33)
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H =
1

2K

[

ξ2

4
+ κ2η2t2 − 243ǫ4(9c2 + 2K2)2

κ2η2(18c2 +K2)

]

×
(

ξ +
4κ2η2

9c2
t

)

+
16ǫ4κ2η2(27c2 + 2K2)

c4K(18c2 +K2)
t, (34)

D =
1

36ǫ2

[

ξ2

4
+ κ2η2t2 +

182ǫ4(κ4 − κ2η2 − η4)

κ2η2(κ2 + η2)

]2

+
9ǫ2η2

(κ2 + η2)2
(

ξ + 2κ2t
)2

+
1082ǫ6

η2(κ2 + η2)
, (35)

with

ξ = (K2 − 1− 27c2)t+ 12ǫx. (36)

Noting here that we have translated the solution along both t and x in order to make its

central value close to the origin [17], and simplified it to the most explicit form by expressing

G, H and D as real polynomials of t and x. We highlight that this general rational solution

is one of the central results we wish to present here, and as will be shown, it can give a

clear picture of the full dynamics of the fundamental rogue waves governed by the SSE.

Furthermore, owing to the fourth-order polynomial being involved in D, we expect there

to be a significantly more complicated structure than does the Peregrine soliton which only

involves polynomials of second order [9, 11–14]. For distinctness, we will term this solution

the SSE rogue wave.

Indeed, as ǫ = 0 and for a general plane-wave seed ψ0(t, x) = ae−i[bx+(b2/2−a2)t] (a and b

are real constants) which corresponds to Eq. (13) with c = 2aǫ and k = 2bǫ, our rogue wave

solution (32) can be readily reduced to

ψ(t, x) = ψ0(t, x)

[

1− 4(2ia2t+ 1)

1 + 4a2(x+ bt)2 + 4a4t2

]

, (37)

which is exactly the Peregrine soliton solution of the standard NLS equation [11–13]. This

fact suggests that the Peregrine soliton, while keeping its peak amplitude always three times

the background height, is only the simple limiting case of the SSE rogue wave.

Further inspection of Eq. (32) shows that the SSE rogue wave has a central amplitude

|ψ(0, 0)| = 3|ψ0|
∣

∣

∣

∣

9c2 − 2K2

9c2 + 2K2

∣

∣

∣

∣

, (38)

which evolves from |ψ0| at |K| = 3c/2 to zero at |K| = 3c/
√
2, and then to 3|ψ0| as |K| = ∞,

see the blue lines in Fig. 1. It is clear from the foregoing discussions that as |K| < 3c/2,
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FIG. 1. (Color online) Central amplitude of the SSE rogue wave (normalized to |ψ0|) versus K

(normalized to c) in the allowed regime |K| > 3c/2. Points A, B, C and D indicate the central

amplitudes for k = 0.25, 0.3738, 1 and 2.5, respectively.

corresponding to the pink region in Fig. 1, no rogue waves are allowed. This is exactly

consistent with the parametric condition obtained from the linear stability analysis, see

Refs. [4, 10]. Moreover, for such a rogue wave, there always exist two characteristic points

(t0, x0)

t0 = ±
[

81ǫ4(9c2 + 2K2)2(272c4 − 99c2K2 − 4K4)

2κ4η4(κ2 + η2)2(27c2 + 4K2)

+
18ǫ4

√
81c2 + 2K2(9c2 + 2K2)3/2

c2κ2η2(κ2 + η2)(27c2 + 4K2)

]1/2

, (39)

x0 =
1701c4 + 27c2 − 225c2K2 − 8K4

182ǫc2
t0

−2κ4η4(κ2 + η2)2(27c2 + 4K2)

1622ǫ5c2(9c2 + 2K2)2
t30, (40)

that fulfill H = 0 and D − G = 0, or equivalently, |ψ(t0, x0)| = 0. For this reason, we term

such two characteristic points the zero-amplitude points, namely, the wave amplitude falls

to zero at these points [17]. Evidently, as ǫ = 0, Eqs. (39) and (40) can boil down to the two

zero-amplitude points (0,±
√
3/2a) of the Peregrine soliton (37) which locate symmetrically

on the x axis.
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FIG. 2. (Color online) TRW pair defined with four zero-amplitude pointsm, n, p and q for k = 0.25

and c = 2ǫ = 1. The inset shows the corresponding contour distribution.

More interestingly, as 3c/2 < |K| < 3c/
√
2, corresponding to the grey regions in Fig. 1,

there will appear additional two zero-amplitude points which can also be represented by

the formulas (39) and (40) if only replacing the “+” sign between two terms in Eq. (39)

(inside square brackets) by the “−” one. These two newly emerging points, along with the

two given by Eqs. (39) and (40), can define a TRW pair. We demonstrate this intriguing

structure in Fig. 2 by using a typical value k = 0.25 and letting c = 2ǫ = 1, for which the

central amplitude is denoted by the point A in Fig. 1. Meanwhile, we have indicated the

four zero-amplitude points by m, n, p and q, whose coordinates read as (−1.3888,−4.3976),

(1.3888, 4.3976), (−1.1802,−4.6499) and (1.1802, 4.6499), respectively. It is shown that

this TRW pair consists of two extended rogue-wave components which curve towards each

other and have an identical but antisymmetric shape (see inset). Further, we find that as

|K| → 3c/2, this rogue wave pair will become infinitely extended and will evolve towards

a two-soliton state on a nonzero background. However, as |K| = 3c/
√
2, the TRW pair

reduces to the rogue wave that has three zero-amplitude points, as seen in Figs. 3(a) and

3(b). For this special case, the zero-amplitude points p and q in Fig. 2 merge completely

and become one at the center, while the two outer points m and n remain.

Once |K| > 3c/
√
2, the TRW pair is unable to survive as the zero-amplitude points p

and q disappear entirely. In this case, the SSE rogue wave generally exhibits much less

complicated structure. This can be seen in Fig. 3 where the SSE rogue wave will evolve into
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FIG. 3. (Color online) Characteristic structures of the SSE rogue wave as |K| > 3c/
√
2. (a), (c) and

(e) display the rogue wave structure with three zero-amplitude points, the double-peak structure,

and the usual Peregrine-soliton-like structure, respectively, each obtained with k = 0.3738, 1 and

2.5 accordingly. (b), (d) and (f) in the right column show the corresponding contour distributions.

Other parameters are the same as in Fig. 2.

a double-peak structure for k = 1 [see Figs. 3(c) and 3(d)] and an analog of the Peregrine

soliton for k = 2.5 [see Figs. 3(e) and 3(f)], as have been demonstrated in Ref. [10]. Both

types of structures involve only two zero-amplitude points as specified by Eqs. (39) and

(40), and have central amplitudes always smaller than three times the background height,

as indicated by the points C and D in Fig. 1. A direct comparison between Figs. 3(b), 3(d)

and 3(f) shows that as |K| grows, the SSE rogue wave, apart from having a simpler structure,

will be significantly reduced in t dimension. Particularly, as |K| → ∞, the zero-amplitude

points approach invariably towards (0,±
√
3ǫ/c) and the SSE rogue wave will take the simple

form of the line rogue wave [18].
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Finally, let us give some remarks on the stability of the SSE rogue wave. Unsurprisingly,

as a unique wave event, though it would appear unexpectedly [9], each of the rogue wave

structures should be stable. We notice that the Peregrine soliton, which is the limiting

case of our SSE rogue wave, can exhibit robustness against perturbations [19] and has been

observed in a water wave tank [12] and in optical fibers [13]. Significantly, in recent work

Ankiewicz et al. have partially lifted the restriction on the parameters of the SSE and found

similar rogue wave structures as in unperturbed case [20]. This is no doubt an evidence of

the stability of the SSE rogue wave and thus offers the possibility to realize its rich structure

experimentally [7].

In summary, we presented the most explicit rogue wave solutions of the SSE by use of a

Darboux transformation. We demonstrated that, in addition to the double-peak structure

and a Peregrine-soliton-like structure as exhibited in Ref. [10], the SSE rogue wave can

feature an intriguing TRW pair that only survives for 3c/2 < |K| < 3c/
√
2. We also

provided exact explicit formulas for defining the four zero-amplitude points peculiar to the

TRW structure as well as the central amplitude involved, of course including those for

other rogue wave structures. We anticipate that this well-defined TRW structure may also

contribute to the existing signatures of rogue waves [9].
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