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We study crystal growth inside an infinite octant on a cubic lattice. The growth proceeds through
the deposition of elementary cubes into inner corners. After re-scaling by the characteristic size, the
interface becomes progressively more deterministic in the long-time limit. Utilizing known results
for the crystal growth inside a two-dimensional corner, we propose a hyperbolic partial differential
equation for the evolution of the limiting shape. This equation is interpreted as a Hamilton-Jacobi
equation which helps in finding an analytical solution. Simulations of the growth process are in
excellent agreement with analytical predictions. We then study the evolution of the sub-leading
correction to the volume of the crystal, the asymptotic growth of the variance of the volume of the
crystal, and the total number of inner and outer corners. We also show how to generalize the results
to arbitrary spatial dimension.
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I. INTRODUCTION

Shapes of growing objects have fascinated humans
from the dawn of time. The understanding of these
shapes is crucial for numerous technological applications.
Microscopic processes underlying growth phenomena are
usually stochastic, with rules depending on the detailed
local structure of the interface, so it is not surprising that
even the simplest growth rules lead to interfaces which
are seemingly impossible to describe theoretically. An
important relatively recent theoretical insight is the real-
ization that microscopic details often play a secondary
role. This has led to the devising of continuum de-
scriptions for fluctuations of growing interfaces. The
most well-known such framework was initiated by Kar-
dar, Parisi, and Zhang (KPZ) who proposed a contin-
uum theory based on a nonlinear stochastic partial dif-
ferential equation [1], arguably the simplest equation ac-
counting for the crucial growth ingredients — nonlinear-
ity, stochasticity, irreversibility, and locality. The KPZ
equation provides a unifying framework for probing fluc-
tuations in a large class of growing interfaces. A com-
prehensive description of fluctuations of one-dimensional
growing interfaces has subsequently emerged (see [2, 3]
and references therein), and a key recent breakthrough
is a solution of the 1+1 dimensional KPZ equation [4].
Crystal growth typically occurs in three dimensions, how-
ever. Microscopic growth models and continuum theories
are straightforward to formulate in arbitrary dimension,
yet in 2+1 dimensions the KPZ equation remains inac-
cessible to current analytical approaches. Therefore fluc-
tuations of two-dimensional growing interfaces are still
poorly understood.

Fluctuations characterize the local structure of the in-
terfaces, but they tell nothing about the overall shape
of an interface, more precisely the shape on the scale
greatly exceeding length scales associated with fluctua-
tions. Such overall shapes, known as limiting shapes,
usually become clearly identifiable in the long-time limit.
In the simplest case when growth begins from a flat

substrate, the limiting shape is trivial — the interface
remains on average flat, and only speed and fluctua-
tions matter. In most applications the interfaces are
curved. Curved limiting shapes have been analytically
determined only in a few cases. For instance, the limit-
ing shape is still unknown for the two-dimensional Eden-
Richardson growth model, although it has been proved
that the limiting shape exists and that it is roughly but
not exactly circular [5]; in contrast, fluctuations of the
interface of Eden clusters are understood (and belong to
the 1+1 dimensional KPZ universality class).

There are almost no analytical results for the limit-
ing shapes of curved two-dimensional growing interfaces.
All known tractable examples correspond to anisotropic
growth in 2+1 dimensions. The term anisotropic means
that the first two dimensions, the transversal directions
along the interface, arise in a greatly distinct manner. An
anisotropic 2+1 dimensional growth model can usually
be reformulated as a collection of identical solvable 1+1
dimensional growth models with some non-intersecting
condition between neighboring interfaces. One solvable
anisotropic growth model is the 2+1 dimensional Gates-
Westcott model [6] which mimics vicinal growing sur-
faces; this model has been solved by a free-fermion map-
ping [7]. Average interface profiles are also known for two
other anisotropic 2+1 dimensional growth models [8, 9].
In the most basic isotropic growth models limiting shapes
are not known.

One of the first non-trivial limiting shapes was found
in the context of the corner growth model [10]. In this
model, one starts with an infinite empty corner, namely
with a quadrant on the square lattice; the growth occurs
by deposition of 1×1 squares into available inner corners.
The limiting shape consists of two ballistically receding
half-lines constituting the original boundary which are
connected by a piece of parabola

x = 0 y > t√
x+
√
y =
√
t 0 < x, y < t

y = 0 x > t

(1)
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This two-dimensional corner growth model has also
played a crucial role in the analytical description of
the statistics associated with 1+1 dimensional KPZ
growth [11, 12].

In this paper we consider the natural generalization of
the corner growth process to three dimensions, where the
growth occurs inside an octant, and to higher dimensions.
We also study the behavior of integral characteristics, e.g.
the volume of the crystal (we look at the average and the
standard deviation), and the total numbers of inner and
outer corners on the interface.

The rest of this paper is organized as follows. The
growth process is defined in Sect. II where we also re-
call known two-dimensional results. In Sect. III we in-
vestigate the three-dimensional case, namely we consider
crystal growth on the cubic grid inside the octant. We
propose an evolution equation describing the asymptotic
evolution of the interface. In Sect. IV we interpret this
equation as the Hamilton-Jacobi equation, and we use
an equivalent description based on the canonical Hamil-
ton equations to derive the solution. Generalizations to
higher dimensions are discussed in Sect. V. The behav-
ior of the average volume of the crystal (both the leading
asymptotic and the sub-leading correction) and volume
fluctuations are investigated in Sect. VI. The growth of
the total numbers of inner and outer corners is analyzed
in Sect. VII. In Sect. VIII we summarize what we under-
stand, emphasize the remaining challenges, and discuss
open problems.

II. THE MODEL

Consider an infinite corner, viz. a positive octant in
the cubic lattice, which is initially empty. The growth
process begins at time t = 0 and proceeds by depositing
elementary 1 × 1 × 1 cubes into available inner corners.
We set the deposition rate to unity without loss of gen-
erality. Initially there is one inner corner available, so
the smallest non-empty crystal is unique. After this first
deposition event, there are three available inner corners
that can accommodate the next cube, so the uniqueness
is lost. For the crystal shown in Fig. 1 there are 6 places
to insert a new cube.

The above dynamics can be defined in arbitrary spatial
dimension. The models are of course lattice models; more
specifically they are defined on hyper-cubic lattices. (One
can consider other lattices, but then one should choose
a different infinite initially empty region depending on
lattice structure.)

The interpretation is a matter of taste: Rather than
talking about crystal growth through the deposition of
cubes into inner corners, we can think about crystal melt-
ing through the desorption of cubes from outer corners
of an initially fully filled octant. These two processes are
dual. A typical realization of the melting process is pre-
sented in Fig. 2. The interface is stochastic, yet as the
crystal grows (or equivalently as the melted volume in-

FIG. 1: A three-dimensional crystal of volume 4. A new cube
can be deposited to 6 places.

creases), the interface becomes smoother and ultimately
approaches a deterministic limiting shape.

FIG. 2: Melting of a three-dimensional crystal initially occu-
pying a negative octant; a view from the (1, 1, 1) direction.

The two-dimensional corner growth process can be un-
derstood by a mapping onto the one-dimensional totally
asymmetric simple exclusion process (TASEP), that is a
collection of particles undergoing a biased random walk
under the constraint that there is at most one particle
per site [10]. (This mapping is also helpful in computing
fluctuations of the interface [11, 12].) The representa-
tion in terms of the TASEP becomes evident after one
rotates the corner counter-clockwise by an angle of π/4
around the origin and then projects the interface onto
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FIG. 3: An example of the interface of the two-dimensional
crystal rotated by π/4 and the corresponding particle config-
uration. A deposition event is shown, and the corresponding
hop of a particle to a neighboring vacant site is highlighted.

the one-dimensional lattice (see Fig. 3) in such a way
that bonds of the interface are identified with sites on
the one-dimensional lattice. We now put a particle on a
site (leave a site empty) if the corresponding segment on
the interface goes along the co-diagonal (diagonal). Each
site on the one-dimensional lattice is occupied by at most
one particle, the particles hop to the right with unit rate,
and the lattice gas is clearly identical to the TASEP. The
average density ρ(z, t) evolves according to the (inviscid)
Burgers equation

∂ρ

∂t
+
∂[ρ(1− ρ)]

∂z
= 0 .

Solving this Burgers equation and expressing the limiting
shape through the density [13] one arrives at a remark-
ably simple parabolic limiting shape (1).

In three dimensions, the corner growth model can be
mapped onto an infinite set of coupled TASEPs in the
plane, also known as the ‘zigzag model’ [14]. Unfortu-
nately, no exact solutions are known for such planar in-
teracting particle processes. The generalization to higher
dimensions also seems exceedingly difficult. We therefore
choose a different strategy; namely, we try to directly
write an evolution equation for the limiting shape with-
out using intermediate mappings onto a particle process.

In two dimensions, this program can be fulfilled, viz.
the limiting shape y(x; t) satisfies the evolution equa-
tion [15–17]

yt =
yx

yx − 1
(2)

where yt = ∂y
∂t , yx = ∂y

∂x . The solution to Eq. (2) is
indeed given by (1). Our task is to generalize Eq. (2) to
three and higher dimensions.

III. THREE DIMENSIONS

We haven’t derived a generalization Eq. (2) to three
dimensions. In such a situation, one can proceed in a less
systematic manner by guessing an evolution equation.
The criteria are the simplicity and the validity of the

basic symmetry properties. More precisely, we seek an
evolution equation for z(x, y; t) that

1. Reduces to the proper analogs of Eq. (2) on the
boundaries x = 0 and y = 0, viz. zt = zy/(zy − 1)
on the first boundary and zt = zx/(zx − 1) on the
second.

2. Is invariant in form under the x ↔ z and y ↔ z
coordinate exchanges.

Needless to say, we anticipate that the governing equa-
tion is a first-order partial differential equation (PDE) of
the form zt = F (zx, zy) similar to the two-dimensional
case. The simplest guess for the right-hand side is the
product of terms similar to those appearing in Eq. (2):

zt =
zx

zx − 1

zy
zy − 1

. (3)

On the boundaries x = 0 and y = 0 we have zx = −∞
and zy = −∞, and hence (3) reduces to zt = zy/(zy − 1)
and zt = zx/(zx − 1) on these boundaries. Yet Eq. (3)
does not possess the required invariance under the ex-
change of variables.

We eventually found an equation satisfying the above
criteria. This equation has a very unusual form

zt =
zx

zx − 1

zy
zy − 1

[
1− 1

zx + zy

]
. (4)

Our search was facilitated by numerical experiments in
which we studied the movement of various planes. (More
precisely, we initially investigated a generalized version of
the hypercube stacking model of Forrest and Tang [18]
which allows for tuning the slopes zx and zy of the flat
interface.) Any plane moves (on average) with a constant
speed. We thus measure the speed and compare it with
the prediction of Eq. (4). For the plane zx = zy = −1
(this is the plane orthogonal to the (1,1,1) direction) we
found zt ≈ 0.378 which is an excellent agreement with the
prediction zt = 3

8 implied by (4). We looked at several

other planes, e.g. for the plane zx = − 1
2 , zy = −2 the

measured velocity is again within 1% of the prediction
zt = 14

45 implied by (4).

A. Arguments in favor of (4)

Consider a one-parameter family of evolution equa-
tions

zt =
zx

zx − 1

zy
zy − 1

zx + zy + λ

zx + zy
. (5)

This family contains Eqs. (3) and (4) as special cases.
The invariance under the exchange of x and y is mani-
fest. Further, equation (5) reduces to zt = zy/(zy − 1)
[respectively to zt = zx/(zx − 1)] when x = 0 [respec-
tively y = 0]. Hence we only need to test the invariance
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under the exchange of x and z. We use standard relations
between the derivatives

zt = − xt
xz

, zx =
1

xz
, zy = −xy

xz
. (6)

By inserting (6) into (5) we arrive at

xt =
xz

xz − 1

xy
xy − 1

xy − λxz − 1

xy + xz
.

On the other hand, the invariance under the exchange of
x and z requires that we should obtain

xt =
xz

xz − 1

xy
xy − 1

xy + xz + λ

xy + xz
.

Comparing these two equations we conclude that the only
member of the family of equations (5) that satisfies the
invariance requirements corresponds to λ = −1, which
is precisely the evolution equation (4). In particular,
Eq. (3), which corresponds to λ = 0, is not invariant
under the exchange of x and z.

Instead of a one-parameter family of evolutionary
equations (5) let us now analyze an infinite-parameter
family of evolutionary equations

zt =
zx

zx − 1

zy
zy − 1

1 +
∑
n≥1

λn
(zx + zy)n

 . (7)

The invariance under x↔ z exchange leads to

1 +
λ1

xy + xz
+

λ2

(xy + xz)2
+

λ3

(xy + xz)3
+ . . .

= 1− 1

xy + xz
− (λ1 + 1)xz

xy + xz
+

λ2x
2
z

(xy − 1)(xy + xz)

− λ3x
3
z

(xy − 1)2(xy + xz)
+ . . .

This is valid for arbitrary xy, xz only when λ1 = −1 and
λn = 0 for n ≥ 2.

We can further generalize the class of equations (7),
namely by replacing the term in the square brackets in
(7) with an arbitrary Laurent series

zt =
zx

zx − 1

zy
zy − 1

∞∑
n=−∞

λn
(zx + zy)n

. (8)

Terms with n < 0 cannot be present, however, since
on the boundaries x = 0 and y = 0 we must recover
zt = zy/(zy − 1) and zt = zx/(zx − 1); this requirement
additionally fixes the parameter λ0 = 1 and hence we are
back to (7). Therefore Eq. (4) is the only appropriate
evolution equation among the family of equations (8).

B. Caveats

The evolution equation (4) is not a unique evolution
equation satisfying the necessary requirements. For in-

stance, we have found another equation

zt =
zx

zx − 1

zy
zy − 1

[
1 +

1

zxzy − zx − zy

]
(9)

that obeys all necessary conditions. Equation (9) looks
more complicated than (4), although it can be re-written
in a very simple (even if a bit unusual) form if we replace
derivatives by their reciprocal values:

1

zt
= 1− 1

zx
− 1

zy
. (10)

This equation admits a very simple analytical solution
which is a straightforward generalization of the solution
in the two-dimensional setting:

√
x+
√
y +
√
z =
√
t . (11)

This is verified by a direct substitution. The analytical
solution of (4) is different from (11) as we shall see.

A comparison of predictions of (4) and (9) is strongly
in favor of Eq. (4). For instance, consider the volume
of the crystal. For the surface (11) corresponding to the
evolution equation (9), the volume is t3/90. It is much
more difficult to compute the volume corresponding to
the evolution equation (4). An exact solution to Eq. (4)
is rather cumbersome; namely it is parametric, so one
must compute an unwieldy integral. The answer is

V3 = v3t
3 , v3 =

3π2

211
= 0.014457428321908... (12)

The amplitude substantially exceeds 1
90 corresponding to

the interface (11); numerically v3 ≈ 0.01472(3).
Further, let us look at the intersection of the interface

and the diagonal [in the (1, 1, 1) direction]. One can nu-
merically determine this quantity with a good precision.
Analytically, this point corresponds to

x = y = z = wt (13)

For the surface (11), we have w = 1
9 , while w = 1

8 , on
the interface predicted by Eq. (4). Interestingly, we can
extract w = 1

8 without knowing the limiting shape. The
high symmetry of the diagonal implies that

xy = xz = yz = yx = zx = zy = −1 (14)

on the diagonal (13). Indeed, all the derivatives in (14)
must be equal due to symmetry. To establish the nu-
merical value we use zx = xz together with the identity
xz = 1/zx to conclude that (zx)2 = 1 from which (the
derivatives are obviously negative) we arrive at (14).

Plugging (14) into (4) we find that zt = 3
8 on the di-

agonal. Projecting the vector (0, 0, zt) onto the diagonal
(1, 1, 1) direction we find that the distance of the diag-
onal point on the interface from the origin is equal to
3
8

1√
3
t. To determine x = y = z we need to project again;

this yields w = 3
8

1√
3

1√
3

= 1
8 .
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Numerically w ≈ 0.1261(2). This result is close to the
theoretical prediction w = 0.125 and clearly differs from
w = 1

9 = 0.111 . . . that characterizes the interface (11).
In principle, one can use equations (4) and (9) as build-

ing blocks to obtain one-parameter families of equations
satisfying the necessary requirements. Two such families
are obtained by an additive and a multiplicative combi-
nation of (4) and (9). An additive family is

zt =
zx

zx−1

zy
zy−1

[
1− 1 + c

zx + zy
− c

zxzy−zx−zy

]
, (15)

and a multiplicative family is

zt =

[
1− 1

zx+zy(
1− 1

zx

)(
1− 1

zy

)]1+c [
1− 1

zx
− 1

zy

]c
. (16)

For the additive class of evolution equations (15), the
choice c ≈ 0.079 provides the best fit for the numerically
determined value of w [19]; for the multiplicative class of
evolution equations (16), the optimal choice of the mixing
parameter is c ≈ 0.074. The corner interface growth is
presumably described by a simple equation that does not
contain an anomalously small mixing parameter. This
in conjunction with our numerical results suggest that
Eq. (4) describes corner interface evolution; at the very
least, the true evolution equation is not an ugly deforma-
tion like (15) or (16) with a very small mixing parameter.

Using equations (4) and (10) separately, one can con-
struct a few more families of invariant equations. One
such one-parameter series family

zt =
zx

zx − 1

zy
zy − 1

[
1− 1

zx + zy

]
(1− zx − zy)n

1 + (−zx)n + (−zy)n

extends the presumably correct equation (4) correspond-
ing to n = 1 to arbitrary real n. Setting n = 1+log3(8w)
would match the observed value of w; for w = 0.126, one
gets n ≈ 1.00725. A similar extension of (10) is

1

zt
=

[
1− 1

zx
− 1

zy

]
1 + (−zx)n + (−zy)n

(1− zx − zy)n

Choosing n = 3+log3 w would match the observed value
of w, so for w = 0.126 one gets n ≈ 1.114.

We can even construct multi-parameter families of evo-
lution equations by simply multiplying any number of
additional factors of the form

(1− zx − zy)ni + αi(zxzy)ni/3

1 + (−zx)ni + (−zy)ni + βi(zxzy)ni/3

onto the right-hand side of (15) or (16), where each ni,
αi, and βi is a free parameter. Each such factor strictly
preserves the invariance properties of the evolution equa-
tion. In principle, we could obtain nearly perfect theoret-
ical agreement over the entire simulated interface profile
by suitably tuning parameters in these equations. The
trade-off is that the growth equations are becoming quite

unsightly. That our numerical simulations persistently
show such minute discrepancies from a beautiful analyt-
ical description (4) is puzzling [20]. Even for careful sim-
ulations of the hypercube stacking model [21], tiny (yet
apparently significant) inconsistencies between our sim-
ple equation (4) and simulation data persist. Theoreti-
cally explaining the precise source of these discrepancies
is an intriguing open question.

C. Simulation results

For 2 + 1 dimensional corner growth, we saved the
simulated interface profile at times ti = 20000/2(9−i)/2

with i = 0, . . . , 9, giving a total of ten data points. We
ran forty independent realizations of the growth pro-
cess until at least time t = 7071. We then continued
running twenty of those realizations until at least time
t = 10000, and we ran ten of those realizations all the
way to t = 20000. Each of our measurements of a quan-
tity at time ti is therefore an ensemble average. The error
bar for a measurement is computed as the standard error
of the measured quantity over all forty, twenty, or ten
realizations that were run for at least that long.

It is possible that discrepancies between our simulation
results and the predictions that follow from Eq. (4) can
be attributed to rather slow convergence to the asymp-
totic state. Flat and curved interface geometries have
been proven to have differing fluctuation statistics in
1 + 1 dimensions [22], and we are operating in the much-
less-understood 2 + 1 dimensional setting. A similarly
slow convergence to asymptotic behavior occurs in vari-
ous well-understood one-dimensional growth models (see
e.g. Refs. [23–25]). For example, for 1+1 dimensional
corner growth, the intersection of the interface with the
(1, 1) direction evolves according to [3, 11, 12]

x(t) =
t

4
+ t1/3 ξ , (17)

where ξ is a stationary random variable with 〈ξ〉 > 0.
Thus averaging over many realizations gives an effective
velocity weff − 1

4 ∼ t
−2/3.

For growth inside a three-dimensional corner, we there-
fore anticipate that weff − 1

8 ∼ t−α, with a certain (the-
oretically unknown) exponent α. Very extensive simula-
tions for flat interfaces in 2+1 dimensions indicate that
α is close to 0.77 [26–29]. On the other hand, extrapo-
lation from our simulations for t . 20000 suggests that
α ≈ 0.74. This difference in exponent estimates suggests
that t = 20000 is still outside the long-time regime for
growth inside a three-dimensional corner. It has proved
difficult to obtain consistent estimates of the KPZ scal-
ing exponents from simulations even in the simpler case
of growing flat interfaces in 2 + 1 dimensions (see e.g.
[30–32]). This slow approach to the asymptotic behavior
can be the source of the discrepancy between our simu-
lation results and the theoretical prediction (4) for the
interface profile.
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FIG. 4: Scaled interface profile, z/t versus x/t, along the
diagonal x = y at different times.

FIG. 5: Convergence of the diagonal interface speed versus
t−0.77. This quantity appears to settle at a value slightly
greater than 0.126, which is roughly 0.9% off from our pre-
diction 0.125.

As an additional numerical test, consider the intersec-
tion of the interface with the plane x = y. From our
analytical solution of (4), we obtain

x

t
=

1

2

z

t
− 3

4

(z
t

)2/3

+
1

4
(18)

which agrees well with simulations (Fig. 4).

IV. ANALYTICAL DETERMINATION OF THE
LIMITING SHAPE

In this section we solve the evolution equation (4) and
determine the limiting shape predicted by Eq. (4). Equa-
tion (4) is solvable since it is a first-order (hyperbolic)
PDE. Such equations can be treated using the method of
characteristics [33]. The method of characteristics is es-
pecially efficient in applications to linear and quasi-linear
hyperbolic PDEs. Equation (4) is fully non-linear and in

such cases the analysis involving the method of charac-
teristics tends to be cumbersome. Fortunately, there is
a shortcut in the present situation: We can employ the
Hamilton-Jacobi formalism [34, 35]. A trick is to inter-
pret z = z(x, y; t) as an action. Then (4) becomes the
Hamilton-Jacobi equation, zt+H = 0, with Hamiltonian

H = − p1

p1 − 1

p2

p2 − 1

[
1− 1

p1 + p2

]
. (19)

Here p1 and p2 are momenta, i.e., the spatial derivatives
of the action

p1 =
∂z

∂x
≡ zx, p2 =

∂z

∂y
≡ zy . (20)

The canonical Hamilton equations for coordinates are

dx

dt
=
∂H

∂p1
,

dy

dt
=
∂H

∂p2
. (21)

The canonical Hamilton equations for momenta show
that both momenta are constant (this is obvious since the
Hamiltonian (19) does not depend on the coordinates).
Plugging (19) into (21) we arrive at

dx

dt
= A ≡ 1

(p1 − 1)2

p2

p2 − 1

[
1− 1

p1 + p2

]
− p1

p1 − 1

p2

p2 − 1

1

(p1 + p2)2
(22)

and

dy

dt
= B ≡ 1

(p2 − 1)2

p1

p1 − 1

[
1− 1

p1 + p2

]
− p1

p1 − 1

p2

p2 − 1

1

(p1 + p2)2
. (23)

In our concrete problem, the action variable z plays
the same role as x and y; the separate treatment of x, y,
and z in Eq. (4) is just a matter of choice. To determine
z we integrate the Hamilton-Jacobi equation zt +H = 0
to yield z = −Ht + F (x, y), and then recalling (20) we
fix F (x, y) = p1x + p2y. Integrating Eqs. (22)–(23) and
combing these results with z = −Ht+ p1x+ p2y we get

x

t
= A,

y

t
= B,

z

t
= C (24)

with A(p1, p2) and B(p1, p2) defined in (22) and (23), and
C(p1, p2) given by

C = Ap1 +Bp2 −H (25)

For any fixed time, Eq. (24) gives an exact parametric
representation of the limiting shape of the interface; the
plot of the interface is presented in Fig. 6. More precisely,
(24) represents the non-trivial part of the interface, with
parameters varying in the range −∞ < p1, p2 < 0. For
every fixed (p1, p2) we can think of x(t), y(t), and z(t) as
a point growing along a line, this line is merely a charac-
teristic of the original PDE.
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FIG. 6: The interface (24).

As a check of consistency we note that for p2 = −∞,
we have A = (p1 − 1)−2, B = 0, C = p2

1(p1 − 1)−2. In
other words, the non-trivial part of the intersection of
the interface (24) and the y = 0 plane is

x

t
=

1

(p1 − 1)2
,

z

t
=

p2
1

(p1 − 1)2

from which we get
√
x +
√
z =

√
t, i.e. we recover the

two-dimensional result [cf. (1)].
It seems impossible to exclude the parameters (p1, p2)

and find an explicit expression for the interface (24) in
terms of x/t, y/t, z/t. Some lines on the surface defined
by (24) can be explicitly presented, however. Consider
for instance the intersection of the surface (24) and the
plane x = y. On this plane p1 = p2 and therefore this
line has a parametric representation

x

t
=
y

t
=

1

2
P 3 +

3

4
P 2 ,

z

t
= (P + 1)3 (26)

where P = (p1 − 1)−1. Excluding the parameter P we
recast (26) into the announced result (18).

To compute the volume of the crystal

V3 =

∫ ∫
dx dy z (27)

we need to integrate over the region

0 < x < t, 0 < y < t,
√
x+
√
y ≤
√
t .

Using the exact solution (24) we reduce (27) to V3 = v3t
3,

with amplitude v3 given by

v3 =

∫ 0

−∞

∫ 0

−∞
dp1 dp2 C

∂(A,B)

∂(p1, p2)
.

Using expressions for A(p1, p2), B(p1, p2), C(p1, p2) from

Eqs. (22), (23), (25) and computing the Jacobian ∂(A,B)
∂(p1,p2)

we reduce v3 to a cumbersome but elementary integral.
We computed this integral with the help of Mathematica
and obtained the value given in (12).

V. HIGHER DIMENSIONS

We want to generalize Eqs. (2) and (4). In four dimen-
sions the governing equation for the height h(x, y, z; t)
has the form

ht =

(
1− 1

hx+hy

)(
1− 1

hy+hz

)(
1− 1

hz+hx

)(
1− 1

hx

)(
1− 1

hy

)(
1− 1

hz

)(
1− 1

hx+hy+hz

) (28)

This equation is manifestly symmetric in x, y, z and it
reduces to proper equations when one of the derivatives
(hx, hy, or hz) goes to −∞. Therefore it suffices to test
that (28) is invariant under the exchange of x and h.
Substituting

ht = − xt
xh

, hx =
1

xh
, hy = −xy

xh
, hz = −xz

xh
(29)

we indeed establish the required invariance.
Generally in d+ 1 dimensions, the evolution equation

for the height h(x1, . . . , xd; t) reads

ht =

d∏
a=1

∏
1≤i1<...<ia≤d

(
1− 1

hi1 + . . .+ hia

)(−1)a

(30)

where hi ≡ ∂h
∂xi

.
Let us first determine the diagonal point

x1 = . . . = xd = h = wdt

The derivatives in (30) are h1 = . . . = hd = −1 at this
point and therefore

ht =

d∏
a=1

(
1 +

1

a

)(−1)a(d
a)

at the diagonal point. The same argument as before gives

wd =
1

d+ 1

d∏
a=1

(
1 +

1

a

)(−1)a(d
a)

(31)

The already known values, w1 = 1/4 and w2 = 1/8, are
followed by

34

45
,

310

410
,

318 56

247
,

328 521

298
,

328 556 78

2202
,

5126 736

2399

The interface defined by Eq. (30) apparently lies above
the hyper-surface

√
x1 + . . .+

√
xd+1 =

√
t, h ≡ xd+1 (32)
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that would be a solution if the governing equation for the
interface were given by the analog of (10)

1

ht
= 1− 1

h1
− . . .− 1

hd
(33)

which also satisfies the required invariance properties.
Using (31) we found that wd > (d+1)−2, where the latter
value is implied by (33), in dimensions 2 ≤ d ≤ 50. We
believe that this bound is generally valid, and it seems
that the asymptotic behaviors are very different, namely
wd ≈ 0.1

d+1 provides a good fit of the large d behavior

of wd given by (31), although we haven’t deduced this
asymptotic.

We ran 400 independent realizations of 4d corner
growth. We measured the middle point on the interface
at times ti = 1024/2(9−i)/2 with i = 0, . . . , 9, so that the
velocity at each of the ten time values was averaged over
forty independent runs. Our data yield w3 ≈ 0.0806,
within roughly 2% of the prediction 34/45 of Eq. (31)
and 29% greater than the prediction 1/42 based on (32).
At the least, the interface defined by Eq. (30) provides
a much more accurate description of 3 + 1 dimensional
corner growth than does (32).

To determine an exact solution of Eq. (30) we use again
the Hamilton-Jacobi technique. In four dimensions, for
instance, the Hamiltonian is

H = −
(
1− 1

p1+p2

)(
1− 1

p2+p3

)(
1− 1

p3+p1

)(
1− 1

p1

)(
1− 1

p2

)(
1− 1

p3

)(
1− 1

p1+p2+p3

) (34)

The non-trivial part of the interface is

xj
t

= Aj , j = 1, 2, 3;
h

t
= B (35)

Here

Aj
H

=
1

pj(1− pj)
+

1

(p1 + p2 + p3)(1− p1 − p2 − p3)

+
1

(pj + pj+1)(pj + pj+1 − 1)

+
1

(pj + pj−1)(pj + pj−1 − 1)
(36)

with j = 1, 2, 3 (the indexes j ± 1 are taken modulo 3).
Further,

B

H
=

1

1− p1
+

1

1− p2
+

1

1− p3
− 1

+
1

1− p1 − p2 − p3

+
1

p1 + p2 − 1
+

1

p2 + p3 − 1
+

1

p3 + p1 − 1

(37)

The intersection of this interface with the two-
dimensional plane x1 = x2 = x3 is a line that can be
parametrically represented as

x

t
=

(11q2 + 6q + 1)(2q + 1)2

8(q + 1)4(3q + 1)2

h

t
=

9q4(2q + 1)2

4(q + 1)4(3q + 1)2

(38)

FIG. 7: The height h/t of the 4d growing crystal versus x/t
with the constraint x = y = z; we averaged over 100 realiza-
tions for t = 128 and over 10 realizations for t = 1024.

FIG. 8: Convergence of the diagonal interface speed for 4d
corner growth versus t−0.74, where the exponent −0.74 gives
the best linear fit over the simulated time values. This quan-
tity appears to approach 0.0806 as t→∞, which is strikingly
close to our prediction 34/45 = 0.0791 . . ..

where q = −p1 = −p2 = −p3 varies on the interval
(0,∞). The plot of the line (38) is given in Fig. 7.

VI. VOLUME FLUCTUATIONS

In previous sections, we investigated the limiting shape
of the surface of the growing crystal. The growth laws are
stochastic, so at any time there are deviations from the
deterministic limiting shape. Fluctuations of the inter-
face are rather fully understood only in two dimensions
(the growth inside the quadrant), and even in that case
fluctuations of the shape were mostly probed (see [4] and
references therein). Here we briefly discuss fluctuations
of the volume of the crystal in arbitrary dimension.

The growing crystal has a typical size which scales
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linearly with time t. Therefore the average volume is
〈V 〉 = vdt

d in the leading order. To estimate the sub-
leading correction to the average volume and the asymp-
totic behavior of the variance of the crystal volume, we
use heuristic arguments to argue that the average volume
grows as

〈V 〉 = vdt
d + adt

d−1+ζ/z + . . . (39)

while the variance grows according to

〈V 2〉c ≡ 〈V 2〉 − 〈V 〉2 = bdt
d−3+(d+3)/z (40)

in the leading order. Here ζ and z are the well-known
exponents [2] which are defined through the growth law

W ∼ tζ/z (41)

for the width of the interface and the growth law

` ∼ t1/z (42)

for the correlation length. In our crystal growth prob-
lem, the interface follows the Kardar-Parisi-Zhang (KPZ)
growth laws. The corresponding exponents ζ and z are
related through the KPZ formula [2]

ζ + z = 2 (43)

The exact values are known only in d = 1+1 dimensions:
ζ = 1

2 , z = 3
2 . Equations (39) and (40) also contain posi-

tive amplitudes ad and bd which are analytically unknown
even in two dimensions.

To establish (39) one makes a natural assumption that
the average width scales according to (41). The volume
is vdt

d in the leading order, and since the area of the
interface scales as td−1, the extra-volume grows as Wtd−1

resulting in the sub-leading correction in Eq. (39).
To establish (40) we divide the interface into patches

of size equal to the correlation length. The number of
such patches is (t/`)d−1. Within each patch, the extra-
volume is W`d−1. The deviation of the volume from its
average value is therefore the sum

∑
±W`d−1 containing

(t/`)d−1 terms. This gives an estimate for the variance
〈V 2〉c ∼ (t/`)d−1(W`d−1)2. Using (41)–(42) we obtain

〈V 2〉c ∼ td−1+(d−1)/z+2ζ/z

and recalling relation (43) we arrive at (40).
In three dimensions, Eq. (39) reduces to

〈V 〉 = v3t
3 + a3t

1+2/z + . . . (44)

and (40) turns into

〈V 2〉c = b3t
6/z (45)

Careful numerical estimates for the dynamical exponent
z characterizing two-dimensional interfaces are given in
Ref. [32]. Numerically, we are dealing with substantial
finite-time effects. Still, our estimates for the lowest-
order correction exponent for 〈V 〉 [where we get ≈ −0.73
while (44) gives t−3〈V 〉 − v3 ∼ t−2(1−1/z)] and the expo-
nent for 〈V 2〉c [where we get ≈ 4 while (45) predicts the
exponent 6/z] are consistent with prior numerical esti-
mates [32] of the exponent z.

VII. INNER AND OUTER CORNERS

In our lattice growth problem, the continuum limit-
ing shape, and even fluctuations of the interface, are just
a few key properties. Even if we limit our concern to
global characteristics of the interface, we can ask about
the growth laws for the total number N+(t) of inner cor-
ners and for the total number N−(t) of outer corners.
Using the definition of the growth dynamics we conclude
that 〈N+〉 = dVd/dt, where Vd is the average volume of
the growing crystal. Equation (39) then tells us that

〈N+〉 = dvd t
d−1 + (d− 2 + 2/z)adt

d−3+2/z + . . . (46)

The dynamics says nothing about the average total
number of outer corners. In two dimensions, we can use
the obvious topological relation,

N+(t)−N−(t) = 1 in 2D, (47)

to draw conclusions about the number of outer corners.
In two dimensions, we know v2 = 1

6 and z = 3
2 , and hence

〈N+〉 = 1
3 t+ 4

3a2 t
1/3 + . . . (48)

FIG. 9: The total number of outer corners divided by the
total number of inner corners versus t−0.77. In the long-time
limit, this quantity appears to be greater than 1.

In three dimensions, there is no conservation law like
(47). For instance, N+ = 6 and N− = 3 for the crys-
tal depicted in Fig. 1. We anticipated that generally
N+ > N−, and that the average numbers of corners of
each kind exhibit the same leading growth. Intriguingly,
our simulation results show that the average total num-
ber of outer corners exhibits a faster asymptotic growth
(Fig. 9). Numerically, the leading asymptotic behaviors
are

〈N+〉 = C+t
2, C+ = 0.0442(2) (49a)

〈N−〉 = C−t
2, C− = 0.0459(2) (49b)
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FIG. 10: In the top image, the densities of inner and outer
corners on an infinite flat plane are exactly equal. In the
bottom image, we again have an infinite flat plane, but there
are now three outer corners for every two inner corners.

Our numerical estimate for the amplitude C+ is in good
agreement with the theoretical prediction (46) according

to which C+ = 3v3 = 9π2

211 = 0.043372285 . . ..

How can the unexpected result C− > C+ be reconciled
with the concave curvature of the corner interface (see
Fig. 6)? To aid in understanding, consider Fig. 10, which
shows a flat planar interface, with slopes zx = zy = −1 in
an average sense, that extends to infinity in all directions.
In Fig. 10 (top), the number of inner corners on the in-
terface exactly equals the number of outer corners. Since
this interface has no average curvature, the equality be-
tween inner and outer corners is not so surprising. Now
consider the interface in Fig. 10 (bottom) after making a
small dimple at each outer corner in the top image. The
ratio of outer corners to inner corners is now 3/2, yet the
interface macroscopically still has no curvature! One sees

that the statistics of inner and outer corners cannot be
directly inferred from the global shape of an interface.

VIII. DISCUSSION

We have presented a minimalist model for studying
crystal growth in three dimensions. Elemental cubes are
deposited stochastically into an initially empty octant,
namely into the inner corners of the growing interface.
At late times when fluctuations become small relative to
the typical size of the interface, the interface becomes
progressively more deterministic. We have proposed a
hyperbolic partial differential equation (4) describing this
dominant deterministic limiting shape. This equation
has passed through the necessary consistency checks (it
has the required symmetry properties, and it reduces to
correct evolution equations on the boundaries of the oc-
tant). We have solved the evolution equation (4) using
the Hamilton-Jacobi technique and we have found a very
good agreement between analytical results and numerical
simulations of the growth process.

We have also analyzed fluctuations of integral charac-
teristics, e.g. we have expressed the sub-leading correc-
tion to the volume of the crystal and the variance of the
volume through the KPZ exponents. Even in 1+1 dimen-
sions, the only case for which these exponents are known,
our results are incomplete as we haven’t computed the
amplitudes. This technically challenging problem may
be within the reach of analytical techniques which have
been developed in studies of interfaces in 1+1 dimensions
(see e.g. [4, 11, 12, 36–39]); perhaps even large deviations
could be analytically extracted.

Overall, we are faced with a dilemma: We haven’t de-
rived Eq. (4), and on the numerical side there is a small
(less than 1% in the growth velocity) but persistent dis-
crepancy between the analytical solution of Eq. (4) and
simulation results. One possible explanation is that for
the 2 + 1 dimensional KPZ growth the convergence can
be notoriously slow [30–32]. We have shown that one
can construct evolution equations passing the consistency
checks which provide a better agreement with observed
value of the growth velocity. Such equations are ugly, and
it seems that if an equation has a right-hand side which
is a rational function of the spatial derivatives zx and zy,
the only elegant one which is in a very close proximity
with simulations is Eq. (4). Given the utmost simplicity
of the rules of our minimalist growth model, it would be
very odd to end up with an ugly equation for the lim-
iting shape. Perhaps the only possible way to overcome
the above (admittedly imprecise) arguments is if the true
evolution equation has a right-hand side which is a tran-
scendental function of the spatial derivatives zx and zy
(which reduces to simple rational functions on the bound-
aries of the octant, i.e. when zx = −∞ or zy = −∞).
The striking simplicity and accuracy of our conjectural
growth equation beautifully match the simplicity of the
model under study, which certainly warrants further in-
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vestigation.

We hope that our analytical results will aid in stud-
ies of 2 + 1 dimensional KPZ growth. Relatively little
is known about temporal correlations in height fluctua-
tions in these growth models. Some recent studies on
1 + 1 dimensional KPZ growth have revealed slow tem-
poral de-correlation along the characteristic directions of
interface growth. In the polynuclear growth model in
1 + 1 dimensions, temporal correlations in height fluc-
tuations have been proven to decay on a time scale t2/3

for generic curves in the space-time. However, along the
characteristic directions, temporal correlations decay on
a time that scales as t, i.e. much more slowly [40]. In
2+1 dimensions, presumably a similar slow de-correlation
phenomenon is present, although to our knowledge this
has not been tested [41]. We now have predictions for
the characteristic curves of 3d corner growth, and our
equations may help facilitate numerical experiments on
time-dependent interface fluctuation statistics.

We have offered novel predictions for the sub-leading
correction to the average volume (39) and for the growth
in variance of the volume (40) of a growing crystal in
three and higher dimensions. These results should hold
generically for all higher-dimensional models that belong
to the strong-coupling KPZ universality class. Indeed, we
hope that studies of integral properties of the interface
such as the volume or the numbers of inner and outer
corners may deliver valuable new insights.

Open problems abound in the field of interface shapes
and statistics. A host of problems arises if we reformu-
late our original problem in terms of the spin-flip dy-
namics [13]. Consider an Ising ferromagnet with nearest-
neighbor interactions endowed with zero-temperature
spin-flip dynamics. If we start with a minority phase
occupying the octant, the evolution is exactly the same
as in our crystal growth process if we additionally pos-
tulate that our ferromagnet is in a magnetic field which
favors the majority phase. What happens if in addition
to the nearest-neighbor interactions we take into account
next-nearest-neighbor interactions, or even longer range
interactions? We have recently addressed this problem
[42] in two dimensions: We have derived evolution equa-
tions generalizing Eq. (2) and found corresponding lim-
iting shapes. There is an infinite series of such equations
varying with the range of interactions. Needless to say,
nothing is known in three dimensions.

Even more challenging is to consider the problem with-
out any magnetic field. In our original language, this
is equivalent to allowing desorption of elemental cubes
from outer corners on the interface. The desorption pro-
ceeds with the same rate as deposition. The interface
grows much more slowly than in the pure deposition case,
namely the growth is diffusive (that is, the linear size
of the interface scales as

√
t). Quantitative results are

known only in two dimensions where the exact evolution
equation is known and solvable [43]. In the general case,
an evolution equation for unbiased dynamics was pro-
posed in Ref. [43], yet this equation appears analytically

intractable. Even numerically this problem has not yet
been studied.

Finally, we mention equilibrium crystals (also known
as Young diagrams) of a fixed volume inside a corner.
All crystals with the same volume are equiprobable. A
surface of a typical crystal with large volume is close to
a limiting shape which has been established both in two
[44, 45] and three [46, 47] dimensions (see also Refs. [48–
50] for other three-dimensional versions). In greater than
three spatial dimensions, finding the equilibrium limiting
shape is a tantalizing mathematical problem. One sus-
pects a connection between equilibrium limiting shapes
and the limiting shapes arising in the growth problems
(with and without a magnetic field), or perhaps a con-
nection between equations which determine these lim-
iting shapes. One may try to guess equilibrium limit-
ing shapes using the same tricks as before (symmetry
constraints and matching to low-dimensional equilibrium
limiting shapes in conjunction with a small number of
well-chosen numerical clues).
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