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Slowly driven elastic interfaces, such as domain walls irtydmagnets, contact lines wetting a non-
homogenous substrate, or cracks in brittle disordered riahtproceed via intermittent motion, called
avalanches. Here we develop a field-theoretic treatmergltolate, from first principles, the space-time statis-
tics of instantaneous velocities within an avalanche. Fastie interfaces at (or above) their (internal) upper
critical dimensiond > du. (duc = 2,4 respectively for long-ranged and short-ranged elasjigity show that
the field theory for theenter of masseduces to the motion of jpoint particlein a random-force landscape,
which is itself a random walk (ABBM model). Furthermore, filadl spatialdependence of the velocity corre-
lations is described by the Brownian-force model (BFM) veheach point of the interface sees an independent
Brownian-force landscape. Both ABBM and BFM can be solveakcty in any dimensiorl (for monotonous
driving) by summing tree graphs, equivalent to solving anffinear) instantonequation. We focus on the
limit of slow uniform driving. This tree approximation isehmean-field theory (MFT) for realistic interfaces
in short-ranged disorder, up to the renormalization of ta@oameters ai = d,.. We calculate a number of
observables of direct experimental interest: Both for theter of mass, and for a given Fourier mageve
obtain various correlations and probability distributfanctions (PDF’s) of the velocity inside an avalanche, as
well as the avalanche shape and its fluctuations (secon@)shafithin MFT we find that velocity correlations
at non-zergg are asymmetric under time reversal. Next we calculate, fyFT, i.e. including loop correc-
tions, the 1-time PDF of the center-of-mass veloditipr dimensiond < d,.. The singularity at small velocity
P(u) ~ 1/4° is substantially reduced from= 1 (MFT)toa = 1— %(4 —d) + ... (short-ranged elasticity) and
a=1-— %(2 —d) + ... (long-ranged elasticity). We show how the dynamical theegpvers the avalanche-size
distribution, and how the instanton relates to the resptmae infinitesimal step in the force.

I. INTRODUCTION sion in the internal spatial dimensidrof the interface, around
the upper critical dimensiod,., in a loop expansion. Despite

Elastic interfaces driven through a disordered medium haV(tahese. successes the studiawhlanchesn elastic systems _has
L ; remained centered on toy models [2, 3, 13] or on scaling ar-

been proposed as efficient mesoscopic models for a number

: ; o uments and numerics [6, 45, 51-56]. Several other impor-
of different physical systems and situations, such as the m :
. : ; ; . ant models have been used to describe avalanches, such as
tion of domain walls in soft magnets [1-8], fluid contact bne

on a rough surface [9-11], or strike-slip faults in geopbgsi the random-field Ising model [57-59] and discrete automata

. o known as sandpile models, for which analytical resultstexis
[12-15]. Their response to external driving is not smoottt, b L
o ) N [60-67]. However, exact results on the avalanche statiatie
exhibits discontinuous and collectijgnpscalledavalanches

which extend over a broad range of space and time scaleg.many hard to obtain.

Physically, these are detected e.g. as pulses of Barkhausenpne simplifying feature of the interface model in its basic
noise in magnets [1, 4, 16-18], slip instabilities leading t yersjon, i.e. with over-damped dynamics, is that it sasisfie
earthquakes on geological faults [5, 12, 19-22], or in fraCyne no-crossing rule, or Middleton theorem, which guaresite
ture experiments [23-33]. While the microscopic details ofgp|y forward motion after a finite time, and uniqueness of the
the dynamics are specific to each system, an important quegliging state [68-70]. This allows to define unambiguously,
tionis whet_her the large-scale features are universal [B# 4 fixed driving velocityy, a quasi-static limit = 0+ which
most prominent example are the exponents of the power-laye have studied with high precision both from numerics and
distribution of avalanche sizd3(5) ~ S™7 (for earthquakes, sing the FRG, testing the agreement up to two-loop accu-
the well-known Gutenberg-Richter distribution [35-37if)da ¢y [71]. Recently, we have developed FRG methods [72—76]
durations, which are believed to be universal. Beyondsgali 1 calculate the statistics of avalanches for elastic fates,
exponents, the question of whether the shape of an avalanchgih in a static, and quasi-static framework, obtaining thg
is universal is of great current interest [38]. Understagdi gistribution P(S) of their size, i.e. the total area swept dur-
whether and how universality arises, and obtaining quantit j,q an avalanche. Initially our calculation focused onistat
tive predictions for avalanche statistics beyond phen@men gyajanches, i.e. switches in the ground state. Howeverktha
logical models are some of the main challenges in the field. (4 pmiddleton’s theorem, it can be extended to quasi-static d
Historically, the elastic interface model has allowed for a ing: Since the system visits a unique sequence of metastable
alytical progress thanks to a powerful method, the Funetion states, we define quasi-static avalanches in a stationgirgee
Renormalization group (FRG). This method was first devel{for v = 0%) as jumps from one metastable state to the next.
oped to calculate either the static (equilibrium) defoioied ~ The avalanche siz&€ depends only on the initial and final con-
of an interface pinned by a random potential (e.g. the roughfiguration, and is a property of the quasi-static limit. Warid
ness exponent) [39-42], or the critical dynamics at therdepi [73, 77] that to 1-loop accurack(S) is the same as for de-
ning transition which occurs when applying an externaldorc pinning as for the statics, although we expect them to défter
f > f.[41, 43-50]. These results are obtained in an expan2-loop order.



In this paper we extend our study to the dynamics inside amotion
avalanche; we calculate the probability distribution & th- ) )
stantaneous velocity during an avalanche. Although wegocu ni(t) = F(U(t)) -m [U(t) - w(t)]- ()
on the small-driving-velocity limit, it is a truly dynamiteal-
culation. To properly define the avalanche statistics, wado
it important to separate two very different velocity scal@ps
the small driving velocity, which allows to separate different
avalanches and to define a stationary regime; (ii) the motion
inside an avalanche, which is much faster than the driving ve

locity v, and independent of it for small Itis this fastmotion  wheres > 0 characterizes the disorder strength. One of
that we study here. the motivations for this assumption was that the model be-
To this aim, we consider the following over-damped equatomes solvable. Although a crude description, it was used
tion of motion, which reads, in its simplest form (for short- extensively to compare with Barkhausen-noise experiments
ranged elasticity of the interface), on magnets, with success in some cases (systems with long-
ranged elasticity) and failures in others [5-7, 12, 22]. The
most natural interpretation is that¢) may represent the av-
erage height of the interface(t) = -; [d?zu(z,t), and
that the ABBM model gives a mean-field description of the
elastic interface. The random forégw) is then interpreted
as aneffectiverandom force, sum of the local pinning forces
in some correlation volume. This is in agreement with the
remark [5, 6] that for infinite-range interactions the effee
disorder is indeed correlated as in (6). Thus this view hasbe
taken for granted for a while. However, until now, there was
no derivation from first principles starting from the retis

In [2], the random pinning forc&'(«) acting on this point was
postulated to be a Gaussian with the correlations of a random
walk,

[F(u1) — F(u2)]” = 20|us — ] | (6)

not(x,t) = cV2u(z, t)+ F(u(z,t), ) +m*[w(t) —u(z,t)] .

1)
Here and below, we denote indifferently by(xz,t) or
dwu(x,t) the local interface velocity. The time-dependent
scalar functionu(z, t), * € R? describes the displacement of
ad-dimensional interface in &+ 1-dimensional system. The
quenched random forcE(u, x) can be taken as a Gaussian
random variable, short-ranged indirection, but with arbi-
trary correlations in.-direction,

o) — §d / /
Fu, 2)F(u,2") = 0%(z = 2') Ao(u = w) . (2) microscopic model of an elastic interface.
In most applications, the disordeX,(u) is a short-ranged _ Inthis article, we go beyond this simple toy-model descrip-
function. The interface is driven and confined by a parabolidion of avalanches, and consider the motion of an elastr-int
well of curvaturen?, which advances according to face given by Eqg. (1). We use the dynamical field theory and
methods from the functional renormalization group (FRG).
w(t) = vt . (3) Let us recall that the upper critical dimensiondig. = 2y

. _ o . in general, hencé,,. = 4 for short-ranged elasticity, and
This model, and this type of driving, is of experimental rel- 4, . = 2 for the most common long-ranged elasticity, i.e. mag-

evance for the systems mentioned above. In some cases,nitic systems with dipolar forces, the contact line or freet
requires an extension of the elastic kernel to non-locakiela  |n this article, we will show:

ity, which amounts to replacing in Eq. (1), in Fourier space,
) ) . 0] I_n the _small driving-velocity Iimit,_aII correlation func-_

cq”+m” —e(q) =g(q) . (4) tions (in time and space) of the instantaneous velocity
u(z,t) can be computed (to lowest orderdhin a di-
mensional expansion aroudg.. This is done by com-
puting averages of exponentials of the velocities (gen-
erating functions), whosé@(v) contribution allows to
extract the full probability distribution of the velocity
field u(x,t) during an avalanche.

The combinatiore(q)|u,|* is the energy associated to the
modeq, which includes the elastic energlus the coupling to
the quadratic well We have defined its inversgq), i.e. the
(static) propagator, which we use extensively below. Onre ex
ample ise(q) = ¢(¢? + p2)/?, or more complicated kernels,
and we always denotg(q = 0) = 1/m? ande(q) ~ ¢ at
largeq. For a contact liney is related to the inverse capillary (i) At the upper critical dimensiod = d,., and in the

length . (usually calledx), set by surface tension and grav- small-n limit, the velocity field in an avalanche has
ity [78] and~ = 1. For a magnetyn is set by the so-called the same space-time statistics as the Brownian Force
demagnetizing field [4, 6, 7] angl = 1 in some situations Model (BFM) with renormalized parametens— 7.,
dominated by dipolar forces, while = 2 in others. In frac- ando — o,,. The BFM is a model for an interface de-
ture experiments, e.g. when breaking apart two plates which scribed by (1) wherd’(u, ) are Brownian motions in
have been sintered together [23—2%F, is proportional to the u, of varianceos, uncorrelated inc. It is a generaliza-
inverse thickness of the plates, and usually 1. tion of the ABBM model to a set of elastically coupled
A toy model to describe the avalanche dynamics which re- ABBM models. For the BFM the generating functions
sults from Eq. (1) has been proposed by Alessandro, Beatrice of the velocity are obtained exactly in any dimension
Bertotti and Montorsi (ABBM) [2, 3], and further developed d by summing only tree graphs. Furthermore one can
in [5, 38, 79-81]. It approximates the motion of the domain consider that the “tree theory” is the correct mean-field
wall, i.e. a system with many degrees of freedom, by the mo- theory and describes the system &r d,., with full

tion of a point, at position(t), which satisfies the equation of universality atd = d,,. and smallm.
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(i) The ABBM model (5) with the force-force correlator have recently studied the ABBM model in presence of retar-
(6) correctly describes the avalanche motion ofdbe-  dation [83]. A much greater challenge for the future would
ter of mass of the interfac®r d > d,. in the limit be to extend these methods to models where the no-passing
v = 07. Universality arises fodl = d,. and smallmn, rule does not apply, such as models with inertia or relaratio
with a dependence of the effective parameters 7,, which have been proposed, e.g. to study earthquake dynam-
ando — o, that we computed. ics [85]. There the very existence of a quasi-static limit is

) o ) much less clear, and may depend on details of the dynamics.

(iv) Evenford = d.,. the original ABBM modelis not suf- 5ome steps in that directions have been taken in [86]. Finall

ficient to describe the velocity correlations of different |et us also mention related studies of static avalanchesiin s

points on the interface, or the statistics of Fourier modegy|asses using Replica Symmetry Breaking [87, 88], and in the
q # 0. The latter can however be obtained from the treerandom-field Ising model [89].

theory (i.e. the BFM) which we show to be equivalentto

solving a non-linear instanton equation. From this we The outline of this article is as follows: o
obtain e.g. the avalanche shape at figitt d = dy.. In section Il we introduce the interface model, define im-

portant observables, and explain our strategy for theguzal
Finally, ford < d,. the velocity field in an avalanche lation. We also review the expected scaling relations fer th
has universal statistics not given by the BFM, nor, foravalanche statistics.
the center of mass, by the ABBM model. It can be In section Ill, we construct the theory at tree level. We
obtained within art = d,. — d expansion. We show start with calculating the moments of the instantaneouscvel
that the one-time center-of-mass velocity distributionity in subsection 11l A, before introducing in subsectiohBl
diverges at small velocity not &(u) ~ 1/u, but with  a non-linear equation, which we call the instanton equation

(v

~

a modified exponent to efficiently resum them. In subsection 111 C we calculate th
joint probability distribution for the center-of-mass weity at
P(i1) ~ i ' (7) one and several times. From that we extract various velocity
u? probability distributions, and calculate the average shafp

an avalanche, as well as its variance which we callg¢beond

For short-ranged elasticity the exponent is (with- shape In subsection IIID we show that the solution of the

4-dy: instanton equation encodes the response to a small step in th
2 ) o applied force. In subsection Il F we recover the quasiistat
a=1-ge+0(¢) non-periodic, RF (8)  avalanche-size distribution. In Section Ill G we discussré
1 lation between the tree theory and the mean-field theory: We
a=l-ges O(e*)  periodic . (9)  show that the tree theory is equivalent to (i.e. is exacttfue)

Brownian force model, and, for the center of mass only, to
For long-ranged elasticityy( = 1), the exponent is the ABBM model. We also show that the so-called improved
(with e = 2 — d): tree theory, i.e. the tree theory with renormalized valuwes f
the disorder and the friction parameters, is the correctnmea
a—1— ée i 0(52) non-periodic, RF (10) fi(_eld limit (for d = duc).of the u_nderlying field theory_to be
discussed in the following section IV. Our approach is based
(11) on the Langevin equation and on the MSR dynamical action;
alternatively one can use a Fokker-Planck descriptiors, @%-i
plained in subsection Ill G 4. Itis this latter descriptiohieh
A short report of some of our results has already appearedas introduced by ABBM [2, 3] for a patrticle, but whose use
as a Letter [82]. The present study is the starting point of aeems to be restricted to the latter. In subsection IllH we ob
calculation of the avalanche shape and duration to dbder  tain a number of results beyond the center-of-mass motion,
[83]. such as the local averaged shape following a local step in the
Since the methods used here (based on the dynamical MSfiarce, as well as the spatial and time dependence of the decon
path integral) are quite different from the usual Fokkeariek  shape.
approach to solve the ABBM model [2, 3], our study also pro- In section IV, we study the loop corrections, #r< dyc.
vides a new way to solve the ABBM model. In particular, we We explain the general framework in subsection IV A, before
find that generating functions can be obtained from the soluintroducing a simplified theory in section IV B, containing a
tion of the non-linear instanton equation. This new conbact the needed ingredients for the one-loop calculation. Ttierla
has been exploited and extended in [84] to derive new results solved perturbatively in subsection IV C. We then discuss
for the ABBM model (and elastically coupled ABBM models) in detail the 1-loop, i.eO(¢), corrections to the velocity dis-
for finite v > 0 and for a non-stationary avalanche dynamics.tribution in subsection IV D. We derive the necessary counte
One should emphasize that the methods introduced in thierms in subsection IV F. The extension to long-ranged elas-
present work strongly rely on the Middleton theorem. Al- ticity is detailed in subsection IV G.
though specific results are obtained for an over-damped dy- The above theory was developed in terms of the velocity
namics, the present methods can be extended to any dynamigss the dynamical variable. In section V we discuss how to
which satisfies the Middleton theorem. As an example, weperform the same calculations using the more standardytheor

2
a=1- 3¢ +O(e?*) periodic .
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in terms of the position:.. While this is more involved, it theorem: If the driving forcem?w;, is an increasing function
avoids certain technical problems which may be presentin thof time, w; > 0 (positive driving), and if velocities are all
velocity theory, and confirms the validity of the latter. positive att = 0, @, 1~ > 0, then they remain so at all times
Several technical issues are presented in appendices A to B8]. In particular, for a finite interface (of sizg), submitted
to positive driving, all velocities become positive afteirate
driving distance, and the memory of the initial condition is

Il. MODEL, OBSERVABLES AND PROGRAM erased.

A. The bare model
B. Quasi-static observables

We consider an elastic interface of internal dimensipn
with no overhangs, parameterized by a time-dependent real In this paper we focus on the stationary state of the model
valued displacement (or height) fieldz, t) = u,, € R, with  with fixed driving velocityw; = vt, hencei,; = v. We
z € R?. It evolves in presence of a random pinning forcefocus on the small-velocity limit = 07, i.e. on the vicinity
F(u, r) according to the simplest possible overdamped equeef the quasi-static depinning transition. At a qualitatieeel,
tion of motion, itis expected that because of disorder, at scales largethiea
Larkin lengthL., the interface is rough at all times, i.e. self-
. 1 affine (uy; — uqry)? ~ |z—a'|>¢, with the roughness exponent
MoOitar = /I,(g Jawr (Wart = tan) + Fluar, z) - (12) ¢ = {iep of the d)epinl]ing tr|ansition [91-93]. Because of the
mass term, the interface flattens for scdles- z/'| > L,,,
Heren, is the bare friction coefficientan@—'),, isthe elas-  (u,; — u,)2 ~ L2 with L,,, ~ 1/m for local elasticity. We

tic matrix, with propagatoy,,, = g.—.» andg(q) = g, = are interested in the universality which arises in the small

[, €% g, in Fourier space and we define the (squared) mastmit, i.e. for L,, > L.

m? = gq;lo. Everywhere we denote equivalenjlﬂy:: [ dix It is also expected that on scales larger than the Larkin
and [, := [dt. The interface is driven by an external scale, the motion is not smooth but proceeds by avalanches,
quadratic potential centered at positiog;. The total external  i.€. the system jumps from one rough metastable state to the
force acting on the interface is noted next one. Thanks to the Middleton theorem there is a well-

defined quasi-static limit, i.e. a functiar,(w) such that for
1 v = 0% one hasu,; = u,(w;) wherew; = vt is the position

Jor = /, (9™ )aarware (13) of the center of the quadratic well. The sequence of visited
! states is unique. The quasi-static procesgv) was defined

with f, = m?2uw; for spatially uniform driving. Equivalently, in [94] and studied numerically in [71, 75], see also [9] for
for inhomogeneous drivingy,; denotes the reference inter- an experlmentatl rt'eallzauc_)n. Note that the procesaw) is
face position in the absence of disorder and in the limit ofdifferent fromu3* (w) defined in the statics [73] which de-
very slow driving (hence this notation is useful in the smti Scribes shocks, i.e. switches in the ground Statéowever,
and the quasi-statics). We focus on the casecd! or short there are close analogies, hence similarities in notatiotings
range elasticityg; ! := ¢2 + m2, with an elastic constant set section and in Ref. [73]. The quasi-static process jumps at a
to unity by choice of units. We will however also give the re- Set of discrete locations;, i.e.
sults for more general non-local elasticity, see the disions
after Eq. (4). We focus on a uniform driving at fixed velocity ua(w) =Y Sizb(w — w;) . (14)
v, wy = wy = vt. This leads to Eq. (1) in the introduction. i

The pinning force is chosen as indicated in Eq. (2), where . . )
Ao(u) is the microscopic (bare) disorder correlator and We also consider the motion of the center of mass of the inter-
denotes disorder averages. For realistic disorder thedisre face, denoted
order correlator is smooth. Note that for the bare model, we
always assume (unless stated otherwise) a small-scal# cuto wp = L4 / Ut - (15)
in z, either a lattice spacing, or thatA,(u) decays on a *
finite correlation lengthr;. This insures the existence of a
Larkin scaleL.. [90], which produces a small-scale cutoff for For v = 0T, it converges to the quasi-static process=
avalanches. We denofg the small-scale cutoff on their size.

The above model exhibits two important properties: Due———
to statistical translational invariance of the disorded dis
s-correlations in internal space, the model possesses the so For a model discrete im, this is the case ifg~!),, < 0 for o # a'.
calledstatistical tilt symmetrySTS) which guarantees that the , TheMiet = 01f fae 2 0 andiie:; = 0 at some initial timet;.

lasticity ¢, is uncorrected by fluctuations (loop corrections), .= (w) iS the minimum-energy configuration for a given In contrast,
e 9q i N . . >/ for a particleu(w) is the smallest root of the equation?w = F(u) —
seee.g. [73] _for notations and some defm't'()r_ls in th|5.eBCt| m?2u and, similarly, for an interface., (w) is the metastable state with the
The second important property of the model is the Middleton smallestu, (w) for all z.



u(w) for the center of mass, denoted /v
14 Wi Wi
u(w) = L4 / ugp(w) = LY Si0(w—w;). (16) 12
’ ! 10
Here S; is the size of the-th avalanche. In the statics, the
statistics of these shocks was studied in Ref. [73]. Here one8f
can also define their size density (per unjtas 6
p(S) =poP(S) =D 6(S—S)d(w—w;). (A7) 4 » R
i [ \
2r 8 i \
The probability distributiorP(.S) of the size is normalized to I K Yy e wet
unity. Since one can show that [81, 94] 0 10 20 30 40
m? [w —u(w)] = fe(m), (18) FIG. 1: Schematic plot of the instantaneous velocity as atfan

_ of vt for differentv. The area under the curve is the avalanche size
the critical force at fixedn, it impliesu(w) =~ w, hence the hence is constant as — 0. The quasi-static avalanche positions
process follows the center of the well, although with a delayw: are indicated.

This shows that the total density per unitw is related to the
average size as
4 whenL > L,, and at least for SR elasticity, it may be suffi-
po = L7 (19) cient to ask that successive avalanches occurring in the sam
(S)”’ region of space be well separated, i.e. that (21) holds when
ow is the typical separation of avalanches in the same region
where here and beloy/(5)) = [ dS P(S)f(S) denotes the space. The condition (21) is equivalent to the condition

(normalized) average of (5). I_\Iote that the existence pf a 1, < &, whereg, is the correlation length near the depin-
short-scale cutoff (and a Larkin scale) guarantees ghas ning transition [43-45].

finite, although it may diverge if these cutoff scales go tmze
As shown in [73] there is an exact relation between the sec-
ond moment of the avalanche-size distribution and the qusp i

the renormalized disorder correlator, C. Dynamical observables
S2 —A'(0F
S = ;<Si = m(4 ) . (20) Our aim is to obtain information about the dynamics in an

avalanche. For simplicity we will first consider tetimes

It defines the avalanche-size scafle,, which behaves as (instantaneous) velocity cumulanis, ..., for the center

S, ~ m~@+0) at smallm. The definition of the renor- Of mass, and discuss space dependence later. The important
malized disorder correlatof\(u) is recalled below and its Property aboutavalanches, and non-smooth motionin genera
salient property is that it is non-analytic, even if the baiee IS thatin the limitv — 07

order is smooth. This relation holds in any dimension, for

statics and quasi-statics, i.e. depinning (with, accaigidif- Uty ...utnc =vf(t,..
ferent values for\’(0%) and the roughness exponents). The
only assumption is that all motion takes place in shocks or

avalanches, as in (14), which usually holds for small enoughy i heans that cumulanamd moments ar®(v), and have
m (see [87] for a case where t_h_e contribution from the SmOOﬂEhe same leading time dependence. Thisis ver3,/ different fro
part ofu(w) is calculated explicitly). - a smooth motion, for which they would &(v"). Here we
The convergence to the quasi-statics in the Smhrh.'t oc- are considering times much shorter that the waiting-tina¢esc
curs on time scalef, := dw/v wheredw ~ w; 1 — w; is the dw/v, hence a single avalanche. The result (22) can be un-
typ|cal avalanche separatiofy, is called thevaiting tlmg(gn- derstood as follows: The above cumulants are non-neggigibl
til the next avalanche). On the other hand,.the motisidle only when all times are inside the same avalanche. When that
an avalanche occurs on the so-caliediation time scale occurs, the velocities a@(v), with a magnitude studied be-
(21) low. Let us suppose that the separation of the tilpésof the
order of 7. The above cumulants are thus dominated by the
wherez is the dynamical exponent at depinning. In this pa-Probability that exactly one avalanche occurs in a timerinte
per we always assume small enough so that the order of Val of durationT (with 7" < Aw/v). This probability is in
scales is as given by Eq. (21), i.e., thealanche duration terms of the total avalanche density
is much smaller than thevaiting time between avalanches,
so that successive avalancheswaedl separatedIn practice, Prol(one avalanche [r7/2,7/2]) = povT < 1. (24)

wtn) + O(v?) (22)
Uy tty, = Vf(t1, o tn) + O(W?) . (23)

T~ L <w/v,



More precisely, one can establish the sum rule Since it is the renormalized disorder, which is small, we
then reexpress the perturbative expressions of the velogit
nd dty...dt, Gy, e, = povT(S™) + O(v?) , mulants in terms ofA(w) directly. Thus we generate an ex-

pansion in powers of for these quantities. The leading order
(25) is determined solely by tree graphs in the renormalized dis-

order A (each cumulant being of ordex™—!) and is valid
for d = d,. (to some extent it is also valid fat > d,., see
the discussion below). This leads to the tree-level result f
the velocity probabilities. Corrections to the tree-lenagult

d . are obtained in the next section by adding the contributfon o

Si=1L /dt U - (26) one-loop diagrams, i.e. the next ordetAri = O(e).

) _ In the remainder of the paper we will switch to the comov-
Itis clear from the above that the difference between momenting frame, unless explicitly indicated. Hence we define for

and cumulants is at most @#(v?). The sum rule (24) thus  — ot
connects dynamical quantities to quasi-static ones. itiges
a valuable consistency check for our dynamical calculation Ugt = UV + Ugy (30)

[(=T/2,1/2]"

which is valid as long apovT < 1. It comes from the fact
that the total displacemedit’ | d¢ «, during the avalanche
is equal to its size,

wheret,,; satisfies the equation of motion:

D. Strategy NOtligs = V2iigs + F (0t + Ugs, ) — mtge —nv . (31)

Let us now summarize our strategy. We will calculate theBelow we will denotei by w for simplicity.
velocity cumulants from perturbation theory in an expansio
in the disorder. Naively this expansion is in the bare dis-
order Ap(u). To lowest order the:-times cumulant (22) is
O(A7~1) and, as we will see below, is obtained from tree o
graphs in the graphical representation of perturbatioorthe 1. Size distribution
For eachn, 1-loop graphs only occur at the next order, i.e.

O(Ayp), and so on for higher-loop graphs. Hence we start by The size distribution is by now the best known one. Let
examining the perturbation theory at tree level in the negts us first recall our previous results [72, 73] for the avalach
tion. We compute explicitly the lowest moments, and thensize distribution in the smakx limit, i.e. S,,, > So, where
show that there exists a much more powerful method, basetl is the microscopic cutoff, and,,, the scale of the large
on a simplified field theory, which allows to sum all tree dia- avalanches, given by Eq. (20). F8r> Sy, the size distribu-
grams and compute directly the Laplace transform of the jointion P(.S) takes the form

probability distributionP (., , ..., 4., ) of the velocities at

E. Expected scaling forms for avalanche statistics

times. | PaclS) = P(S) = Dlp(s/5,. (32)
In practice it is in fact more accurate to work with the renor- Sin
malized disorder. We recall that the renormalized disorde . . . . .
correlatorA(w) is defined in the quasi-static theory from the fbepzleﬂd(;ng on the dimensiah p(s) takes different forms: (i)
center-of-mass fluctuations as Ord = duc
c 1
m*u(w) — w|u(w) —w'] =L %AW —-w'). (27) p(s) = p™e(s) = ﬁs*B/Qe*S/4 . (33)
The functionA(u) depends onn, with A(u) = Ag(u) for (i) for d < d
m — oo. At smallm it takes the universal scaling form uer
- A B
A(w) = —m 2 A(mbw) | (28) p(s) = 5= " exp <C\/5 -71° > o B4
EIQ
jAa 1 29 1© firstorderinO(e = dy.—d), whereA—1, B—1,C = O(e)
°T g (+1)2° are given in [73]. The exponedit= 1+ (e — () + O(e?)

and the avalanche exponent

m 3 1

converges to a (non-analytic) fixed-point for(w) e T=5-gle-0+ O(e?) (35)
A*(w) = O(e). Here( is the roughness exponent at depin-
ning. The rescaled correlatdx(w) obeys, as a function of
m, a FRG flow equation which was obtained at the depin
ning transition, together with its fixed points, to two lodps
[41, 48] and checked in [71] wher®(u) was measured from 5

numerics. T=2- a7 C (36)

Itis given here for SR elasticity. The rescaled correldtom)

were agree to first order ia with the Narayan-Fisher (NF)
‘conjecture [6, 45], which relates the avalanche-size egpbn
and the roughness exponent via



Here~y = 2 for SR elasticity,y = 1 for LR elasticity’ and Ill. TREE-LEVEL THEORY
dw. = 27. This conjecture agrees well with numerics for

d =1,2,3[72,75], both for the statics and quasi-statics (with |, this section we implement the program explained above
the respective values fa, but it is not known if it is exact o |owest order, i.e. at tree level. Hence we construct the
(see the discussion in section VIII-A of [73]). It was pro- proper mean-field theory for the interface. We will use sys-
posed by NF for depinning only, but recently we have foundiematically the notation\ for the disorder vertices angfor
a general grgument for the statics as well, based on droplghe friction. Hence, if one substitutels, andn, one gets the
considerations [87, 88]. o ~naive perturbation result, i.e. genuine tree graphs. Ifcome
Here we will recover the above results, within a dynamicaljgersA andy as the renormalized disorder correlator and
calculation, to tree level il = d,,c, and to one loop)(¢), for  friction, one obtains the result using the so-called “inye
d < dyc. action”, i.e. the limit ford = d,,. of the effective action (see
Refs. [73, 74] for more details on these definitions). This
amounts to summing tree graphs plus those loop diagrams
which renormalize friction or disorder at = d,.. Some-
times we will denoteA — A,,, andn — n,, to remind that
Assuming one can define unambiguously the durafi@f  these quantities are dependent. In simple terms, the results
an avalanche (See the discussion below in Section Il G 3) th@xpressed in terms Gﬁm andnm are numerica”y accurate at
duration exponent is defined through the smdll-behavior d = dye, with the correct, and universa]l dependenc@oﬁmr

2. Duration distribution

of the duration distributioft: smallm.
_ b Itis useful to recall here the result of [73] for the genergti

Pauration(T) = 7ol (T/To) , (37) " function and avalanche-size distribution at tree level,
whereTy is a large-time cutoff, angl(0) a constant. This form A8

- . . . . <e — 1>
has been conjectured in various articles, see e.g. [6]. Alsim Zs(\) 1= ~—nut (42)
scaling argument relatesto ~ andz, the dynamical exponent. (S)
_Cr)rr]leenwntess L andT ~ L? henceS ~ T . Zuee(\) = - (1 _ m) _ (43)

Pauration(T') ~ Pize (S ~ T(d+C)/Z) % ~T™" (38) We have added the subscriftto distinguish from the nota-
. tion for the dynamical generating functions introducehel
with let us also note that we use indistinguishably the threesffi
a—1+ (T=1(d+¢) (39) ‘tree”. "MF’, and “0", to indicate tree, i.e. mean-field quanti-
z ties. EqQ. (43) holds both for the statics and quasi-stadiod,
If we use in addition the NF conjecture (36) one obtains ~ Will be recovered below in the dynamical approach.
a=1+ MT” , (40)

. ) i . A. Calculation of moments
a relation which was conjectured previously, see e.g. [6% |

not known at present whether these conjectures are exaet. Th
methods of the present paper allow to deterniigation (7).
Here we obtain it to tree level, and in [83] to one loop.

The equation of motion (31) in the comoving frame can also
be written as

Ugt = / Rmt,m’t’ [F(Ut + um’t’axl) - 77“} ) (44)
3. Velocity distribution o't
where
Here we obtain the distribution of velocities in an avalaach . o
in the form Ryt artr = Ro—arp—v = (0061 + 9;1/5&')%,”, (45)
. 1
P(1) ~ — (41) s the bare response function with,; = [ ¢*“Rg. In

We will obtaina = 1 at the mean-field level (tree theory), as Fourier space it reads
in the ABBM model, andi < 1 for d < d.. It turns out that

our result for the exponent is not straightforward to derive Ry = lo(t)e—(qumz)t/ﬁ , (46)
from scaling arguments. Hence it may be a new independent n
exponent.

1. First moment

3 The exponen& is often Ca”equ in the |iterature, see e.g. [7] We start W|th the fIrS'[ moment, Wh'Ch deflneS the Cl’ltlca|
4 In Section IV the notatiom is used for a different quantity, see Eq. (299). force f. = f.(m,v). Taking the disorder average of (44) we
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have the typical time scale,,, of an avalanche is read off from the
exponential in the first line of Eq. (54), as
Mgy = fe =1 (47)
I T E—— S (55)
fe i =F(vt+ ug, x) . (48) Tm = "% "

In the improved actiony will be renormalized to) = 7,,,, as
is discussed below.
L , Using that the size of an avalanchesis= L¢ ft 1, We can
Uat = Uzt = /w,t, Ry [F (0t +ugir, @) =[], (49) now integrate over the time difference to obtain
[e7e] (Nt
from which we now compute the cumulants to leading order  pyv(S?) = L2d/ dt Got,” = —2deig) .
in perturbation theory. —0 m
Using Eq. (19), i.epg = L9/ (S), this exact relation agrees
with the general sum rule for = 2, provided Eq. (20) holds.

This yields the exact equation

(56)

2. Second moment This is indeed an exact relation obtained both in the statics
and in the quasi-static limit in [73, 82]; it relates the cusp
To lowest order imA one finds from Eqg. (49) that the second moment of the avalanche-size distribution.

In order to simplify the notations for the calculation of
[T T :/ Ryt ty—t Ryt g A (vt —t")). higher cumulants, we now switch to dimensionless units.
P They amount to replacing

(50)
From this we obtain the cumulant of the center-of-massveloc = — ¥/m, L — L/m, t—=t7,, v—=v/7, (57)
ity, andA’(0%) — m*=?A’(0%). In effect this is equivalent to
1 settingn = m? = 1.

Uty atzc = L‘dat] Ok, We now reproduce the above result, introducing a graphical

representation which will be useful for the calculation loé t

X/ ef#(trsl *#(tzfsz)A(v(sl _ 32)) higher cumulants. Let us consider Eq. (50) integrated over
s1<t1,s2<t2

space and rewrite it graphically as

772

Ad—
2 L UtlthC =

d’U2 7ﬁ( 7o) AN t
=L %— / o= T (mtm) A (U(tl —to— T —I—Tg)). _ T
71>0,72>0

r . (58)

(51) Herethe dashed line represents the disorder véxtekich is

) o bilocal in time and the full lines are response functions)(46
Let us now consider the limit of — 0%, and assume that here taken at zero momentum= 0. (For details on this

A(u) has a cusp, i.e. standard graphical representation see e.g. [48].) Thendeco
A(u) = 20/(07)5(w) + A”(0) + O([u]) - (52) velocity cumulant thus reads

S1

t1 to
Then we find that Ly, = atlatzslf L? - (59)
Ty, Uy = _QL—dA/(0+)£/ 67%2(27141“2) Hence the time derivatives act on the external legs. We now
n? Jr>0 use the fact that the response function depends only on the
av? m2 time difference, i.e.,
—L™—A"(0) e (mtT2)
130,720 atl Rq,t1—51 = _831 Rq,t1—31 ) (603
—|—O(v3) . (53) yvhere here and below we denadte = Rq:g,t = H(t)e_
in our dimensionless units. Hence, by partial integratioa,
Hence we obtain can move both time derivatives to act on the disorder ver-
) tex asds, ds, which produces the termv2A” (v(s; — s2))
Uy, g, = _L—dA/(0+)L2e—"¢—,Itz—t1| as in Eq. (53). To lowest order 'rmthi.s can bg replaceq by
men —2vA'(0%)d(s1 — s2), hence the two internal times are iden-
2 tified. This can be represented as
~LTIA(0) + 0" (54) P )

- 1
. . Ldutlatzc = _2UAI(O+) \/

Note that the cusp is crucial to get non-smooth, avalanche mo 1

tion: Sinceu = v, the term of ordew in the above equation _ 1+ (281 —t1—t2)

. . . . : . = —20A’(07) e

is possible only since the manifold moves with veloaitpf

order one (i.e. independent of for a time of orderl /v. In A0 ol 61

the absence of a cusp,~ v, and the second cumulant of the =—vA(07)e ’ (61)

velocity is O(v?) indicating a smooth motion. To this order, recovering the above result (54) to lowest ordes.in

s1<min(ty,t2)
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3. Third moment vertex receives exactly two derivatives. This means that we
can rewrite (63) as

We are now ready to compute the third cumulant. Here and
below we label external times by and internal times by; L2950, iy, 1, = 6uA(0) Sym/ / \>/
(black dots). To lowest order in the disorder, one finds from
Eq. (49): (66)
where the points are intermediate times, and the arrows stan
! 2 f‘ dard response functions. We now have to compute this new
diagram, with the huge simplification that vertices are hmw
””””” 2 (62) cal in time and which apart from the vertices contains only
response functions.

We also note that the singlefactor comes from the lower
vertex: This can be interpreted as the point in space and time

L2 T, iy, = Oy, 04,0y, [6 Sym
1

whereSym denotes symmetrization w.r.t. the external times
t;. Hence one has

1 2 3 where an avalanche is triggered with rate
L%y g, g, = 6 Symdy, 0y, 01, T 777777777 L , - Let us now complete the integration over internal times. To
le——- 2 this aim, let us fix the smallest internal timg, and integrate
(63)  overs,:

The first thing one could do is to perform the, derivative,

using partial integrations 1 2 3
/ 2 = Rtl—sl/ Rt2_32Rt3—52R52—51
S2 1 §2

OraRpo— s, N (53 — s
,/34 t3dlt3—s4 ( 3 4) _ Rt1751 |:e_[max(t27t3)_sl] _e—(t2—81)—(t3—81):|

= —/ Osy Riy—s, AN (53 — 54) xO(s1 < min(ta,t3)) . (67)
54

Integrating once more gives

/ Rt3_54aS4AI(83 — 84)

54
2m1n(t1 ta, t'g) t1— max(tz t'g)
_ _2A’(O+)/ Ri,—s,0(83 — 84) . (64) /S1 . \>/
54

L 3min 1,t2,t3)—ti—ta—t3
Note that we have safely replaced(v(s; — s4)) by A’(s3 — - geg N (5)

s4) since we anticipate that to lowest order we will need only
Al(u) = A'(0F)sgn(u) + O(u). Note that there is no bound- Finally, after symmetrization it simplifies into
ary term if time integrals are performed frooo, o] and

the theta function is included iR. By this procedure, the 68ym/
termA(ss — s4) will have exactly two derivatives. However, s1,82
to be able to proceed further, it is better to considgp:, _ min(t ta.ts)—max(tr t,t3)

simultaneously, while symmetrizing at the same time legdin (69)

disorder vertex-end): 2 < t; we obtain our final result for the third velocity cumu-
1 , F , . lant as
56152 atS % 777777777 C e %3 LQdutlatzutsc = 2UAI(O+)2€t1_t3 (70)

_ 2UA/(O+)2€—(\t1—t2\+|t1 —ts|+[ta—t3])/2

—A/(0+)/ [atzR(tQ — s3)R(t3 — 54)6(s3 — 54) _ o . .
s4 Note that the final expression is simple, while the starting o

was quite non-trivial.
to — ta — — . -
Rtz = 54)91 R{ts — 53)3(s3 54)} We can now check that the sum rule (25) is satisfied. Indeed

= —A(0%) (Bhs + i) [Rlt2 — 59) R(ts — 53)] (5% .
L A LQd/ / Tuy, Uy, g,
= A'(07)ds, [R(t2 — s3)R(ts — 53)} . (65) ‘
_ , _ = 12uA’(0+)2/ eltts

Integration by part w.r.tss is then possible, and together 0=ty <to<ts
with takingd,, on the left branch and using time translational = 120A/(07)2 (71)
invariance ofR,,_s, and R,, _,, respectively leads to two
derivatives on the lower verteX(s; — s2). recovering the result of [73], and which can be obtained by

In summary, we find that the surplus external derivativesexpanding (43) for the third moment of the avalanche-sige di
can always be passed down in the tree, so that at the end eaitibution.
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4. Fourth moment The sum rule gives

The higher moments can be computed using the same )
implifyi i S —
method, as the same simplifying features can be generalized v< ) L3d/ T i, = 1200|A/(01)
ta,l3,ta

The result for the fourth cumulant is, supposing the times ar (S)
ordered as; < to < t3 < ty4: (74)
4y which coincides with the result for the fourth moment of
L%y g g (72)  Eq. (43).
= —240A’(07)? Sym
5. Fifth moment
= v|A/(0T)P[de’r 4 4 2l Ht2—tata] (73) Finally, we give the fifth moment
|
LA gy gy g, 0

=vA'(07)*5!Sym |8

— UA/(0+)4[8et1*t4 + fetrtta—ts—1s + Relitta—ta—ts + 4et1+t3*t4*t5] (75)
[

We check that the source. In this article we focus on the small driving-
. velocity limit. In view of the results of the previous sect®)
S . . . . . .
v< ) _ L4d/ g Ty T Ty g, = 5! x 1dv A (07)4 it will be sufficient to compute the generating function,
<S> ta,t3,ta,l5
(76) ZIN == L™ "9,G[\] ; (78)
coincides with the result for the fifth moment of (43). v=0+
The above results suggest that there is an underlying simyhich contains the leadin@(v) dependence of all moments
plification at the level of tree diagrams of the original field in the limit of small velocityy = 0.
theory, which is non-local in time, into a field theory whichi |t turns out that, within the tree level theory, it is poseilb
local in time. We now show how the latter arises. compute these generating functions and obtain all cunsilant
at once, as well as the velocity distribution. We now show
how this simplification occurs.
B. Generating function and instanton equation: Simplified We start not from the equation of motion (1), but from its
(tree) field theory time derivative in the comoving frarhe
2 2\ P2
Since here we want to study the temporal and spatial statis-19t = Vo +m ) iar = O F (vt + tigy, @) + for —m7v . (79)
tics of the instantaneous velocity field, we define the fol-g,, completeness we wrote it for arbitrary driving, —

lowing generating functional of a (possibly space- and time (m? — V2 )w,,, however we will mostly specialize to uniform

dependent) source field, driving, i.e.w.; = v, f.r = m?v, in which case the last term
——— is zero. We denote indifferently time derivativestyr 0, u,
G[A] 1= ee Aee(vtitar) (77)  and for now we use the original (microscopic) units. Again,

We remind that we are working in the comoving frame, i.e.

v+ 14, IS the velocity of the manifold in the laboratory frame.

The functional[\] encodes all possible qurmatlo_n._ln par- s gelow, when indicated, we will alternatively use this edprin the labo-
ticular, all moments can be recovered by differentiationtw. ratory frame, which amounts to setting= 0 in Eq. (79).
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one has to sej — 19, A — A, for a derivation starting from We can now study algebraically the tree approximation
the bare model, or the renormalized parameters if one deals

with the improved action. Ztree[\] = L=99,G¢[)] (88)

We now average over disorder (and initial conditions) using N v=0"+
the MSR dynamical actior$ associated to the equation of Giree )] = D[u]D[a]e—SRmC (89)
motion (79): o

S = Sy + Sais (80) Stree = gtree _ / Aot (U + Tgt) (90)

t
So = / Tt (000 — V2 + m® )iy (81) _ _ |
wt Note that the highly non-linear action (81) (82) has been re-

o1 U o _ duced to a much simpler cubic theory. Cubic theories among
Sdis = /m, ot 00 A(0(t—t) + e s ). (82) others describe branching processes, such as the Regdeon fie

. , ) . theory [95] for directed percolation. The present theoryrho
Note that this is the dynamical action associated to thecvelo e is simpler, and can be reduced to a non-linear equation a

ity theory, i.e. in terms ofi,,; andu., to be distinguished from we now explain.

Fhe one usually considered, a_lssociated to the positiomytheo Remarkably, considering (88), one notices thatappears
in terms ofi,; andu,;, to be discussed below. in St only linearly, i.e. in the form[ , . Ouel@, A It
The generating function (77) can then be written as . T . xt o T

9 9 (77) can thus be integrated out, leading té-unction constrairft

- 1Sy [L.; 0(Ox[w, A]). Hence in the tree-level theory the field,
GIA = /D[U]D[u]e (83)  isnot fluctuating, but given by the non-linear equation
S=8- /m t Aot (U + gt (84) (00 + V% —m*)igy — A0 a2, + A\pe =0.  (91)

with G[0] = 1 and Z[0] = 0, since the dynamical partition This equation is the saddle-point gq_uation wir.of S§e¢ in
function is normalized to unity. We can rewrite for the time- presence of a source, and is satisfied exactly. We also call

derivatives appearing in Eq. (82) it the instanton equationWe denotei?), the solution of this
, equation for a given source fiell,; with 2*=% = 0. After
00y A(v(t — 1) + Uat — Ugt) integration oveli,, we thus obtain from Egs. (87) to (90):
== (1} + ’l:LIt)at/A/(U(t - tl) + Uy — uzt’) .,
= (v + t140) A" (07)Dpsgn(t — ') + ... (85) G[N] = evL 2N (92)
Here we have used thatn(v(t — t/) + ugt — ugy) = Z[\ = L_d/ At — A(0F)(22,)?]
sgu(t—t'), i.e. the motion fow > 0 is monotonously forward, t
as gue}ranteed by the I_\/Ilddleton th(_eorem [68]. The neglected — _Lfd/ (0 + V2 — m?)a,
terms in Eq. (85) are higher derivatives&fu)|,—o+. As we wt
discuss below at length, they contribute onlyQ¢e = 4 — d) 2 [ g 93
to Z[)\], hence they can be neglected at tree level. This is -m et (93)

consistent with our findings in the previous section thayonl
A'(07) appears at tree level. Hence we can rewrite the disHere we have used the saddle-point equation (91) and, in the
order partSg;s of the dynamical action, which is a priori non-  |ast equality, assumed that, (resp.V,4*) vanishes at large

local in time, asSq;s = S§is® + ..., where t (resp.z). This is insured if the source vanishes at infinity
which we assume in the following. Note that sing¢\| is
Stree = A'((ﬁ)/ Tt ligt (U + TUat) (86) independentofthe velocity, Eq. (92) gives the full deperude
ot atfinitev, a fact which is exploited and studied in detail in Ref.
is an actionlocal in time Furthermore we recognize the cu- [84].

bic vertex which generates the simple graphs obtained in the In summary we find that the calculation &fA], i.e. of all

previous sections by a systematic perturbation expangiom. Ccumulants of the velocity field, is equivalent to solving the
action non-linear equation (91). The solutiar}, can be constructed

perturbatively in an expansion in powers of the souyge To
Stree .= Sy + Siree (87)  lowest order

is the so-called tree-level, or mean-field, action. Note iha 5 5
we use the improved action, it then includes the loop correc- Uaryr = / . Aot Ratare + O(X7)
tions ton andA, and yields the correct result fdr= d,,. = 4, “

making the dependence in explicit asn — 7, andA —

A,,, see the discussion below and in Ref. [73]. Note that due

to the STS symmetry mentioned abon€, the elastic coeffi- s Equivalently one can viewi,; as a response field associated to the equa-
cient in front ofV2u,:, andv are not corrected. tion O¢[ii, \] = 0.

(94)
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whereR,: .+ is the usual bare response function (45). Inte- 1. 1-time center-of-mass velocity distribution
grating Eq. (99) or (94), one finds

The center-of-mass velocity distribution is obtained by

Z(\) = L—d/ Aot + O(N?) (95)  choosing a uniform\,; = A;. The 1-time probability is ob-
ot ’ tained from the inverse Laplace transformAf\), choosing
o )\t = /\6(t),
which is consistent withi,, = 0 (v is uncorrected). Pursuing
to O(\?) and higher orders, one recovers the velocity cumu- Z()\) = L—daveLdA(vm)|v:0+ . (98)

lants obtained in the previous sections, and in additioaiabt

their full spatial dependence. Instead of working perturbaperes, = 4,_, and the tilde orZ (\) reminds us that we use

tively, we obtain and analyze in the next subsection the{joi dimensionless units. The saddle-point equation (91) adanit

probability distributions of the velocity at one (and seler  spatially uniform solutiorii,, = ,, thus we need to solve

times, focusing on the simplest observable, the centenads

velocity . (0 — V)itg + a2 = —\o(t) . (99)
Let us note that the simplified (tree) theory defined above

does not contaimll tree graphs. There are other tree graphsThe boundary condition i§; — 0 at¢t = +o0, leading to

involving A”(0) and higher derivatives, as e.g. the following

configurations of orden?, . A _
= i /\)6%9( t). (100)
1 2 1 2 1 2
}\ ,,,,,,,, f + % 777777777 % + J*. ,,,,,,,, A . (96) This gives the generating function
While they are similar to those in Eq. (58), different classe Z(\) = /tﬁt =—In(1-4). (101)

trees appear starting at the fourth moment, as e.g.
We now want to infer from this the 1-time velocity distribori
1 2 3 4 in an avalanche. Before doing so, let us restore dimensithn-f
T T (97) units. We assume thatin the limit= 0" there are times when
the velocity is exactly zero, i.e+u = 0 (since we use the co-
moving frame) and times (when an avalanche is proceeding)

when the velocity is non-zero. This picture is confirmed by

These diagrams are characterized by the fact that they hayggyits below. Hence the 1-time velocity probability (at say
two (or more) roots (lowest vertices), and are of ord&ior time¢ = 0) must take the form

higher). The full tree theory is studied in section V and can b

reduced to two non-linear saddle-point equations. However P(0) = (1 — pa)d(v + @) + paP (1) . (102)

since these additional tree graphs lead to contributiorishwh

are of higher order in, to study a single avalanche in the Herep, is the probability that = 0 belongs to an avalanche,

smallw limit, they are not needed. andP(x) is the conditional probability of velocity, given that
Finally, it is important to stress that the above simplified¢ = 0 belongs to an avalanche. Bothand P are normalized

tree theory corresponds to the problem of an elastic mahifolto unity. One notes the two (always) exact relati¢ing> = 0

in a random-force landscape made out of uncorrelated Browandp, (v + ) = v. Itis easy to see that

nian motions, for which it is exact for monotonous driving.

This is the BFM, discussed in Section 11 G. Pa = pov(T) . (103)

The mean duration of an avalanché&i$ = NLQ >; 7 where
N, is the total number of avalanches andhe duration of the

C. Joint probability distributions for the center-of-mass i-th avalanch® Now from Eq. (102) one has

velocity

TNTdl N d .

To analyze the results, it is convenient to use dimensisnles A =1 -l—pa/du’P(u) (eL Aot 1) . (104)
equations, hence replaciag— x/m, andt — 7,,t. In mean
field 7., = n/m2, A = M /S, Giat — gt/ (m2Spm), and
v — v, wherev,, = S,,m?/7,,, L — L/m. We start
by using these units and, whenever indicated, switch back tG This gives the universal regime far > vo. For velocities smaller than
dimension-full units in discussing the final results. Wepals _the cutoffvg one expects a dependence on the details of the dynamics.
keep the factor of.? in the beginning, but later on we find it 8 Note that we are implicitly working to lowest orderin at smallv. Hence

convenient to subbress it. That amounts to a further chahae o the fact thap, increases linearly witly, while (7) remains constant, does
pp : g not conflict with the requirement that, < 1, since we study here the

. SERE —d e
units asv — vy, With o, = (mL)~“v, whenever indicated regime of smalp,,. At largerv, avalanches will merge, and formula (103)
below. ceases to be valid.



Taking a derivative w.r.tv, one obtains to leading order in
v=0"

Z0) = — T Z(m™ %, \)
= L~ po(7) / da P (1) (eL”’M - 1) . (105)
The identity
Z(A\) = —In(1 - )\) = /OOO %eﬁ (e™—1)  (106)

allows to perform the inverse Laplace transf8iwhEq. (101).
We thus obtain, in the slow-driving limit, the distributiarf
the instantaneous velocity of the center of massufors @
(wherevg is a small-velocity cutoff) as

Wp(vi) ;o p(x) = ie—x _
(mL) =%, =

P(a) = (107)

We have definedd,, = LS, [ Tm.
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FIG. 2: Solutiona, of the instanton equation (99) as a functiort of
for a source\(t) = A\id(t — t1) + A20(t — t2), with ¢, = 0, and
to = —1 < t1. The functionut has the following properties: (i) It
has the formi(t) = —— on any interval where the sourcét)
vanishes. (ii) It is zero for fot > t1 by causality. (i) It jumps by,
(here—0.5) att = t; and by\s (here—0.155) att = t¢».

This agrees with the above exact relation which becomes

po(T){w)p = 1in the limit of v = 0*. One notes that the
distribution of small velocities diverges with a non-intale
1/u weight. SinceP(u) should be normalized to unity, the
ensuing logarithmic divergence requires a small-velowitly
off vg. This leads to the additional relation

po()om ~ In (m) | (108)
Vo

Hence we already anticipate that the average avalanche dura 2

tion will exhibit a logarithmic dependence on the smallisca

cutoff, as confirmed below. Let us note that the rescaled-func
tion p(x) is not a bona-fide probability, rather it is normal-

ized such that/ dxxp(x) = 1. Finally let us comment on
the typical scale of the center-of-mass velocity,. Since
a = L~ fz 1., We find that the scaling variabbe enter-

interface. For small enoughthey occur at far away locations
(distancess>> 1/m) and are statistically independent. In that
case the center-of-mass velocity distribution can be caetpu
from convolutions of the distribution (107). It tends to auSa
sian distribution for largd. and fixedv. The present results
thus describes mesoscopic fluctuations.

Exact result for the-time generating function

We now obtain the generating function for thgime dis-
tribution of the center-of-mass velocity,

Zy(M, o dg ol STy

Ai (vtine ) . (111)

v=0"F

JAp) =L~

ing p(x) is the ratio of the instantaneous increase in the total

area swept by the interfacg, ., divided by its typical value
S /7m (Nence it does not contain the factoriof ).

Let us indicate here for completeness the 1-time instantp+1 = —00 < fp < -+~

ton solution in dimension-full units, as well as the genegt
function:

~ 1 ~dlimless
= o admesst i NS /Tim) (109)
G(\) = evm?L [atin _ v LY Z(0Sm /™) (110)

We recall that (107), and all formulae concerning the center _

of-mass velocity distribution, assume that the drivingpeély
v is small enough at fixed so that only asingle avalanche
occursp, < 1; hencev scales as- L~¢. If L goes to infin-

ity first, at fixed smallv, multiple avalanches occur along the

91n practice one performs the Laplace inversion 5f(>\) which yields
wP (%), thus has no singularity @t = 0.

by solving Eq. (99) in presence of the source =
27 1 Aj0(t — t;j). In this subsection we order the times as
< t1, although in the following
subsections we WI|| choose the opposite order.

The solution reads

e

O(tj4+1 <t<t)ut

112
= (1- ut T (112)
with tp41 = —0c0 < tp < --- < tl,ﬁf = \j + 4+ and
ii,+ = 0. Integration of (112) leads 4, == Z,(M, .. Ap)
W|th
p
= — Zln(l - Zj+17j’L~l,t‘—) . (113)
=1 ’
We used the definition
Zi,j§ = Zij = 1-— e_‘ti_tjl s (114)



hence in this section;; = 1 —e’*~% with i > j. To generate
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3. 2-time probability

Z, one can construct a recursion relation for the argument of

the logarithm. From the above, one finds

I = AjIL; + ByIT; (115)
o
Aj =2 o inAin (116)
Zj+1,j
By =1- 2321 (117)
Zj+1,j
with Il =1 andHl =1— 291\, SO that
Z,=—In HP|ZP+1,,-—>1 ; (118)
heret,;, is set to—oo. This leads to
— 111(1 — A — Ao+ /\1/\2221) (119)

23:—111(1—)\1—/\2—)\3

+ Z )\i)\jzij — )\1/\2/\3232221) (120)

>3

By inspection of the higher-order results, we arrive at tile f
lowing conjecture for, < ... <t;
p

—ln<1—;/\i
SN YR | (=

q=21<141 <i2<...<ig<p j=1

(121)

Z] ZZQ’LlZZ'ng Ziqiq71

Note that this expression corrects a misprint in an earker v
sion of the result, Eq. (17) in [82]. This can also be written
as

1

bS]

Zy=—m(1- (-1 Voer(N M)

?’"M

=~ 1 tr(N 1+ M)71)) (122)
]\/fij = /\jzl] (2 > j) (123)
Nij = X; . (124)

The functionsfp possess an interesting factorization property
which we demonstrate on the simplest exanile Suppose

A
that we choose\, = — T TE Ty then one
finds thatu; = 0 in the intervalt; < t < ¢5. This leads to

_ut; —

Z3(A1, A2, A3) =Z(X3)Z(A1,A2) ,

X2 = — TomyeE TR
(125)
which we have checked explicitly. It implies that the observ
ablee?2%=TM% for this particular relation betweex, and
A1 is strictly statistically independent from the velocityeety
time in its past. It would be interesting to investigate Hfiert

the consequences of this property.

Here we consider the joint velocity distributions at two
times, and choosg < 5 (from now one we choose the nota-
tions of times in the more natural order< ¢;,1). We expect
that in the limitv — 07 the 2-time probability takes the form
(with a1 := 1iy,):

P(ﬂl, UQ) = (1 —q1 —Qq2 — Q12)5(’U + U1)5(U + UQ)
+QQ5(’U + ﬂl)PQ(ﬂz) + q127)(1l1, ’[LQ)
+q10(v + U2)P1 (1) - (126)
The four terms, in the order of their appearance, are plotted
Fig. 3. The expressiof2 = v¢}, is the probability that both
t; andt, belong to an avalanche (case (iii) of Fig. 3). In the
small- limit we are studying here, it must then be the same
avalanche, and;> must be proportional ta. The quantity
P (11, 72) is the normalized velocity distribution, conditioned
to that event.q; = vq] (resp. g2 = vgj) are the probabili-
ties thatt; (resp.t2) belongs to an avalanche but rtet(resp.
t1), andP; (1) (resp.P2(u1)) the distribution conditioned to
that event, (cases (ii) and (iv) of Fig. 3). The first term ie th
decomposition (126) ensures that the probability is cdlyrec
normalized.

Integrating overisy, one recovers the single-time distribution;
hence comparing with Eq. (102) we have

(127)
(128)

Pa=q1+q12 =q2+ Q12 ,
PaP (1) = ¢iP1(t1) + qr2 /dﬂﬂ)(ﬂlﬂh) ;

and similarly foru;. Hence,q; = ¢o. From the definition
(111) of Z5 = Z5(\1, A2) and Eqg. (126) we now have

= Jper(vFan)+ro(vtin) 1

v=0"

=q /dulpl(al)(e)\lal —1)
+qg/dﬂ27)2(’d2)(€>\2ﬂ2 — 1)
+q32/dﬂldﬂQ'P('[Lhﬂ2)(6A1111+A2112 _ 1) . (129)

We remind that here and below (until stated otherwise) we
'have suppressed all factors bf. The latter are restored be-
low, when going to the result in dimension-full urifts Note
that the symmetry o¥>(\1, \2) in its arguments further im-
plies thatP; (i) = P2(4) and thatP (4, u2) is also a sym-
metric function of its arguments. Hence there is no way to tel
the arrow of time from the velocity distributioaf the center

of mass at the mean-field lev@&elow we will however show
that an asymmetry in time arises for finite Fourier modes, or

10 Units of the center-of-mass velocity are thgp, which does contain the
factor L—¢, see the remark at the beginning of section Ill C.
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t B t t ot t t
V) (i) (iii) (iv)

FIG. 3: The four cases in Eq. (126): both times outside théaache (i), onlyt. inside the avalanche (ii), both times inside the avalanhe (i
only 1 inside the avalanche (iv).

local velocities, already at the mean-field level. As a censeunits)
guence, it will also arise for the center of mass at one-loop
order [83], i.e. ford < dyc. Oy (e (vtin) — 1)(era(vtiz) — 1)
Taking now one derivative w.r.t\; of (129), one obtains ~ - ~
from the formula (119) fo#Z, via Laplace inversion the com- = Z2(A1, de) = Z1(M) = Z1(X2)
bination _ (1 — A =+ Z)\1/\2>
(I =X1)(1 = No)

— /dulduzp(ul,m)(eml —1)(e*™ — 1)  (136)

v=0"

01 [q1P1(01)8(t2) + q1oP (1, U2)]
=LT, ', 0r Z2(M1, A2)

Si—>Uj

X 1+ 892 o which is indeed satisfied by the function (132).
= LT, S, Thed-function piece in (131) allows to obtaif P2 (u2) in
! +S(11++ > + 1Sz (130) (in dimensionfull units) as
— LT}, e (130)

¢ Pi(in) = %pi<?—l> A Lee, (137)
We denote: := z;5 = 1 — e~ I2=t1|, We now use the general Ym \Um X

result Normalization leads tg; = (v/0,) In(20,,/v0), in agree-
ment with the results (135), (103), (108) and the sum rule
(127). Note that (137) can be obtained directly from Laplace
inversion (in dimensionless units) fmy,— o 8AIZQ =
z/(1—z\p) since that limit selectd thed(7,) piece in (130);
With d = —i1 /2, a = (1 — 2)/22,b = 1/, andI; the  €quivalently, the first terms in (129) are

Besself function. This yields the smooth part, in dimension-

LT, e?t5t = edo(u) + \/Ell (2v/au)ed="  (131)
u

less units, ag}, P (1, i2) = p(t, iz) With ¢ /duml (i)(eM® —1) = —In(1 — 2A;) . (138)
Loy i 1 —2 1 (2 /i V1—=z Finally (128) follows from the trivial identityZ>(A\1,0) =
pa(tn, o) =€~ = PR 1 Uru2 : Zi(\).
(132)
In dimensionfull units
4. Avalanche duration
A 1 Uy U
/ —
Q1P (i, d2) = FERE <a’ a) ’ (133) The distribution of avalanche durations can be obtained by
Y] — e—lta—tal/Tm (134) several methods. Let us recall that avalanche durations are

SinceP (14, u2) is normalized to unity, integrating Eq. (133)
over both variables, one obtains the probability that bgth

11 Recall that the Laplace transforfi(\) = LTy, _a—sf(@) :=
and¢, belong to an avalanche, [ die i f(i) satisfies: ()f(X) = 1 for f(i) = 6(a), (i) F(A) —
F(0) = —In(1 — X) for f(a) = &= and (iii) f(\) = 2L for
, v . o [EERY)
Q12 = V1 = =— In(1/z) . (135) f(w) = a®e~%, o > —1. Second, the behavior df(«) at« near zero

m is related to the behavior at — —oo of f(): if the limit of A — —oo

. L _in f(\) exists, and is non-vanishing, it picks out the texmd(). The
For consistency we can check that the combination which in- term f(0+) is extracted, in the same limit, from the term1/(—)) in a

volves onlyg;,P (41, u2) leads to a relation (in dimensionless  large-\ expansion.
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well-defined as time intervals where the velocity is styictl inserting Eq. (145) (second line) arfh from Eq. (119), in
positive. Consider then the probability that there exists a agreement with Eq. (135) in dimensionless units.

avalanche starting ift1, ¢; + dt1] and ending irite, to + dts]. Another way to obtain the duration is as follows: We note
On the one hand, this is equal to that when the avalanche starts and ends, the velocity most va
ish. Hence the duration distribution can be recovered from

P(ty,t2)dty dts P(0F,0T) which should be proportional to the probability

139 that an avalanche starts atand ends at,. We can indeed
» (139) check on our result (132), (133) that

t1 4+t
= vaPduration(T =1y — tl)d7d< ! 5 2

. S 2
wherePyuration (7) is the probability distribution of avalanche dsP(0F,0%) = p(jzm Pauration(t =t2 —t1);  (147)
durations. On the other hand it also equals U,

hence this is true, up to a normalization. We note that this
—dt; dt 140 . e i
14820, 0,012 (140) term can also be obtained as the coefficient 4f; \2) in an
where ¢, computed above is the probability that and ¢ expansion o, at large (negative),.
belong to the same avalanche. From Egs. (135) and (114) we To study the temporal avalanche statistics, it turns oueto b

obtain the distribution of durations as more efficient to use two properties simultaneouslyzii}=
(1-2) 0 outside the ayalanche_z, an event Whgse p_robability can be
Pduration(T) = s (141) selected by taking the limik; — —oo; (i) taking a0y, on
< the generating function multiplies hy;,, hence is non-zero
where we recalt = z,; = 1—e— =%l andin dimensionfull  Only if ¢; belongs to the avalanche. Using these properties
units we will now show how to generate thetimes distribution
of velocities inside an avalanche conditioned to start ardl e
Paation(7) = 1 e~/ at some given times. In particular, we recover the duration
duration PoUm T2, (1 — e=7/Tm)2 distribution, from the normalization, and we compute shape
1 1 (142) functions, which are of high interest in view of experiments

PoUm Ty, 4sinh?(52-)

5. 1-time velocity distribution at fixed duration and mean

This probability distribution has a power-law divergenoe f avalanche-shape

small durations < 7,,,

1 (143) We start with the information contained in the joiitime

distribution, which can be obtained froffy in (119). Choos-
ing againt; < ty < ts, and generalizing the form (126), we
gkpect that the joint distribution contains a piece

Pduration(T) = W )

i.e. there are many short avalanches. We assume a micr
scopic cutoff timery. The mean duration exhibits a diver-

gence, ie. ’l}q13’2'P1372(’d2)5(Q1)5(@3) , (148)
1 Tin wherevq; ; , is the probability that, andt; do not belong to
(r) ~ Polm In ) (144)  an avalanche while, does, andP; 3 »(12) is the velocity dis-

_ _ tribution conditioned to this event. From the above remarks
as a function ofr,. However, higher moments are well- to obtain this piece we need to inverse-Laplace transform
defined (i.e. independent of short scales). The expression

(144) is in good agreement with our previous result (108) if lim 0y, Z3 = b (149)
one assumels( =) ~ In( 7). A1, A3 =00 b— Ao
There are several other ways to obtain the duration po o 1 n 1 (150)
distribution.  First one notes that performing the limit Z21232  R21 232
_limAﬁ,?o 0, constrains the qvalz_;mche to endatand SiM- Hence we find in dimensionless units
ilarly —limy, .o 0y, constrains it to start a. Hence, in 1
dimensionless units one recovers q'13727313,2(u2) = a_e—bﬂz . (151)
~ 2
AI_AEIE,OO —00,01,Z2 = Puration(tz — t1) - (145)  |ntegration overis, in presence of a small-velocity cutaf,
. _ - leads to
It also yields another method to obtajh, from (140), writing ,
Q132 = —Inbvg . (152)
t] o0
¢y = / dsy / ds2 Pauration(s2 — 51) Taking two time derivatives we recover the duration distib
—0 to tion
= i [Z/\,)\,t—t A } Oy, b0y, b
>\17)\2HE>1*OO 2( LAz 2) 2( b2 OO) _atlatgqllgg = - b b2 & = Pduration(T =t3 — tl) )

—In(2), (146) (153)
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dimensionless units) gives

1
4sinh?((B5t)
= P(U2|13)Pduration(tl - t3) )

where P(u2|13) is given in Eq. (155), andPiyration IN
Eq. (142).

LT_A HuZ2\13()\2) x P(i]13)

6. 2-time velocity distribution at fixed duration and fludioas of
the shape of an avalanche: The “second shape”

FIG. 4: “Pulse-shape™ The normalized velocity at tirhén an

avalanche of duratiofl’ for T < 7., (lower curve) toT >> 7, We now derive the 2-time velocity distribution at fixed

(upper curve). avalanche duration. For that we consider the term
5(@1)6(’1'1,4)(]14,23'P14723(QQ,1'1,3) in the joint 4-time distribu-
tion (witht; < to < t3 < t4) which can be obtained from

using thatd;, 9;,b = 0. We also find the distribution of the 7, e recall that

velocity att, conditioneds.t. the avalanche starts iat and

=0, 01,414 25P 12, T
ends ats, Pty 113]14) = t1 0%y [q14,23 1?,23(U2 Us)] (158)
/ . —01,014414,23
Plin[13) = — 04, 015[q13,P13,2(112)]
2  Piuration(T = t3 — t1) is the 2-time velocity distribution at fixed avalanche dura-
0, 8, [ P U tion 7 = t4 — t;. We expect, and will check below, that

— b _t?’a[qlg’Q ,13’2( 2)] ) (154)  —01,01,¢1403 = Pauration (T = t4 — t1), i.e. comparing with
t10t3413 2 (153), the number of intermediate points does not matter.

This leads to The simplest quantity to obtain is the 2-time shape function
' Indeed multiplying (158) byiot3 and integrating, one finds

. 72 —bis _
P(u2]13) = ugbe . (155) (i) 14 = — 0 O, [imx, g —— 00 OngOrg Za|rp=0,A5=0]
From this one obtains the shape function P(r=ts—t) (159)
2 Itis easy to calculate from (121)
<1.1,2>13 = /dUQUQP(U2|13) = E N |
lim 8)\ 8)\_ Z4 _ .
4smh( )smh( (1~ L) At A —oo H T HIA=0A3=0
= U (156) 291743
smh( T ) = — (232241 — 231242)
211
i : . 121 1201
for a fixed avalanche duration = t; — 1, denotingt = B 451ﬂh (5(t2 — t1)) sinh?® (5 (ts — t3)) (160)
to — t1. We have restored all units in the last line. This form a sinhQ(%(m — tl)) '

interpolates from a parabola for smalk 7,,, to a flat shape

for the longest avalanches (see Fig. 4). The result holds fofaking two derivatives in (159) one finds a complicated ex-

an interface at or above its upper critical dimension, whichpression forus13)14 Which however simplifies greatly if one

previously was used [38] on the basis of the ABBM model. forms the cumulant combination and uses the above result for
An alternative approach is to obtain(0*,u2,0") from  the shape. Then both results can be summarized, introducing

Z5(M\1, A2, A3). As discussed above, one needs to extract théhe function(t) := 4sinh(¢/2), as (in dimensionless units):

coefficient of 1/(A\;\3) in the large);, A3 expansion ofZs. h(ts — to)h(ts — t1)
4 — L2 2— U

Hence we first need to calculate (li2)14 = , (161)
h(ty — tl)
2 2 .. .. . .
Zgllg()\g) = lim Az d lim s dZ3()\1,)\2, A3) (thaia)1y = (dztiz)1a = (2)14(lig)1a
Az ——00 d)\g A1 ——00 dA _ _ 2
_ 1/ h(ts tg)h(tg t1) 162
_ M(emtan (e —1)—z)—2m +1 -3 h(ts — 1) (162)
(231 - )\2221232) 2
2 Hence théfluctuation of the shapkas a simple expression,
_ 1 b (157) and it would be nice to measure it in experiments. We call
2sinh (B52) b — X this the“second shape’since it gives more information about

the avalanche statistics than the usual shape, the avefage o
b is defined in Eq. (150). The inverse Laplace transform (inthe velocity. Thesecond shaptells about the variability, i.e.
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fluctuations of the avalanche shape. Epr= t3 one recov- c

ers the relatiorfu?)® = % (u)? between second cumulant and 0.5
mean of the single time velocity distribution (155). Notatth

the second cumulant always starts quadratically in time neap.4f

the edges. Itis quite remarkable that the dimensionle&s rat :

. 2 0.3

(u.(tz) >214 _3 (163) :

((t2))is 2

is independentf ¢, t,, t4. This is an important signature of

the mean-field theory which should be studied in experiment% 1?

On figure 5, we have plotted T

0.2]

 (a()a(—t)° !
C(t,T):= ) (=) oty (164) 0.1 0.2 0.3 0.4 05T

It measures the correlations between the left and rightggart G- 5: The velocity correlation/(t, T') of Eq. (164) forT" = 1.

the avalanche.
One can go further and obtain the full 2-time distribution.

. . . . This leads to the final expression
For this one notes that the functh@4,237314,23 is obtained P

(in dimensionless units) by Laplace inversion as-(2, 3) @14 93P14,23 (112, 113) (171)
14,930203P14,23 (U2, U3) _ . 1t I Vufu?;
_ . ~ 2 sinh( 2t )\/ 1'1,21'143 smh(g)
= LTsil—mli ( 3 )\hm a)\2 8A3 Z4) 12 B . 2] 1 .
pATTee A Xe_(lfeh*'z+et3*'271)u2_<178*2*t3+e'4*t371)u3 .
-t 201243(231242 — 232241)
© T [ + sges12a3 + S2201 (242 + S3232243)]2 The 2-time.velocity dis_tribution at fixed avalanche duratio
(165) 7 = ta —t1isthen obtained as
, o
We have used the result (121). The normalization is obtained  p(q,, ,|14) = — 00 01 [014,05P1a,23 (U2, Gs)] (172)
by integratind® the abovef,” ds [, ds3 leading to —014914,23
vV Za9Z This leads to the result
Q14,23 = V1403 = T In % - (166)
e A P (i, 13|14) (173)
This is the probability that there is an avalanche startirié Vit Vit
interval [t1, t2] and ending in the intervals, ¢4]. Indeed one = Dsinh(BE) 1<Sinh(t32t2))

can check for consistency that integrating the duratiotridis )
bution (142) we obtain " sinh® (451
4 sinh? (L5t ;t2 ) sinhQ(—t?’gt"L )

to ta
v 242731
/ ’
’Upo/ dt / dthuration(t_t ) = —In——. (167) 7( 1 + 1 )7127( 1 + 1 )113
t ts Um 241232 xe 1—ef1—t2 " ct3—t2 1—et2—t3 " eta—t3 .

Laplace inversion of (165) w.rs; yields an expression equal One can check its normalization using the useful formula
to minus the derivative-0, of (131), with other values for
a

a= 1.1,20/7 b, d= —ij,Qd/. Flnally we find /OO dz /OO dy\/@ll (20/\/@)67b176y _ (b 2)2 ,
0 0 C— Q

. [ a —\ 't —bi . L
%4,237314.,23(“2, u3) = i I (2 a’um) e~ dia—bis while derivatives w.r.tb andc¢ allow to recover shape cumu-
2U3

(168) lants such as (162). For instance one finds the third cumulant

with of the shape as
PO R 160)  (iB0s)° = {iis) — (i3)(is) — 2 i) + 202} )
221232 232743 1h(ty —t1)3 5
- = M T V(s — ¢ 174
o P81 . Z32741 _ . 21 4 3 h(ts — ) (ta —t2)h(tz — ta) (174)
221239243 4 sinh”(=2522)

This procedure can be pursued to obtain higitéme distri-

butions at fixed avalanche duration. We will stop here, and

just point out that one can check explicitly that (121) $stss

12 There seems to be a non-commutation of limits, hence we nea#i¢ first lim 9,0 Z —0 (175)
the largeA limit. At As—00 A2UN 44 = Uy
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consistent with the fact that there is only a single avalanchFor instance, let us apply Eq. (178) to calculate the ceutfter-

to this order, since a non-zero value would require thand  mass velocityi; = 4, attimet;, choosing\,; = Ad(t —t1),

t4 are in two separate avalanches, since the lkgit> —oo given that there was an infinitesimal uniform kiéky,;, =

selectsis = 0. dwd(t — to) at some time, < ¢;, on top of thev = 07
stationary state. The instanton solution is unifarfp, = u)
and precisely encodes that information

D. Interpretation of the instanton solution: response to a mall —_— p \
step in the force el — 1 = m?L%wu;, + O(dw?) . (179)

. . ) . Note that Eq. (179) can be generalized to any sowf(ee,
_ Herewe examine the quf’ftf)on ofwhatis the physical mearnyence the instanton solutiar}, gives the first order iuw of
ing of the instanton solution;,? We show that it encodes the , | generating function of velocities at any later timeg;

(linear) response to a small (infinitesimal) step in the gl does not depend on the sources at times smallerthan

f:)rc?hat; o by equleallentIyt a srpall kjgk.mtrt]he dr:wtn% ;/e![(r)]c- Performing the inverse Laplace transform of the instanton
ity. The inverse Laplace transformaf, is thenrelated tothe ¢\ vionwrts — — L4 gives

change in the probability distribution afdue to this kick.
First note that the action in presence of the sourceoted 1 sd.2-x_ 0 .
Stree in (90), is such thati,; does not fluctuate. This means LTS, Lom g, = %P(ul) : (180)

t_hat all cu_mulants ok and mv_olvmg at least 2 response This is the linear change of the velocity distribution ateitn
fields vanish. In other words, in any expectation value the

S . as response to an infinitesimal kick at time< ¢;. Using the
field a.. can be replaced by;,. Hence from Eq. (89) explicit form for the instanton solution (100) and perfongi

its Laplace inversion we find from (179) (restoring all ujiits

e Piy) = §(in) (1 - 1 )

Vpp Ty €t1=t0) /T — ]

~ ~ 1 ~ VUt
Ui\/t/ = <um/t/>5;rcc = m <um/t/efwt )\“( e )>

1 5€JH Aat (V+zt)

Uy

- G[)\] (wa/t/ 5w e_Tm 178(t0*1t1)/7'm

v -
1 Sedur Mot (i) 176) Tt Asinh’(5222)

+O(5w?), (181)

= G[)\] gm/m// (Su'}m,,t,

which is interpreted as follows: Far= 07, at a given time
By definition of the response field, sinag,, couples to o alr_nost sgrely the particle has zero veI0<_:ity_. The infinite_zs
forr = [ g;inwwtu see Egs. (12) and (79), it is the re- imal kick at t|met0_produces an avglanchg (it gives a velocity
sponse to a change in the driving fram, = vt — vt + 6wy, atJ = dw/7,,) which most of the times dies out well before
and more precisely to an infinitesimal kiék,; = dw d(x —  timet; (in atime~ 7y, the microscopic cutoff time). Excep-
2') 6(t—t') in the velocity at position’ and timet’. Note that  tionally rarely, however, and with probability(dw), this kick
(176) is independent af, a fact which comes from the form produces a larger avalanche, i.e. lasting a time of orger
(92) and is a peculiarity of the tree theory (at fixgdndo). Hence the result that the response function is unchanged by
Taking a derivative w.r.tA at A = 0, and comparing with ~ disorder is not trivial at all: For most realizationg 1, /dw
(94) yields the property that for the tree theory the exact reis very small; however for some realizatiofg;, = O(1)
sponse functiofR .+ ..+ (in the velocity theory) is uncorrected hencediy, /dw ~ 1/6w. After averaging over disorder these

by disorder, rare events lead to the bare response function, whi€k1s.
Let us now comment on stationary versus non-stationary
Rtz = (UgrirUgt) stree = Rt prpr := (Ugrpr Ugt) Sy 5 avalanches. In previous sections, and most of the paper, we

(177)  study avalanches in the steady state, obtained by time+wumif
as clearly the cubic vertex (86) cannot lead to correctidns odriving w,; = vt (with smallv). These can thus be called
the response. This is in agreement with the fact that the efstationary avalanches. Adding a kick at timgdeads to non-
fective actionl' = S for this theory as discussed in detail in stationary driving. Indeed the avalanche generated byitte k
[84]. Note that Eq. (177) is a non-trivial property for= 0%,  appears non-stationary, i.€(«1) in (181) is quite different
since then, in most realizations of the disorder, the partic ~ from the 1-time distribution found in Eqs (102), (107). Itis
not moving and under a kick it will experience only a small time (i.e.t;) dependent, and for instance the average veloc-

avalanche (of the order of the cutoff). ity decays exponentiallyy, = 22¢~ (=), One can ask
Let us now use Eq. (176) in the limit of — 07, i.e. order ~ whether such non-stationary avalanches are qualitatdiély
0 in v, but to lowest order in the perturbatién, ferent from the stationary ones.

For an infinitesimal kick, this is not the case. Indeed, if one
considers as in Section 111 C to lowest orderdrthe steady
state, i.e. the distribution of probability af = «(¢1), condi-
tionedto an avalanche having started@tone obtains exactly
We used thati[\] = 1 for v = 0T. The instanton solution P(u,), as givenin Eq. (181): As usual, this conditional proba-
thus gives the statistics of the motion induced by the kickbility is obtained as-d;, ¢} P1 (1) using formula (137)¢, t-

oo Attt _ ] — 8 furvtiy +O((6/)?) . (178)

x't!
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there are, t1 here, respectively). This, in fact, is more gen- This can be used to study non-stationary avalanches oltaine
erally true: Namelyan infinitesimal uniform kick at timé, from the Middleton state at = t;, generated by applying
produces the same velocity statistics fas ¢, as condition-  a finite kick 6f = m?2w at timet,. Interestingly, these
ing an avalanche in the steady state to start at tigndt can  avalanches can also be shown, within mean field, to be equiv-

be shown at the mean-field level from the identity alent to those of the steady state, under conditioning of the
oo velocity att, to be equal tou;,+ = dw as will be dis-
lim (-9, )/ dt i = M (182) cussed in [83]. Note however that these formulae do not say
A——o00 ) ! ty anything about non-monotonous driving as in the hysteresis
A(t) = AS(t —to) + p(t) . (183)  loop, which remains to be investigated. They only pertain to
avalanches in the Middleton state.
Herep(t) = 0 for ¢ < ¢y, butu(t) is arbitrary fort > t,. The Consider now an application to a spatially non-uniform

r.h.s of (182) is related (via Laplace inversion) to the @ffe kick at timet,, of arbitrary finite strengthfi,; = 6 f,6(t — to).

of the infinitesimal kick at time, on the joint distribution of It is interesting to note that any observable involving tea<
the velocities at all later times, while the L.h.s. is rethte the  tor of mass at later times depends only fri f,, since the
velocity distribution conditioned to the avalanche staytatt, associated source,; = ), is spatially uniform; hence the
(the conditioning results from the operatienimy_, —~ Oy, instanton solution is also spatially uniforr), = ;. One

as we learned in Section 11l C). The proof of this result, vihic consequence is that the probability that the avalanchehwhic
is easy to obtain from the instanton equation, and moreldetaistarted at, has terminated before,

on these properties will be given in [83].

r o~ = — ’g: Sfa
P(T <t)= lim el Sfatig T RS
A——o0
E. Finite step in the force and arbitrary monotonous driving f Sf
=1-—2" _ 1L 0%
eti—to — 1 v

For completeness, let us discuss the case of a finite kick,

studied in [84]. First one notes that one can generalizgin dimensionless units) also depends only[o f,. This is

our method to arbitrary monotonous driving. Starting frompecause, although an avalanche has ended if and only if all

Eq. (79) in the laboratory frame (i.e. setting= 0), but with 4, — 0, thanks to Middleton’s theorem this is equivalent to

arbitrary drivingf,: > 0, we follow the same steps as in Sec- the center-of-mass velocity being zero. Hence we can use the

tion 111 B to obtain for the generating function of velociie uniform source\; = \J(¢ — t1), leading to the above explicit
expression, which we use below.

efut Arttiat — /D[u]p[a]efm Attt — it (10r =V g +m® )ikt As a last application, to be discussed again below, consider
_ _ an arbitrary drivingf,; > 0 for ¢t > ¢y with the initial con-
x elor Betfrrtoiidar (184) dition (187). Let us define a kick of finite duration— ¢, as
a driving such thatf,; > 0forty < t < trandf,: = 0
Hereo = —A’(0"). The Middleton theorem allows to re- for + > t,. Consider a sourca,; = S \o(t — t;) with

strict the path integral to positive velocitiés; > 0. Again, ¢, < ¢; < ... < t,. The solution of the instanton equation
integrating oveti,, enforces the instanton equation to be sat-yjth such a source was studied in Section IFC One can
isfied. Inserting its solution thus eliminates all termsgme  check that in the limit of all\; — —oco the instanton solution

tional to, such that we are left with [84] takes a very simple form (in dimensionless units), namely
Lot dattioe — oS, @0 fut (185) n
eJat e . ~ Ot <t<ty
iy = Z %@—tj) _ (188)

As written, on an unbounded time domain, this formula holds
if and only if all trajectories are forward for all times. It
can thus be applied for = 0" and an infinitesimal kick Hence we obtain the joint probability
fzt = 0fze > 0, recovering (178) and (179) by expanding

to lowest order iny f (and to order 0 irv). It also holds for Prob(us, = 0,1, =0,...,%, =0) (189)

any finite kick, and allows to study arbitrary non-statignar gt [ Fot teodt [ fot

monotonous driving as done in detail in [84]. For instance, = exp ( —/ ﬁ - .. —/ ﬁ)
- t7171 " -

one can prepare the systemtat= ¢, in the quasi-static
Middleton stateu,(w): In the distant past one first drives
monotonously Withfmt > 0 to erase the memory of the initial
condition, then stops driving. The above formula implies

We can learn a lot from this formula: First, far = 1, we
see thati;, can vanish (strictly) only either when the driving
has stopped strictly beforg, e.g. f,: = 0 forall ty < ¢ty <

oJatmig Matiiat _ o Joisg @, far (186) t < tq, orif it stops atty, €.9. fzr ~ (t —t1)* witha > 0
with initial condition

Ugty =0 ) Ugpy = Ug(wy,) - (187)  13The time ordering there was opposite.
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such that the integral remains finite. Hence a kick of finiteThe one of interest is

duration produces only a single avalanche which lasts longe m2 — i — o
thant; — ¢y, more precisely, taking a derivative w.I, = a(\) = 5 . (193)
g
bt [ fa g S The other root is not continuously relatedite= 0 at A = 0,
P(T=t)= / m e 071 (190)  and for this reason we reject it. The solution (193) has to be
to T2

injected into Eq. (93). Due to the time integral in the latter
this leads to an infinité/(\). Hence to recover the avalanche-

Then, forn_ - 1,fformu|a| E(l_8k9) aIfI(f)_vv_? todana}[I_yze tge case Othize distribution from the dynamics in the setting of a canst
a succession of several KICKs of Tinite duration. because 8r|ving,w(t) = vt, one must be more careful and consider

J[?mtt pr?bﬁtgmvczﬁztﬂ}grfc;rrg.\?ef; pr&(jeug/ggt;?(:h) lgirva large, but not infinite. For instance, we may consider a sguar

iy bi4-1 xt

statistically independent. source
To conclude, let us note that the formula (185) being more At = M(ta — £)0(t — t1) (194)

general, it also allows to study the properties of statipnar _ . o _ .

avalanches in the steady state with constant drivipg= v WétlztiténTs exT/e %:taegdtf)Qlo?)kjl}{(Z. If Tis large enough, the

(see e.g. [84]). However formulae such as (189) and (190? P

do not readily apply (they would lead to divergent integrals =0 , t>t (195)

This is because one must perform the limit of infinite Laplace = a(N) o<t <t (196)

parameters\; after integration over time, the physics of the :—0 ’ 197

single avalanche being restored for= 0" as explained in =0, t<t. (197)

details in Section 11l C. One then finds, expanding (92) in smajl

T/2 }
eLdk f,T/Q(’U-ﬁ-’U«) — 1= ’ULd [TmQQ()\) 4 O(TO)} + O(’UQ) )
F. Recovering the quasi-static avalanche-size distributin (198)
We work here in the limifl" > 7,,,, but ppvT" < 1. On the
Here we show how to recover the quasi-static avalanché other hand, we know that quasi-static avalanches obey [73]

size distribution, first within the stationary state at a stant T e — A8 5
small driving velocityv, by measuring for a finite time, and e ulw)—uO] — 1 = /dSP(S)(e —Dw + O(w”)
second in a non-stationary setting, by driving the systear ov 4 9

a finite distance. The results for the avalanche-size distri = L°Zs(Nw + O(w?) . (199)
tion in a finite time window are new and of experimental in- Here we denoted (instead &f(\) as in Ref. [73])

terest. Some results at the end about a finite driving are also

1
new. Zs(\) = L™ (M — 1), = 5] ( (e*) — 1) (200)
the generating function for quasi-static avalanche sizes.
1. Steady state: Limit of infinite time window (... >p denotes the un-normalized aver&yw.r.t. p and we

have used (19) to transform it into a normalized average
over P(S). ldentifyingw = vT and the total displacement

Consider the center of mass, i.e. the total siz®f an .
u(w) —u(0) = up/y — u_7/2, We obtain

avalanche. In the Iimit of smalt, in the comoving frame,

the latter isS = T/i dt(v + ), whereT is a time Zs(\) = m*a(N) . (201)
much larger than the typical single-avalanche duration, bu

Hence we recover the tree result for the size distributi 7
much shorter than the waiting time between two consecutive @ [

avalanches. We want to compute 7)) = 1 —V1—4A\S5y, (202)
B 25, '
T/2 (vt R . . .
PR s (191) Itleads, upon inverse Laplace transformationPtc) given

by Egs. (32) and (33). Note that the same procedure can be
One would like to také” — oo, and consider a static source performed to recover thecal avalanche-size distribution, by
A+ := A. The instanton equation then admits static solutions, considering a time independent but space dependent solutio
of the instanton equation. One then recovers, for instehee,
=14 , —-miu+ou®=-\. (192)  results obtained in section IX of [73].

14 There is no contradiction with the fact that for a single kick = 0 15 Note however that the expression withalso holds for a continuum
impliesut,>¢, = 0: Indeed, the probability of the second event is one if ~ avalanche process with no cutoff. From (19) it is normalizedhe vol-
the driving vanishes on the interval, to. ume(S)p = L4, see[73].
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2. Steady state: Distribution of avalanche sizes during iéefin In the last line we have indicated the behaviour at srifall
time window The series expansion ik, which gives the moments, is also
instructive,

To be complete, we now show that the solution of the in- - 5 _q
stanton equation indeed has the form (195) at léfge.e. Z(A) = AT+ X(T + eT -1 s .
that the static fixed point is attractive. This also provides +2[T—2+e T2+ T)|N +0(\"). (207)
novel physical observable for measurements restrictedito a _
nite time window. The effect of finitepacenindows has been It shows that/ = vT" exactly, as expected, and that at laige
studied before in the avalanche context in [80], while a genall moments grow linearly as
eral study of windows in scale invariant Gaussian signats ca — o T
be found in [96]. UP =v [T +dyp +O(T%e™ )] (208)

We solve the instanton equation in dimensionless units foy o up to exponentially decaying terms, and with possible
a square sourck, := M\(ta — t)0(t — t1), power-law prefactors.

As in the preceding section, in the smallimit the proba-

(0 = V)ity + 1 = =M0(ta — )0t — 1) . (203) " piiity distribution of U is expected to take the form
Its solution is PU) = (1 — povT)§(U) + povTP(U) . (209)
Uy =0 , t>t (204)  Here ppvT is the probability that an avalanche has started
Uy = % {1 + V1 —4X ¢ (t _2t2 VI—4X - CA)] ' !]vsall?aen(t:uee t(lzrgr? rﬁcg Z\gr.teg c;r?y:ir;ﬁ; Iggrilrfgntcr)\g-?ii’rlgvf/?r?dow
t <t <ty and may, or may not, have finished during that tirhethus

1 contains information about the signal measured in a time win
¢xr(z) = tanh(z), C\= arctanh(7> , A<O0 dow without the necessity to determine when the avalanche
1—4A starts or ends.

- - 1 SinceU = povT(U) = vT from the above, (where and
Oa(z) = coth(z),  Ch = arCOth<\/1 - 4)\> , A>0 below(...) denotes moments w.r.t. the distributi®l)), us-
R 1 ing Eq. (19) we obtain the remarkable property that the first
=TT (= —1)etr—t t<ty. moment of the distributio (U),
ut]+
(U) =(S) = lim (U) (210)

The two branches depending on the sign)\oére actually Toee

identical (by analytic continuation) sin¢enh(z + i7/2) = is independent of’. The distribution”(U) can then be ob-
coth z. We see on these solutions that the above fixed-pointained via Laplace inversion,
form (195) indeed holds at large.

We now study the probability distribution dfie total dis- LUP(U) — LT} BAZ()\)‘
placement during a time-window siZg i.e. of the observable  (S) s=U A=—s
1
T/2 = LT;l -
U= / dt(v + i) - (205) “UT(2s+1)
-T/2 " [ 4s(sT —1)
/ 1

This quantity is clearly of experimental interest. (For glic- ds +1 ((25 + 1) tanh (5\/45 + 1T) + Vs +1)
ity we have suppressed all factorsiof, which can be restored 4s(T+1)+T 211
at the end). It should interpolate between the distributibn (4s +1) (211)

the instantaneous velocity at short times, and the distabu
of sizes of quasi-static avalanches at large times. To chedkor s = 0, this yields Eq. (210). The Laplace inversion is
this, we computeZ()\) = |, @ using Eq. (204), which leads Pperformed in Appendix A. Here we give some general fea-
to tures and limiting behaviors. First note that for any firilte
the apparent singularity at= —1/4 is fictitious, since the LT
200 = T+In(1—-4)) is analytic there. The closest singularity issat7) < —1/4,
2 and the leading exponential decay at latgés proportional
T to e*1(MY wheres, (T') = —1/T at smallT, ands; = —1/4
—1In <(1 — 2)) sinh <— 1- 4)\> at largeT'.
Examining Eq. (211) at large > max(1,1/7?) shows
that the smalE/ behaviour at fixedl" is independent of",

T
+ /1 — 4\ cosh (5\/1 — 4/\)> and given fol/' < min(1,7?) by

272 ] (S)
= AT+ 50—+ 6)\2(2)\ —DT?+0(T") . (206) P(U) ~ SRV (212)
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The persistence of this strong divergence at siiallvhich ~ Note that at this stage we considerahitrary driving w, > 0
requires a short-scale cutdffy ~ Sy, is consistent with the for ¢ > ¢, i.e. we only assume thatv < oco. We have not
property (210), since demanding normalization to unity ofassumed it to be slow or small. To fix ideas, two extreme
P(U) leads to(U) ~ /Uy, i.e.(U) ~ /UySy, in dimen-  examples are:

sionfull units. o
At large T one can set theanh in Eq. (211) to unity and o AKick g = dwd(t —to)
obtain e A constant driving during a finite windowj); = v for
e—U/4 to <t < t; andw;, = 0 fort¢ > t1, such thatw =
P(U) =(S5) SNIEE] (213) v(ty —to).
1 Niii o—U/4 Now we know, from Middleton’s theorem, that
+—|1l—erf{ — | - }
TU 2 2 Utoo 1= tlim up = u(wp + dw) . (217)
—00

The neglected terms. give the subdominant exponentially
decaying part in Eq. (208), while the linear and constartspar
(i.e.cp a_ndd,,) are _reproduced by this formula. It thus gives_ AL a(wo W) —a(wn)] — em2Lia(N)du
the leading correction to a measurement of the avalanaee-si 1T
distributionif the time window is not large enougRestoring = T e
units we find that these corrections are decaying quite glowl
asO(7,,/T). They do exhibit a divergence 1/(2TU) at  with S,, = o/m?*, for arbitrarysw. In the limit of smalldw,
small U, but which is too weak to correct the tdil—™ with ~ from the definition (199) o, (\) we recover agaitr,(\) =
7 = 3/2 which agrees with the distribution (32), (33). m?2a(\). But we find more. By Laplace inversion one obtains

We note that the above formulae (in Laplace) are reministhe distribution ofS,
cent, but different, from the ones leading to the joint dst J ) .
tion of avalanche durations and sizes given in [84]. Pyu(S) = L 15“’ e T tEE-USES L (219)

2 /75 253/

Hence we have found that

; (218)

3. Avalanches size distribution in non-stationary driving This is Eq. (33) of Ref. [84] where it was obtained for the kick
and for a particled = 0), but as we see here, it isdepen-

In the first part of this section, we have considered whadent of the precise form of the drivindepending only odw.
happens when measuring the avalanche-size distributibein What is remarkable is that the probability (219) is two thsing
steady state obtained by constant driving= vt, duringa fi-  in one:
nite time On the other hand, one may also consider what (i) It is the distribution of sizeS = ftzo dtu, of the
happens when the systemdsven only over a finite distance avalanche, produced by an arbitrary driving resulting iotalt
dw, i.e. in a non-stationary setting. For this we recall the dis shift of the quadratic well ofw = Lzo wy. Since the driving
cussion of arbitrary monotonous driving in Section 11l E and velocity can be arbitrarily large this is a priori a non-taikdy-
use formula (186). We work in the laboratory frame and focugiamical observable. Note that for the kick one is guaranteed
on the case where the system is prepared at rest in the Midhat there is a single avalanche, butiif has a more compli-
dleton state, as described there and in Ref. [84]yie= wy, cated form thers' may encompass several avalanches, sepa-
fort; < t < tg andt; — —oo. The driving is turned back on rated by time regions where = 0, e.g. for a succession of
atty. Hence at = t, one hasu,;, = u.(wy,), zero velocity — several finite duration kicks, as discussed in Section III E.

iz, = 0, and formula (186) holds far > ¢,. Since the par- (ii) It is also the distribution of
ticle has been at rest for a while fok ¢, we define the total 4
avalanche size as S = L [u(wo + dw) — u(wo)]
S=1L1 / " atii, = L (uyos —uty) . (214) = / Uz (wo + dw) = ug (wo) , (220)
to ®

To compute its distribution we can choose a sourge= \ a quasi-static observable, which for finfte may also encom-
) N 1 . . . _ d

for t > to, independent of space and time. The advantag@assseveral quasi-static avalanchesince e.g(S) = L%jw.

of this setting is that the instanton solution is then sintply N the limit of small L%6w < S,, one recovers the form (32)

constant solution,; = @(\) for t > to, given by Eq. (193). off(S)Qfor aa single avalanchéor 5 > Ss,, whereSs,, =
Hence one has, denoting, = w;, : (L%0w)*/S,, acts as a small-scale cutoff. The trigngle-

avalanchdimit however is reached onty whenSs,, ~ Sj.
erNS — €m2 zt>tq

lar _ emzLda(A) Jisig @
_ emzLdﬁ(/\)éw (215)

o0
ow := At = Weo — Wy (216) 16 |n the limit where the microscopic cutaffy — 0 there are infinitely many
small avalanches.

to



24

The fact that (i) and (ii) are the same is a simple, but remarkHence we first discuss these parameters and their univgrsali
able, consequence of Middleton’s theorem. The fact that thén a second stage, the tree theory is identified with the BFM

form for P(.S) is given by (219), and the property (218), are
a consequence of the simplified tree thééryAs discussed
below, its use is justified fad > d,., and a priori only in the
limit of slow driving w < v,,. The property (218) is consis-

and the ABBM model is recovered.

We recall that the upper critical dimensiondig. = 2~ for
an arbitrary elastic kernel behavingds) ~ ¢”, i.e.d,. = 4
for usual SR elasticity( = 2) andd,. = 2 for the most

tent withu(w) being a Levy process, i.e. a jump process made,ommon LR elasticity{ = 1).

of statistically independent avalanches, each distributi¢h
the single avalanche distributidn(S) from (32). The prop-
erty recovered here is also present in the statics, i.ehfor t
procesa:S't (w), in mean field, in the BFM and in the Burg-
ers equation. It has the sarf¢.S), as is discussed in detail in
[74].

Finally, a similar analysis can be performed for the proba-

bility distribution of the local observable

1. Improved tree theory and the parameters of the model

We have shown above that to lowest order in perturbation
theory in the bare disorder, all generating functions ofuae
locity, to first order inv, are given by the sum of tree graphs.

5= / b [tz (wo + dw) — uz(wo)] - (221)  Equivalently, they can be computed from the simplified tree
r actionStree defined in Eq. (87). At the bare level, this action
One must then solve the space-dependent instanton equati@Rly contains three parameteyg, m ando, = —A5(07).

with a source),; = ¢(z), which is a hard problem. In
the cases(z) = §(z1), i.e. a hyperplane in d-dimensional
space, the time-independent instanton solution is knoem, s
section IX of [73]:

d_1
el mm

m

AL u(wo+5w) —u(wo)] Z(SmA)dw

NZ) =~

72
The Laplace inversion is involved, but a simple generalizat

of Eqg. (220) in [73]. The same trick yields the (normalized)
probability distribution ofS? = S,

, (222)
(223)

Z(Z —6)(Z —12) .

1 5
P}, (8) = 5 Prisw (5) (224)
2x31/3 o ([3]'3
Pw(s) = —as ¢ w Al <[E} [s+2w] | . (225)

Here (S?) = wL? and for L%w < S,,, i.e.w < 1, one
recoversp,,(s) ~ wp(s) with p(s) = QK%(%)/(wsL the
(rescaled) single-avalanche size distribution obtaingd@3].
These results are exact for the BFM (discussed below), an a|
plication being a single-site avalanche for a stridg=1).

~
~

G. Mean-field theory for avalanches: The Brownian-force
model and its ABMM limit

These bare parameters are corrected by disorder, and ecquir
a dependence an, as we now discuss.

Let us now use well-established results from the FRG ap-
proach to the statics and dynamics of elastic interfacest,Fi
m IS uncorrected to any order in perturbation theory thanks
to the STS symmetry, hence we can use everywhere the bare
massm. Second, perturbation theory convergesdas d,.
(in a sense recalled in Appendix B). Third,&at= d,. there
are only two operators which become marginally relevant.
The first one is the local part of the renormalized disorder,
A(u), which actually is a function ofi; so in principle there
is an infinity of marginally relevant directions. Howeves far
as single avalanches are concerned, we only n€éat): It
is shown in Section 1V that the higher derivatives lead tgloo
corrections, i.e. are important only fdr< d,.. The second
parameter is the renormalized friction Both parameters,
A’(0") andn, receive logarithmically divergent corrections
in d = d,. from 1-loop diagrams. These are cut off by the
massn and can be resummed using the FRG flow equation to
1-loop order.

Let us now determine the renormalized parameters at the
upper critical dimensionl = d,.. Definel := In(A/m),

r3\7hereA is a small-scale UV cutoff; af = d,., for SR elas-

ticity, set

A(u) = 872 Au) = 872 A(ul= )~ 1+26 (226)

We are now ready to discuss the correct mean-field theory N€n the FRG flow equation fak(u) is (B.14) in [73]. As

for the avalanche motion of elastic interfaces in the limit
0T, and to identify its universal properties in the limit of dna
m

m — 0, the rescaled correlator tends to a fixed pdit;) —
A*(u), which is the same one obtained to first order in-a
expansion i.eA*(u) = lim._,o A*(u)/e. Similarly, see e.g.

In a nutshell, the mean-field theory is the tree theory, with[48], one obtains

however a renormalization of two parameters of the model.

17 The full tree theory with an arbitran (u) doesnotsatisfy property (218).

O lnn=—A"(0%)=—-A"(0") . (227)

Hence, the two parameters of the model acquitmizersal
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dependencenm, in the limit of m — 0 18; done is to replace the original equation of motion (79) in a
- o et ita disorder described by the gaussian force correlaigu) by
0 = o = =A% (07) = 87%|AY(0F)|[In(A/m)] a disorder described by a (renormalized) correldtén) =
1= N = 10 [ In(A/m)] ™ (228)  A(0) + A’(0")]ul, since we have neglected all higher-order
_ ~ derivativesA (™) (0F); the latter become important only upon
Bothz; and(; are defined by the 1-loop result for the dynamic considering loop corrections to the velocity distributoihis
and roughness exponents, means that this (simplified) tree theory describes exautly
2= 2 A"(0F) =2 + 216 + O(c?) (229) elast|c.man|fold in a Brownian force landscap&z, u) with
) Gaussian correlations,
¢ =Ce+O(e) (230)

with ¢, = 1/3andz; = (¢; —1)/3 = —2/9 for non-periodic ~ F (¢, u)F(z',u') = §%(x — ') [A(O) —olu—[], (231)
SR disorder.

The above formulae extend to LR elasticity by changingwherec = —A’(0%). Such a landscape is constructed in a
everywhere above: — u, defined below in (442), and the spatially discretized version, by considering that forteac
factor 872 — Cy—a,. (see its definition and detailed dis- F(z,u) performs a Brownian motion (BM) as a function of
cussion in section X of [73]) witl’; ; = 2, the fixed point  u, and that these BMs are mutually independent for different
A*(u) being unchanged. x. Furthermore, they are stationary Brownian motions, hence

We can now make a precise statement, based on the effethiey are constructed by considering e.g. a much larger peri-
tive actionT" of the theory. For its definition see [97], and odic system in thex direction. An elastic manifold of internal
in the context of FRG e.g. [73, 74, 98] (statics) and [94, 99]dimensiond in such a landscape is called the Brownian force
(dynamics), summarized in [81], Appendix A. It is a gen- model (BFM) [74]. Thestaticsof this model was studied in
eral property of” that all connected correlations of the theory [74]. As we discuss below, a non-stationary BM version can
(here of the velocity field) areeediagrams ifi: The vertices ~ also be considered.

of the trees are vertices not of the original acti®nbut ver- Hence, from the previous paragraph we conclude that the
tices ofI, i.e. renormalized vertices, which contain all loop full statistics of the velocity field in an avalanche for atein
diagrams. face atd > d, identifies in the smalln, smallw limit with

Whend — dy. and in the limit ofm — 0, the effective ac-  that of the BFM, with parametets — o, 7 — 7. This
tion I' becomes simpler and its limit is the so-called improvedBFM can also be described as a set of ABBM models for each

action. This is discussed in Appendix B, where we show how.: With an elastic coupling,, between them.

the irrelevant operators become negligibledot d,,., when A crucial property of the BFM is thahe dynamics of the

properly scaled. For instance, the higher time derivatives center of mass of the elastic manifold is described by the

the equation of motion, or higher disorder cumulants, becomABBM mode[2, 3], i.e. by equations (5) and (6). Intuitively

negligible, and one can focus grandA(u) only. it is easy to understand why: To compute center-of-mass ob-
If in addition one considers positive driving onl,, > 0, ~ Servablesin perturbation theory we need to consider aifgga

then ford = d,,. the effective action of the velocity theory is With external momenta set to zeip~ 0. However, since we

' = Sureely.ar(0t), i-€. the tree action with the renormalized have summed only tree graphs, it implies that all propagator

parameters — o, andn — 7,,. It sums tree graphs except are evaluated af = 0. Hence, apart from the (non-trivial)

for the renormalization of and, which contain loop cor- renormalization of the parameters of the model, in effer, t

rections. This remains true for > d,, wheres andn flow  avalanche dynamics of the center of magsor v = 0% is

to non-universal limits as» — 0, as discussed in Appendix described by the ABBM model, i.e. single pointdriven in

B. Note that the statement we make here is onlyfef 0+: @ long-range correlated random-force landscap), with

Since we have not analyzed the FRG flow at non-zenve Brownianstatistics. It amounts to suppressing the space de-

focus on the limit of small driving. This also means a smallPendence in Eq. (79), hence corresponds in our general model

step in the force, i.e. a small kick, in the non-stationatgisg O the special casé= 0 andAq(0) — Ag(u) = oful.

discussed in Section Il E. Let us now connect our previous results, obtained directly
Ford < d,. the behavior is universal but different from for the center of mass of the interface, to the standard analy
mean-field, and is analyzed in Section IV. sis of the ABBM model. Then we will revisit the BFM, and

finally calculate observables beyond the center of mass, re-
quiring the full power of the BFM.
2. Brownian force model (BFM) or elastically coupled ABBM
models and universality
3. Center-of-mass observables and ABBM model

The mean-field tree-level theory has a very simple inter-
pretation. It is clear from Section |11 B that what has been Let us recall the original solution [2, 3] of the ABBM
model, based on a Fokker-Planck approach (see more details
in [81]). The equation of motion (79) for the instantaneoes v
locity in the laboratory frame = 4, of a particle in a Brown-
18 SinceSy, = oy /m#, this corrects a misprint in Eq. (108) of [73]. ian landscape (suppressing internal degrees of freegaan



be written as a stochastic equation

ndv =m?*(v — v)dt +dF, (232)
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tree level, as will be discussed in the following sections. A
ready its consequences for the ABBM model itself are quite
interesting: By allowing to compute directly Laplace trans
forms through the instanton equation (99), it provides dulse

wheredF2 = 20vdt. The associated Fokker-Planck equa-complementary method to the Fokker-Planck approach. For

tion for the probability distributiorQ = Q(v, t|v1,0) of the
velocity at timet, given velocityyv; at timet = 0 is

n9,Q = 8, %av(vcg) +m2(v—v)Q (233)

It satisfiesQ(va, 07 |v1,0) = d(va — v1). Itis normalized to
unity at all times upon integration over the final velocity
thus it is the propagator of the system. kas 0, it evolves at
large times to the stationary (zero current) distributign: =

1/ v/vm
v\ U,

Herev,, = S;/Tm, Sm = o/m* andr,, = n/m?. Note
that here we study a point particle, hence the velocity Seale

efv/vm

(o)

m

(234)

avalanche observablesi it is quite efficient, as was shownrein t
previous sections and Ref. [84]. For other observablesh(suc

asU = jfé% dt u.), non-locality in time makes it very hard

to obtain the result via the Fokker-Planck method. On the
other hand, one advantage of the Fokker-Planck approach is
that sincev(t) is a Markov process, the-time velocity prob-

ability can be written in a factorized form as

qy 2P, ..., 1)

1 ) n—1

= a—leful H Q(ijt1tj+1]i;t;)

j=1

’ (238)
whereq] ,, is the probability that all. times belong to an
avalanche. Curiously, it is not easy to recover that prgpert
immediately from our general expression fy. In Appendix
E we check it explicitly fom = 3.

v, if we study the center of mass of an interface, it is to be Let us note that since the ABBM model is the zero-

replaced byb,,, as discussed in Section 111 G 1.
One notes that taking — 0™ and forgetting the normal-

dimensional limit of the equation of motion (79) of an inter-
face, the dynamical-action method can be applied. Hence we

ization, Qy converges to the single-time velocity distribution just found that, for the ABBM model at = 0%, the tree
obtained above in Eq. (107) by a completely different methodapproximation is exact In the field theory for the velocity
There, the normalization was fixed from considerations of dt means that the effective actidhequals the bare actiafi,

small-scale cutoff. Similarly, in the limit — 07, one finds
that the propagator takes the form

V—I,O) ,

Um

- 1 v
Q (v, t|v1,0) = vie™ [pQ(vl,vg) + v—e 1—e=t 5(1}2)]

1
(236)
The termps(v1,v2), given by Eq. (132), is indeed a solution
of (233) withQ(va, 0™ |v1,0) = d(va — v1). We note that the

\% t

Q(v,t|v1,0) = ,ULQ (_ —_

)
Um  Tm

(235)

with

piece~ d(v2), which corresponds to avalanches which hav

already terminated at timg is necessary fo€ to conserve
probability, i.e. such thaf,~ dvoQ (v, t|v1,0) = 1 for all ¢.
Since( is a conditional probability,
joint distribution of velocities,

Q(va, t|v1,0)p1(v1) = Q(v2,t|v1,0)%e*”1 . (237)

and there are no loop corrections. Hers&u) = Af(u)
—osgn(u) is an exact FRG fixed point with scaling exponent
¢ = 4 — d, as already noted in the statics in [73]. Crucial for
this remarkable property is that the force landscape is &Bro
nian, and even il = 0, this is not valid for any other, e.g.
shorter-ranged, force landscape. These properties amda di
solution of the ABBM model at any are discussed in [84].

A word of caution should be said about the notion of the
duration of an avalanche. In the present tree-level meéah-fie
theory (and similarly in the ABBM model) avalanche dura-
tions can be defined unambiguously for a continuum version
where the small scale cutoffy, — 0, and accordingly the

gAvalanche density, — oo, as the velocity: exactly vanishes

at some time fon = 0. In that version there is an infi-
nite number of infinitely small avalanches and the quagiesta

we can also consider theProcess is infinitely divisible (a Levy process) as discdszte

the end of Section Il F3. On the other hand, if one studies
the original interface model (1) with smooth and short-khg
disorder, in the limitv = 0 or in the limit of a small step
in the forcedw, an avalanche has, strictly, an infinite dura-
tion (diverging with some power df/v or 1/6w). Indeed the

We find that it reproduces the 2-time probabilities given instarting point is a metastable state (zero force state) avith
Egs. (133) and (137). More details about the ABBM propa-marginally unstable direction and the final state is gemadyic

gator and how it behaves in the— 07 limit can be found in
Appendix D.

a stable zero force state. Near both points the motion is very
slow, so the duration is very large, but the associated atigp|

By using the dynamical field theory of interfaces, we havement is negligible. One must thus focus on the part of the

in this paper obtained a novel, and completelgiependent

avalanche mation such thats vy, or such that the interface

way to solve the ABBM model. Indeed, our method is evenhas significantly moved by more th&h. This part of the mo-
more powerful, since it allows to treat interfaces and spadion is universal and described by the ABBM model. It would
tial degrees of freedom, and it can be extended beyond thige interesting to make this statement mathematically peeci



4. ABBM model: Connection between the instanton equation an

the Fokker-Planck equation

The Fokker Planck equation can be Laplace-transformed in ZOWt) =—In(1 — A+ Xe ) + Zo

A, or equivalently one can write the evolution equation (ia th
laboratory frame) for

GO E) = N — / dveVP(v.t) . (239)
0

Without specifying the initial conditions, the evolutiogue-
tion is
oG  0G

_ _ — 2 —
o T A=) =G (240)

The solution can be found in the form
G(\ ) = "2t (241)

with Z(0,t) = 0 sinceG(\ = 0,t) = 1. ThenZ satisfies the
equation

YA

Sty A=) =X (242)

This equation admits a time-independent solutiéf\) =
Z(\t)

Z(\) = —In(1 = \). (243)
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Eq. (242) is solved for any initial conditioFi(\, ¢ = 0)
Zo(A) as
)

<)\ + (1= N)et
(248)

Note that the argument of, is A(—=t)|x,—xr. Hence from
Eq. (239) we get

A

_ _ —t\—v
G\t =1 —=A+Xe )Gy (7/\+ = ,\)et) (249)
Go(A) = "% | (250)

This gives the decay to the steady state as
a(t) =v(l—e")+e"u(0) (251)
W) =v(1—e )% +2a(0)e (1 —e )

+e 2(0)2° . (252)

It is in agreement with the results of [84] for a quench in the
driving velocity. Note that for any > 0 (249) behaves as
G\ t) ~ A(t) (=AY with A(t) = (1 — e ") 7" Go(—=5),
henceP(u,t) ~ A(t)u*~!/T'(v) and the current at the origin
vanishes.

5. Back to the Brownian force model

Having recalled the properties of the ABBM model, which

Hence we recover the result (101) obtained via the MSR.,ntains the information about the center of mass, we now

dynamical-action method.

reexamine the BFM which contains all spatial information.

The connection to the instanton equation can be made as 1o Langevin equation (232) for the ABBM model can be
follows. The equation (240) can be solved by the method ofq,ritten as

characteristics: Define a functiox(¢) which obeys the fol-
lowing differential equation,

AA(t)

AT () — N2(t) .

(244)

Further defineZ(t) :== Z(\(t),t). Then, using Eq. (242), the
total derivative is

o,

Z(t) _
Cdt

A(t).

Equation (244) is exactly the instanton equation (99), & on
identifiesA(t) = u(t). Fort < 0, it admits the solution

(245)

T o+ (1= Xo)e?

A(t) (246)

with boundary conditions\(—oo) = 0, andA(0) = Xg. In

addition
~ t
Z(t) = /

Hence if we expres€()\o) := Z(t = 0) as a function of
Ao = A(0) we obtain precisely (243).

A(t') dt’. (247)

Oty = /U () +m? (b — i) |
with £(¢)&(t) = 206(t — t') a Gaussian white noise. It de-
scribes the original model (5) onlyif, > 0.

Similarly, the BFM can be defined focusing on the evolu-
tion of the velocity, by the following Langevin equation imet
laboratory frame:

(253)

natuwt =V umtg(xat) + fmt + (vi - m2)umt )

with &(z, t)€(2, ') = 206(t—t")0(z—2") uncorrelated Gaus-
sian white noises, with obvious generalization to an aabjtr
elastic kernep_ . It does describe the motion in a stationary
Brownian random-force landscape if (and only if) driving is
monotonous,; > 0 for all times. However, from the discus-
sion in Section (Il E) and in [84], if one complements it with
an initial condition

(254)

am,t:O =0 ) (255)

it does also describes the motion in the non-stationary Brow
nian random-force landscape

F(z,u)F (2 o) =20min(u, v )6z —2'),  (256)
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for u,u’ > 0 with initial conditionu,:—o = 0. This setting with o = —A’(0%"). Below, we first perform our calculations

has advantages since the landscape is defined by uncadrelatgsing the local elasticity

BMs which all start ag"(0, z) = 0. This avoids the construc-

tion of stationary BMs in a large box, as a limiting process. 9ot = (=V* 4+ m?) o . (260)

The catch is that in position theory it does not satisfy STS; o _

this is seen on observables suchfésls iLy5, Whose averages A_t the end we indicate how the formulae generalize to an ar-

are time dependent. If one adds a large box, then these coRitrary elastic kernel. _ _

verge to the stationary BFM observables. Time-independent, but space-dependent solutions of the in
If one focuses only on velocity observables, and forget_§tanton equation with &function source in space were stud-

about the position theory, the BFM is uniquely defined by'ed in Refs. [73, 78, 86], and allowed to obtain the distribu-

Eq. (254). If one drives for some time, the memory of thetion of local avalanche sizes. Finding solutions which are
initial joint distribution of velocitiesP[{u._o}] is lost. In  POthtime-and space-dependentis notably more diffitatid

must be left for future research. Here we analyze solutions

the case of a steady drivg,; = v, the system evolves to- . ! :
y $or = v y which are “almost” space independent, i.e we choose

wards a time-translationally invariant steady state, ®igthe

1-time distribution, Aot = A 4 11 (261)
xt — /\t xt

Pl{uat}; t] = Psteaay [{ua}] (257) where the spatially dependent part; is small. The solution

of (259) can then be obtained in an expansion in powe(s of

which generalizes (234) and is more complicated to caleulat We write here the two lowest orders:

(it requires solving the instanton equation with a spacedep

dent source). This steady-state measure for the full vigtoci o B B 3

field identifies with the one of the elastic manifold in dimen- "~ :—?0“ N tat 42— o) (262)

siond > d,., and for smallv andm, as discussed in the (0 —m”)iy +o(ay)” = =N (263)

previous sections. (00 + V2 —m? + 2000) 0L, = —plas (264)
In addition, the BFM is an interesting model to study by (nd; + V2 — m? + 20u?)a2, + o(a},)> =0.  (265)

itself. It can be solved in arbitrary space dimensipand for

arbitrary driving, from the general formula: The solutions of Eqg. (263) have been discussed in section
[IIC. Since no general solution for al; exists, let us pro-
ofut Aottiat — ol Garfor (258)  ceed with a solution of Egs. (264) and (265), supposing we
know @Y
which assumes (monotonous) driving from the far past, er for
mula (186) for the initial condition (255). More details dam al, = / Lt Roryr ot (266)
found in [84], including a formula for an arbitrary initiakv PR '
locity distribution. _ _
uit = U/ (u;,t,)2Rm/t/,mt . (267)
x/
H. Spatial fluctuations We have introduced the dressed response keRyel .+,

which will be a fundamental object in the remainder of this

We can now use the full power of the tree theory, i.e.rticle. Itis solution of the equation
the BFM, and calculate space-dependent observables withi
mean-field theory. The space-dependent instanton equatio
allows to go beyond the ABBM model, which describes only
the center of mass, and to compute spatial fluctuations.

In addition, the results below are exact for the BRiVI
any space dimensiod. Most results concern the BFM
in the steady state, i.e. they are time-translational iavar
as discussed in the previous section. Time-dependent no
stationary generalizations are left for the future.

—n0y — Vi +m?— 20&?] Ryrer ot = 5d(x — a6t —t).
(268)

Note that since the instanton equation has the time-demvat
reversed, we have reversed the order of the argumelitssa
that, as defined, it has the usual causal structure of a regpon
function. Thus as noted in Egs. (266) and (267) it “acts from
Hje right”, in contrast to the usual convention.

It is easy to expres® in Fourier space, i.eR,4 4+ =
fk Rk7t/7t€ik(wl_w) with

1 1p2am2(4.— o [t2 340
1. General considerations Rptpp, = —e aF TmIUa—t) 425 [P dsiic gy )y
n

(269)
Let us write for completeness the instanton equation for an
arbitrary elastic kernej,}

=1~ ~2 _ 19 Note the resemblance of the instanton equation with the RBRer equa-
/I, (1010207 = g )lart + Oligy + Aot =0, (259) tion for front propagation.



First, this allows us to obtain the avalanche statisticshin t
small-velocity stationary state, working, as in Sectidh@),

to first order inv. Integrating Eq. (262) over space and time,
we find

Z[Nt + pot] = m“‘L*d/ g = Z2° + 2V + 7% (270)
xt
ZO:7nf/a§ (271)
t
Zl = m2L7d/ Rq:(),t’,t/ M’ t! (272)
t,t x’/
7Z? =mPoL™? / Ry—o,t/.t / (at,)%. (273)
t,t’ z’

To this order inu we thus obtain averages of the velocity field
containing two space-dependent velocities. Indeed, tiodiirs
der inv, in the small-velocity limit, one can writé

oL [dinir — UMH
5#111615#12262

2
= 2um O'/ Rwltl,w’t/ngtQ,m/t’RqZO,t/,t . (274)
x/tt!

Ugyty Uzots

(The factor of 2 comes from the fact that, = O(u?).) This
is easief! expressed in Fourier spa&ée

y g L [dtXsu
Uq,t,U—q,t2€ / o

2
=2vm U/ Rg,t1,0/Rq,t5,6 Rg=0,1 ¢
tt’

51 2

2

=2vm-o

(275)

t

Note that we have introduced a graphical notation that el b
useful later, when calculating loop corrections.

A nice feature is that the source, which couples to the centef

of mass, is still quite general. For = 0, R reduces to the
usual response function and we recover after integratien ov
t andt’/
1
VO —F—F5
q2 + m2

1 1
—e 7

Ui

(m2+4?)|t1—ta| ) (276)

Ug,tyU—gq,ta =

20 Here and below we drop the factoiin the termwv + 4 in the exponential
since it is subdominant at smail

21 Note that the first-order derivative does not yield any neferimation: It
confirmsiiz; ¢, +v =wvfor A = 0.

22 We use, for an arbitrary functiod the short-hand notationgs, ugr,, A =
(2m)45%(q + ¢')ugt; u—qi, A for translationally invariant correla-
tions. Henceig, ¢ tayt, A = [, €172 ug u_g, A and, in-

tegrating overzi,z2, one obtains the center of mass, us, A
L*duqtlu,qtzmq:o, hence recovering Eq. (54). Everywhefg

[

@md
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FIG. 6: Disorer-averaged unfolding of an avalanche foltayé local
step in the force ato = 4 and of duratioril” = 1, according to for-
mula (281). Mean intermediate positionér,t = 0) + fj(umOT

are shown at multiples of 7'/10. The velocityd.: > 0, so the
motion is towards the top of the plot. For the sake of illustrawe
chose a random but fixed initial conditietfz, ¢t = 0).

This is a finite-momentum generalization of Eq. (54); a facto
of 2m? has canceled.

Next, using the results of Section 111D we also obtain in-
formation about avalanches following a simatial step in the
applied force at timey, i.e.5 f.; = 6 f.0(t — to),

~ A
umto

Tl _ 1 — / 5f.+06f%),  (277)

x

whered [, = fz g;j,(iwz/, where we also work foo — 0,
but due to the step the leading result is non-vanishing,ghou
of order zero irv.

2. Dressed response function, and space-dependent shape
following a local force step

Let us now apply our formulae to the case= \d(t — t3),
d pursue in dimensionless units. We recall the instanton
solution

A

S r Ao wer s

Uy —t). (278)

It leads to the dressed response function for a single-fime
function source
t3 o 67(k2+1)(tb7ta)9(tb _ ta)

kytp,ta
" T4+ A=t —1)0(tz — tp)
1+ Aeta—ts —1)0(t3 — t,)

Using Eq. (277) to first order ip, and Eq. (266), we obtain
the (linear) response to a local step of the driving forcena t

tO
/
ZTo

r . (79)

to
L1,

Uyt €My, = (280)

t17$0,t05f950 '
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Taking A\ — —oo we obtain the averadecal avalanche shape ends at'3. As in Section IlIC 6, we determine it ag ,, =
(i.e. the average velocity conditioned s.t. the avalantéss fOOO ds; fOOO dsg limy, oo 3&3/\223“1:7517&:752 =

atty and ends at;) as In(z31/221), and we check thad,, q3 1, = 1/(e"*™" — 1) =
o0 . .
. A7 Piurati can be obtained also from the duration
_ atz llm)\_>_oo fzo Rt;-ltl,motoéfwo j;s—tl T duratlon(T)

(g, ) oo distribution. We can thus tak&, lim,_, ., of Eq. (285) to
Piuration(t2 — to) fm 0 fa obtain the conditional average
('17071'])2
e it § . -1 S VO
= [4_%o feo (1)ge »  (281) (Ugty gty )3 = (8t3qg,12) Ok AEIPOO Ugty U—qr, €3

[Am(ty —t0)]2 [ O fe (#41)

— — 2 3 2t1—(q?+1)ta—4t3

. 4 sinh (%251 sinh(L5te) ~ 2(e? —efs) et
(U1)ge = 2 2 - (282) = 2+l

sinh(f25te)
X{(q2 + 1)€3t3(€t3 _ etz) _|_ (etl _ €t3)2

2

(1), is the center-of-mass shape given in Eq. (156). Thus
the avalanche velocity spreads on average diffusivelydfer

. . . ) 2 ti1+t 2 to+t 2 t1+t 2 2t
dyc) from the seed, i.e. the point where the kick was applied. * [‘1 e 4 qTeTR — (¢7 = 1)en T — (" + 1)e 3}

It looks even simpler in Fourier space
x oF1 (3,2(¢° + 1);2¢% + 3;¢" %) } : (286)
—d - Ryt —to0fr .
L™ (g, ) gy = o202 (i)
02 T R 100 fa=0 02 Itis conditioned, s.t. the avalanche started befpr@nd ended

— o~ (t1—to) fq (i), (283) atts. Forg = 0itreduces tdgy, o, )3 = 2(1 —et2718) (1 —

S fa=0 et1~t), We can obtain the larggasymptotics using the for-
mula
On figure 6 we have drawn ttheean advance of an avalanche
following a local step in the force. 2F1(a,b+x,c+x,2)
—b
—(1—z) (14 “(Cx )Zi -+ 0(a7?)| . (@87)
3. 3-time, 2-space point correlation
This yields
Let us now compute the 3-time correlation, in the steady b o\ P (tr—ta)—tat
state to lowest order im, using the single-time source &t (tigt, U gt)3 ~gsoc (e —e?)e :
and Eq. (279). The-integral in Eq. (275) is easily performed, 2" 1 q? (ets —elr)
assuming thatz > ¢/, x (2ef21ls — el ttz — chitts) (288)

RIS 1+ /\(e*“’*tS‘ —-1) 284 Fixing ¢, andts, the function (286) decays monotonically to
pep A= 1—\ ‘ (284)  Zero fort, — t3. Depending on the value af, it is either
concave (smaly) or convex (largey).

Fort, < te < t3, the second integral oveérleads to

ﬂqtlﬂfqtge)\LdﬁtS (285) 4. 4-time,2-space point velocity correlations and asymymatio

™ — 1) + 1P A 1) + 1)

To compute the average at a givgrconditioned to both a

A=D*(¢*+1) starting timet, and a final time; for the avalanche, we need
Aefr—ts the more general observable, far< t; < to < t3,
X o Fy (3,2 (¢® +1):2¢° + 3; ; 1 )e‘(‘fﬂ)(tz—tl) 9 for<t; <t <ts
erLdao’l.l/qtl’ll_qtze)‘?’LduS . (289)

By analogy with the procedure used in Section Il C 6, page

17, taking now the limit\ — —oo allows to select the contri-  The calculation is more complicated and done in appendix F
butionvg} 150(1i3)P12.3(ti1.4, Ua,4) in the 3-times joint dis- by considering a source = Aod(t —1o) +As3d(t —t3) andits
tribution P (i, 4, 12, 4, 3). The normalizationg ;, should associated dressed response function. The full resul28%)(

be the same as for zero momentygra: 0, since if a piece of IS displayed in Eq. (F8). An interesting observation is ttat
the manifold is moving, the center of mass is also movings Iti ¢ # 0 itis notinvariantunder time reversale. the simultane-

equal to the probability that the avalanche starts befoend ~ OuS changesy — —ts, t1 — —ta, t = —t1, t3 — —to, and
Ao <> Az. This invariance is recovered only @t 0. Hence

at the level of the tree theory there is no way to tell the arrow
of time by watching the center-of-mass velocity, but there i
23 The center-of-mass velocity; and the velocity of the zero mode & 0) an arrow of time for_ modes W_|th non'ze"I_OTh'S can alread}’
1i0; are in our conventions related Vigi; = to;. be seen on the 4-time velocity correlation function obtdine
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A started aty and ended aft;. The times are chosen ordered as
\ 1.15- to < t1 < ta < t3. We compute it both for an avalanche
5 I (i) generated by a uniform small force step at titne ¢, i.e.
AN I §fet = 0f0(t — to) With 6 f = m?dw; (i) for an avalanche in
\\ 110k the stationary state to first orderdn The two protocols give
AN B the same result, as was explained in Section IlI D; it is based
\\ I on the identity (182). We present the calculationidfirf the
‘\ 108l main text; (i) is more involved and is presented in Appendix
.\'\: ....... \\\\s UL F.
N Tl A L . . . .
o Tt N N Let us consider the following velocity average following a
— T T . uniform force step at time,
P R TN L 7.-...\."%--— I _l
-0.4 -0.2 I 0.2 04 T
FIG. 7: Plot of the asymmetry ratid defined in equation (291). The - - Tang, 521110150
different curves are foi> = 0 (solid gray),q®> = 0.2 (dotted red), Uzt Uzots © 5= FTT T
¢®> = 1.703 (dashed blue), ang® = 10 (dot-dahed, green). The zo “Rait O Tats
maximum ofA att; = —7/2 is attained forg> = 1.703 (dashed —95 2 R Rt3 Rts
blue) The plot is forl’ = 1. YT [ gy mrtnet Daate @t =0t to

from the expression (289) by applyidg 2?0y, O, [ xo=rs=0-
The general result (F9) is bulky, so let us display it here forwe have worked to linear order, i.e. up to terms or order
t1 = ta: O(8f?,v). In Fourier space, and dimensionless units, the lat-

2(2¢% + 3)e~T ter reads
(1+¢*)(1+2¢?)
2q2672(q2+1)t17(q2+2)T [8((]2 i 2)€t1+§ — 6% — 3}

2d= g g g o
L7 gt ty g, Ui y2 = 0

- t1
S Lixtg, _ t: t: t:
T I+ D)2+ +2¢2)(3 + 2¢) gty l—qt, @ 710 = 20w /to ARy, Ryl Ro o0 -
16 or (292)
-T 2 —t1—5 —2t, 2T =T . . . . .
=v {66 +4q (?e noE et — le ) The functionR is given in Eq. (279), and as written, we can
drop thef-functions. Taking the limit\ — —oc enforces the
+ O(q4)] ; (290)  center-of-mass velocity at the final time tode = 0, leading

which is clearly not symmetric undeéf — —t;, although

it is for ¢ = 0. Note that here we do not know when the
avalanche starts and ends, we only know that the duration is
larger thanT'. We define the asymmetry ratio of the 4-time
velocity correlation as

Aty) = ﬂ—T/Qaqytl1L¢1-,75111T/2 (291)
U_1/27q,0U—q,00T/2

It is plotted on figure 7. Since the asymmetry ratio is larger
at largeq at the beginning of the avalanche, it implies that
the local velocities in an avalanche are higher in the begin-
ning of an avalanche than at the end. Stated differently, the
avalanches are more compact at the beginning and the parts
which move move more quickly. This is consistent with our
physical intuition that an avalanche starts at some sged,
grows quickly around that point, while at the end it is sgbtia
extended, but stops more uniformly.

It Il I I Il I t
—0.4 ~0.2 !

. i} FIG. 8: Plot of the conditional averag@iq:, @—q¢, ) given in
5. “Second” shape of an avalanche at non-zero momentum  gq_(294) for an avalanche starting at tim@' /2, and ending at time
T'/2, in our dimensionless units. The different curves argfore 0

We now obtain{iy, i—q,), 4 i-€. the shape fluctuation, or (solid gray).¢* = 0.5 (dotted red)q® = 2 (dashed blue), angf = 9
second shape, at non-zero wave vector for an avalanche whiéfiot-dashed, green). The plot is fbr= 1.



FIG. 9: Plot of the (normalized) second shapét:), i.e. the ra-
tio of conditional second moments of the local veloaity¢:)
2 2 2.2
<fqe 7a uq,tlu,q,tl>/<fqe e uq,ou,q,o> for an avalanche
starting at time-7"/2, and ending &i’/2, normalized s.ts>(0) = 1.
The different curves are far — oo (solid gray, equivalent to the
same-colored curve on figure %), = 1 (blue dashed)q = 0.1
(green dot-dashed), and — 0 (dotted, red), which approaches a
parabola. Both limiting curves far — 0 anda — oo are symmet-
ric, while for generic values of they are not. The reason why for
a — 0 the curve becomes symmetric is due to a diverging symmet

ric contribution to<fq eiqzazuq,tlufq,tl > not due to a vanishing
of the asymmetric part.

to 24

uqtlu—qtzéﬂe,
2(615143 _ 1)2(6@43 _ 1)2€(q2+1)(t07t17t2+t3)

ed*(to—t3) (eto—ts — 1)2

= dw

|

e(to—t3)(24°+1) oF (17 2;2 — 2¢%; 1—etloft3 )
(o~ 1P 2)

1
1—et1—t3

e —ta) 20 +1) )y (1, 2,2 - 2¢%;
- (eh=ts —1)2(1 — 2¢?)

)],

(293)

This is a joint expectation value conditioned to the eveat th
the avalanche ends befarg

As in Section 1lIC we obtain the conditional average s.t.
the avalanche ends exactlygtby taking a derivativé),, of
the above average (292), and dividing by the total prokgbili
Piuration(ts —to)d f for the avalanche starting atand to end

24 Here we use the Kronecker symbfjj = 1 or 0 according to whether
u = 0 or not, i.e. the characteristic function for the event 0, which is
dimensionless.
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atts, leading to

<th1 a—qt2>0,3 =

— 1)2e(@* D2t —t1—t2)
1

1—et17t3

20w(efr~t — 1)% (g2t
e(to—t3)(24°+1) o F (17 2:2 — 2¢%; l—etﬁ
e~ D)o — 12
X [2(12 +

(2¢2 — 1)(efr—ts —1)2

2
— coth(

eto—ts — 1

The resulting function, fot, = t; andT" = 1 is plotted on fig-
ure 8. One sees again that higher wave-vectar® (slightly)
skewed towards earlier times.

It is interesting to perform the same calculation in real
space. One can either Fourier transform the above result
(which is not easy) or go back to Eq. (292) and directly work
in real space. Because of divergences indicated below, we
heed to compute the more general observable, smoothed on a
small region of space (i.e. for close-by points x-):

/ < ) > e*(m1fmz)2/(4a2) /< . > —(aq)?
Uyt Ugoty) ————=—— = [ (Ugt,U—q,,)€
o 1 202 204/% . q,t1 q,t2

(295)

Integrating over momentum directly ih= 4 we obtain

/q (tg,t, U—q,ts) )

[sinhQ(tl_t3

)] )
)

(294)

ty —t3

1 —ete—ts
e2a” (to—t3)+to+ts

(eto _ et3) 2

e2a” (b1 —t3)+t1+t3

(etl _ et3) 2

+

ow

—(aq)? _ %W
¢ 82
) sinhQ(t2;t3 )

ts—to

7%)

ty
X dt’ — —
/to sinh?(fa32)(

Fort, < to we can sett = 0 and obtain a finite result. How-
ever, for equal times, = ¢, there is an ultraviolet divergence
and the integral diverges like/a asa — 0, hence we must
keepa > 0. This allows to define a (normalized) second shape
at timet; as the ratio

to — t3
2

sinh? (

2
sinh?(

x@ta

1
a2 — 2t' +t + to)?

} (296)

. —(aq)?
fq (g, U—qu,) € (aq)

oty
j;] <1:LQatma—q7tm> ei(aq)z .

2

, tm:

52(t1) =

(297)
This is the second shape normalized to unitytfoe ¢, the
mid-time of the avalanche. The result is plotted on figure 9
where the integral ovef in Eqg. (296) was performed numer-
ically. Note that upon normalization the limit — 0 exists
(even if both numerator and denominator diverge) and is a
parabola. Another possibility to regularize the functierta
choset; < to; the role of the parameter is then replaced by
the differencéy — t;.
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For the Brownian force model, the tree theory remains exacf, + Sqis, So given in Eq. (81) and
belowd,. = 4, hence we can use the formula in ahyUpon
integration over momentum ih< 4, the factorn(a?—2t'+t¢;+ Sais = _1/ Tt Ty 00y A(v(t — ') + ugse) . (301)
ty)~2 is replaced bya® — 2t' +t; + t5)~%/2. In dimensions wtt!
d < 2, the limita — 0 can be taken. In smaller dimensions, We

'e now rewrite this term with no approximations as
the asymmetry is less pronounced. This is expected, since

for d — 0 we must recover the result for the particle, where B o ) 302
u? = 2. The same holds true for LR elasticity. dis == J it it (v + tiat) (302)
1
+ 5 / amt’l)wt/(U—f—amt)(U—Fﬂwt/)Areg( (t t )—i—umtt/) .
6. Arbitrary elastic kernel and non-local elasticity ot
We have defined
Finally we can now give the result for arbitrary elas- A(u) = —olu| + Aveg(w) | (303)

tic kernel,gq—l. Since we often use dimensionless units, we

must first defingj, ' := g,—0g, ' = go/m*. Thus one hasto suchthai\[.,,(u) is the second derivative @ (u) without the

substitute;” — g, ' — 1 in all above equations containing  J-function part; hencé\y,(0) = A”(0%), and A,y (u) has

explicitly, e.g. Eqgs (285), (286), (293), and (294). aregular Taylor expansion jm| around zero starting at order
The equations where has been integrated over, such as|u|? . Below we loosely denota”(0) = A”(0%) since the

(296), have to be recalculated. There the changes to be matght and left second derivatives coincide.

can be condensed to a change of the integration measure over

momentum. For the simplest form of a long-range elastic ker-

nel this is explained in section IV G. B. Simplified model

The decomposition (302) is exact. Now we make a sim-
IV LOOP CORRECTIONS plification. We neglect the higher derivativég™ (0*) with
n > 3. We will see below that this is sufficient to give the 1-
loop result for the generating functi@most completelyup
to some subtleties that we discuss below. With this assump-
dion, we haveSg;s = Szllinp + ..., with

Until now we found that the mean-field theory involves
only the cusp parameter = —A’(0%). As was the case
for static avalanches [73], the small dimensionless param

ter which controls the importance of the loop correctiomsi(a
thus the deviations from mean field) is the second derlvatlvédlb —o/ 2, (v + Ugy)
of the (renormalized dimensionless) disorder correlater, zt
using the same notations as in [73] +%A”(O) / Tt ligy (V4 gy (0 + gy ) . (304)
xtt!
— "
4= _"ﬂfd A7) _ (298) We now work with this “simplified” model, and discuss later
a:=—elom “A”(0") = —A"(07), (299)  on the effects of the neglected terms.
- ddq 1 The nice feature of this simplified model is that the new
I = / g (300)  term can be written as an average over a fictitious (centered)
(2m)2 (14 ¢?)? . : ; >
Gaussian disorder, with correlations
The parameter is of orderO(e = d,,. — d). Below we study (et = mA— LAz — ') | (305)

first the 1-loop corrections using a simplified theory, which
retains onlyr andA” (07%). This simplified theory streamlines where A is dimensionless, and we will choose latér —

the calculations, and allows to derive, atleast heurityidae  —m?—*A”(0). With these definitions one can write
result, which we then analyze. Finally we present a detailed
derivation from first principles. Note that the presentatiere G[A = (Gy[A)y (306)

focusses on standard short-range elasticitydi,e.= 4. The ith
generalization to LR elasticity is straightforward, so weyo wi

detail the main features in section IV G, and give more eXphc — Syt [, Aet (v-titee)
formulas in appendix I. /D Jor ' (307)

Sn = SO - U/ ﬁ/zt(v + umt) - / %ﬁzt(v + umt) . (308)
A. General framework ot ot

In order to compute the generating functions (77) and (78)
beyond mean-figld, letus Start_ again with the dynamicabacti 25 Note that the noise, is unrelated to the friction despite the coincidence
(81) of the velocity theory, which we recall has the fafm= in notations.



34

For each realization of,, the theory has the same featuressimilar, to the one studied in Section Il H. We introduceiaga
as the mean-field theory (87) of Section IlIB. In particular, the dressed response kernel (268), now in dimensionless var
the total action (including the sources) is linear in theoedly ~ ables,
field. Integrating over the latter, as in Section (Il B) oredfs
[0, — V2 +1—2a2,| Ryrpr a0 = 0% (2 — 2/)5(t — /) .
(319)
It has the usual causal structure of a response function, and

equation solution of the system of equations (316) to (318) as

~1 ~0
Uyt = / / N’ um’t'RI/t/-,It )
x' Jt' >t

ait = / / [(ﬁ;/t/)z + nm/ﬁ;/t/} Rm/t/,wt . (321)
x! Jt' >t

G| = ¥ Je A ba @D 402l (300

(n0s + V2 —m?) ) + o (@)))? = —Nar — n2t1y) . (310) (320)

which has an additional “random-mass” term. Using this
equation, Eq. (309) can be written as

G\ = VL Zn (311) Consider now the average (313) oygrusing (305), i.e. in our
B ~ (dimensionless) unit&,n, ), = Aé%(z —y). Since(dl,), =
Zy\ =L /t(ﬁat + V2 —m?)iy] 0, the lowest-order correction is given by the averaga-of
= L™"m? / e (312) ZIN = Zixee N + L1 / (@20, +0(A2) . (322)
x xt
To lowest order i we thus find Inserting Eq. (320) into Eq. (321), and performing the agera
i T —— m2 \ overn, one finds
Z[N = L™49,efer Attt = TA $t<~mg>,,. (313)

~9 o ~0 ~0
(Ugg)y = A / UprtyUgrig
t<t1<ta,tz Jx12’

X Rm/tg,mlthz’tg,z1t1RI1t17It

+A/ /ﬁ2/7t2Rm’t2,w’t1Rw’t1,mt- (323)
t<t1<to Jx’/

As we discuss later, we will need to take < 0 at the fixed
point, hence the sign of the random term (305) is not consis-
tent with an additional real disorder. Since all we want to do
here is perturbation theory iA”(0), more precisely in the
parametery = 0(¢) defined in Eq. (299), this is immaterial.
It should be considered as a trick to simplify the perturtsati

calculations.

C. Perturbative solution

1. General equations and formal solution for arbitraky.

For simplicity we switch from now on to dimensionless

units, which amounts to setting=m = o = 1. We want to
solve perturbatively im,. the equation
(00 + V2 = 1] 3! = —Aoe — (@) — ey . (314)

We expand the solution in powers @f, denoting by, the
term of orderO(n™),

~ X

any =ad, 4k, F a4 ... (315)

One must thus solve a hierarchy of equations,
(00 + V2 —1] a9y = = Aot — (G2)* (316)
(00 + V2 — 1+ 2a),] ay, = —nety, (317)
00+ V3 — 1+ 205, ] 43y = —(lg)* — olly, - (318)

The first line, for order zero, is the usual (mean-field) insta
ton equation (91). This perturbation problem is distinett b

It admits the following graphical representation

t fg

(324)

The symbols are as followsi)(a wiggly line represents?,,
the mean field-solution;iij a double solid line is a dressed
response functiofR, advancing in time following the arrow
(upwards), thus times are ordered from bottom to top. Note
that for the choice\; = A\j(¢), one hasi?, = @ = 0 for
t > 0, hence the integrals only involve negative times.

We now define the combination

(I)(.I'/,.I',t) ::/ ﬁg’t’RLE,t’,It 5 (325)
t'>t

in terms of which one can rewrite

<’a;2t)>77 = / |:/ (I)(ya Ila t/)2 + (I)(Ila Ilvtl):| Rz’t’,zt .
t/a’

Yy
(326)
In section IV F 2 we shall show that there is an additional term



2. Space-independent sourég; = \:

We now pursue the calculation in the case of a spatially 1.
uniform source\,; = A, i e. we study the center-of-mass

velocity. Since ther?, = @? is also uniform, we can express
in momentum We now specify to\(z,¢) = Ad(¢) to obtain the 1-point

the solution of Eq. (319) — as in Eq. (269) —
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D. 1-point velocity distribution

Generating functio (A) and moments

velocity distribution.

space
) e o Let us recall the solution of the instanton equation
Ritpt, = e (D) (ta—t1)+2 [} dmre(t2 ). (327)
The same is p035|ble for Egs. (325) and (326), by defining ;0 _ 70 _ e'r O(—t) = 1 0(—t). (335)
.I' ., t J" zk(m —x) and wt etk — . 1—k-let
k We found useful to define
D(k,ty) :/ R to,t1 (328) —
t1<ta KR = m s (1 — Ii)(l — )\) = 1 5 (336)
<ﬂ’zt>77 = <ﬁf>77 =4 «Zf(k) ) (329)
g which we often use below as it simplifies the calculationse Th
Ji(k) = / [@(k,t1)> + @(k,t1)] Re—o,,,e - (330)  relevant interval\ €]—oo, 1] maps ontox € ]—oo, 1 (with
ti>1 reversed boundaries).
From Eq. (313) we find thaf [\] is then given by From the previous section we have
Z[N = Z" [\ + A Ak k 331 @
(A = (Al + WJ( ) (331) Z(\) = Zo(N) + 502 (N) (337)
w= [am @32) 6z = [ R Tk + Tulkow)] (339
t 0

As discussed below, some counter-terms are missing, and the

correct formula is obtained y (k) — J (k) + Jut (k).

We now consider the space dimension todbe: 4, since
we want to perform am = 4 — d expansion. Sincel ~ ¢,
it is sufficient to calculatef, 7 (k) in d = 4.
we note that for any isotropic integral one can write (réngll
A =—-m4=4A"(0), and Eq. (299))

d%k a
Al —— = — kdfldk:—/kz‘d k2
/ Cm e, Sd/ 2 (k) +

In that case,

where we denoteZ"*® =: Z; and 7 (k) in (332), (330) by

J (k, k) to make thex dependence explicit. The calculation
of §Z(\) then proceeds as follows. We need the dressed re-
sponse only for, < 0 (sincea” vanishes at positive times).

It reads

87(k2+1)(t27t1)(6t25 —1)2

TS (339)

Rk,tg,tl = 9(t2 — tl) .

(333)
We used that This yields fort; < 0
L 1> o () 1 2
S_d_§‘/0 d(k)m—z—f', (334) etlli kQIietl—l-ektl(k2(1—ﬂ)—1)+1—k2:|
Dk, t
. _ . (kt2) = k2(k? —1)(et s — 1)?
where. .. denotes higher-order terms inand .S, the unit- (340)
Vi d
sphere area divided kg)“. with @ (k. 1) = 0 for £ > 0.
[K2(k — 1) + 1] k% Bo(k® +1,0) + k%k + In(1 — &)
Bk, t1)Rp—ot, ¢ = — 341
/t<t1<0 (s f1) R0t k2(k? —1) (341)
2 _ 1 2 2 2 —2k? 2
/t<t1<0<1>(k:,t1) Ri—o,t,,t = 2R )2 2(2k* +1) [F*(k —1)+1]" k™ B, (2k* +1,0)
—6 (K2 + 1) [k*(k — 1) + 1] s % B, (k% +1,0)
+k%k [26%(k — 1) + k — 4] —2(k* +2)In(1 — k) } . (342)
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We have introduced the incomplete beta funct®g(a, b), sion of the counter-terms:
defined as 00
. 5200 = [ B0 (T (k) + T, )
Bu(a,b) = / (11— ) (343) ‘ .
0 = k(1 —1n4) + ) anr" (351)
and related to the hypergeometric function via
(n —3)(n—2)%In(n —2)

K9 F1(1,a5a 4+ 15 k) tn = 2n2
By (a,0) = , 344
(a,0) a (344) | 61n(2) —2n(n +1)(In(2) ~ 1)
2
which can equivalently be used. Note that whilg(a, 0) has nin+1)
a branch cut for negative, it is a spurious one since in our _(n=Dn((n—=6)n+2)+6)In(n—1)
results only the combination=? B, (a,0) appears, which is n?(n+1)
perfectly regular on the negativeaxis. (n? — 8n + 3) In(n)
i i 352
The final result for7 (k, x) is 2 +1) (352)
2k2 +1 Note thaflim,,_s2 a,, = 1—21n2, i.e. the first termu, follows
Ik, k) = m X (345)  the same relation, if the coefficients are properly inteiguie
For later convenience we set = 0.
X{ —4 [k?(,$ — 1)+ 1} ok B.(k? +1,0) It is also possible to calculate the cumulants of the vejocit
directly in a perturbative expansion in the full disorderlto
+ [kz(n —2)k —2In(1 — k)] loop accuracy. This is performed in Appendix M 1 up to the

5 ) third cumulant. We have checked that this indeed agrees with

+2[k%(k — 1)+ 1] k¥ B, (2k* + 1, O)} . our explicit series expansion up to ordet. As the reader
will see, the calculation of the appendix increases foribligla

in difficulty with each new order, while the present method

The special cases we need are of the form . -
allows to sum these diagrams much more efficiently.

K AE 1 Itis interesting to give the lowest moments. In dimension-
“IBi(1+x,0) / dt (—) — . (346) less units they read, expanding (351) in powers\aising
0 K)ot (352) and (336),
Taylor expanding the denominatoy (1 — t), and then inte- 42 = ¢, (353)
grating leads to a very useful series representation u—% — o[l +a(l — )]+ 0?), (354)
> n+1 3 = g — 2
B4 ,0) = 3 bzt 1). ut—v[2—|—2(8—|—91n3 131n4)}+0(v), (355)
—n +z+1

(347) = [6 + %% (20 — 132In2 + 69 1n3)} +O0(v?) . (356)
® is known by Mathematica as the HurwitzLerchPhi function.

Using the above series expansion, one can easily obtain thge recall the mean-field resulf — 1)! which follows
small- and large: behaviour: from Z(\) = —In(1 — \). The general formula for the mo-
1 mentsp > 2 is easily obtained as
Tk, k) = —k + 5/@2 + O(k?) (348) 1y
= 1+ p Zan— (357)
K  kK+2In(l -k 1 ut vlp — _1!]
j(k,n)——ﬁ—++0(ﬁ> . (349) )

Let us recall that the small parameteis related to the second
Hence J (k, ) is integrable with the measure*d(k?) at derivative at the fixed point and equals (see (B12) of [73]):

smallk, but contains a quadratic and a logarithmic divergence ot —¢ )
at largek. These will have to be cancelled by the counter- a=-A"(07) =— (¢”) (358)
terms, leading to a finite result. We will show in section IV F G )
that the exact expression for the counter-term is =——5 ¢t 0(€) (359)

3+ k2)k+2In(1 — k) with G = 1/3 for the RF class, ang, = 0 for the periodic

Ter(ky k) = e (350)  class, i.e.
2 C e

Using the series expansion (347), the integration dvean *=75¢ > (RF = nonperiodic disorder)  (360)
be performed, keeping a largecutoff in the intermediate ex- 1

pressions. The final result is after simplifications, anduinc a=-—z€ , (periodic disorder) . (361)
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FIG. 10: Plot of6Z()) defined in equation (351). For realthe
functiond Z () is defined for\ €] — oo, 1], with a singularity at\ =

37

In the case wheréZ (\) admits an inverse Laplace transform
we can also write

P(i) = Pur (@) + %573(11) . (369)
For« > 0 the inversion reads
o —100 dA v
IP(u) = /ioo 27”,5Z()\)e ) (370)

the contour being closed to the right. Note that

ZA=0)=0 < /duw(u):o, (371)

§ZA=0)=0 < /duaap(a)zo. (372)

To construct the probability distribution we first note time i

1. The Taylor series im has convergence radius 1, which translates,,qrge Laplace transform

into convergence foi from —oo to 1/2. This is plotted with an
upper bound on the series,.. = 2°, fori = 1,2, ..., 10, starting
with the dotted curve foi = 1, dashed for = 2, the remaining
ones solid, and finally = 10 (fat). This establishes convergence
in that interval. The last 6 curves are indistinguishabbgept at

A — 1/2. See figure 13 for the resulting function. Note that(\)
can be obtained numerically from the alternative formul&)(iith
excellent agreement.

Hence for non-periodic depinning

42 = v(1 4 0.0858432¢) (362)
a} = v(2 + 0.014924e) (363)
it = v(6 — 0.861764¢) (364)

More ambitiously, we will now determine the correction te th
velocity distribution in an avalanche.

2. FromZ(\) to P(u): Distribution of velocities in an avalanche

The series fovZ(\), defined in Eq. (351), as a series in

k, has convergence radius 1, singg/a,,+1 — 1 at largen,
equivalent toR(\) < % This is demonstrated on Fig. 10.
The physical singularity however is outside of this intéraa
A=1.

We now obtain the avalanche-size distribution.
plained in section 111 C 1, we have

P(i) = (1 — p'v)d(0) + vp'P(0) + O(v?) (365)

with

(366)

Z(\) = p'/ du(eM — 1)P(w) .
0

We have obtained the expansion®f\) to orderO(«) in the

form (337), hence

p'P(u) = %e—ﬂ + %573(71) : (367)
6Z(\) = / h du(e — 1) 6P (1) . (368)
0

LTt

— A=

K" =6(1) —n1Fi(1+n,2,—u)
= 0(1) + e "0y L, (1) (373)

in terms of the hypergeometric functiqii?, or equivalently
the Laguerre-polynomidl,,. For« > 0 it can be found by
rewriting the contour integral (which with our conventions
must be closed to the right):

/ioo ﬂ —A n v

o 2mi\1-A) ©

_ <ﬂ> " da /_m A e
(91} 0 0o 27
] umn le U

- () o

leading to (373). Thus we can now write the formal series

an—l
T(a)

P (i) = i ane” 0y Ln (1) . (374)
n=2

Unfortunately, this series is divergent.

This problem can be cured as follows: We will subtract
from the series (351) terms which can be summed analyti-
cally, resulting in polylogarithmic functions, and thegril/a-

As ex-tives, and inverting the latter via a cut-integral. Thesente
are chosen to render the remaining sum (quasi-)convergent.

To this aim, we note

We start by Taylor-expanding, aroundn = oo,

_ 37

~ 1—-4In(2n) n 2 6In(2) - i35

L 5—6In(2)
2n n? n3

n4

QAp

(376)



FIG. 11: w0 P(4) as given by Eq. (380), or, equivalently by Eq. (H7).

with b = = —21n2 by = 2, and an explicit formula fob; for
j>3is glven in Appendix N. We recall tha, =1 — 21n 2

and that we set;; = 0 2°. Performing the summation, we

obtain (if the series converges) the alternative represient

—i—Zb Li;(k

§Z(\) = 20;Li;( (377)

Li;(x) is the polylogarithm function, which is analytic on the

complex plane with a cut on the real axis fere [1, oo|,
which maps on the same interval fore [1, oo with reversed
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The coefficients:,, are what remains af,, after subtracting
their asymptotic behavior,

+21nn J"i‘ b;
n = ni

Ay = Qp,

(382)

Especially note thai; becomes non-zero, even though=
0; in fact, this coefficient grows rather quickly witfy,ax,
while the other coefficients decay.

ane "y Ly (10) .

hE

n=1

Both expression$,P.,« (1) andd P (¢) can be obtained nu-
merically with good precision, and seem to decay rapidly at
largew. One then checks that the sum of the two, for ang

the bulk of the distribution, converges extremely well vers
the result atj = jmax, €.9. fora = 1 excellent precision is
already obtained fof,,.x—3. Of course, for a fixed,,. the
sum ovem in (383) should be stoppedatot too large since

it is an asymptotic series, which is ultimately divergentt b
in practice the range of convergence (with respeet,tg.) is
rather broad.

Practical values arg,.. = 15, and (383) can also be
stopped atr = 15. With this choice, we find that the pre-
cision is excellent and that all momenﬁ@ uPoP (i )du be-
tween the fourth and 36th are at least given with a relative

boundaries. It is along this cut that we have to integrate Thprecision of10~7, most even ofl0~'°. j,... should not be

discontinuity there is given by

lim Llj(ﬁ}-i- ZE) — Llj(h‘/ — 16) — 2mi () , kK> 1 o
o . 07 k<l1.
(378)

Note that this also holds true for the derivative w.f,tand for
j=1,i.e.Lij(k) = —In(1 — k).

taken too large, since otherwise this shifts too much weight
into the moment,, leading to numerical problems (cance-
lation of large terms.) As an example, faf.. = 15, one
hasa,; = —51.97, @» = 0.002976, a3 = 1.359 x 1075, ...,
oo = 2.373 x 10715, There are no convergence problems at
small or larger.

The final result forP (%) is

Thus, the inverse Laplace transform (370) becomes a com-

pact and simple cut-integral

dX
573(11):—/6W 29g + 21In(In k) +Z

1 J=1

j(ln k)1

L'(j)
(379)

However, this series also diverges. Therefore we chggse
as a cutoff, by defining

. [ dx Jmax b (In )~
6Peut (1) = _/eW 2yg + 2In(ln k) + %
1 Jj=1
(381)
26 Although this may appear to impose an artificial constrai 2.0 =0

it will be immaterial in what follows since we will use only anfte sum
and add and subtract the same terms.

Pi) = Pola) + %573(11) +O(&2) (384)
= Po(4) exp (‘;‘ ‘;7;(( ;) +0(), (385)

where we remind the value of the small parameteirom
(358). Note that the second formula (385), while being equiv
alent to ordek, has the property to resum the logarithmic be-
havior at smalb into the correct power-law behavior. This is
why we have chosen itin Fig. 12.

3. Small-velocity behaviour, the critical exponent

Let us now obtain the small-velocity asymptoticsiofi)
and extract the a-priori new critical exponantt is controlled
by the asymptotics 067 (\) at large negative\, i.e. \ —
—oo. This corresponds to the behaviour for— 1~ of the
series (351). It is determined by the leading behaviour,of
at largen, i.e. from the leading term,, = —21In(n)/n of
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P(u) v@ P()
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FIG. 12: Left: P(u)4* as a function ofi* for RF-disordere = 0 i.e. MF (black dashed), = 1 (blue, dotted)¢ = 2 (green, dash-dotted)
ande = 3 (red, solid). Right: log-log plot of?(u) as a function ofs, for the same values ef For both plots resummation formula (385) was
used. We note that since onlyappears as a parameter, at this okder 3 RF ande = 2 RP are indistinguishable, see Egs. (360), (361).

(376). Resumming with this term alone, we obtain To show this, we start from the trial probability
> "o > In(n) ,, . P (4 :L —u 389
0Z(\) = Z:Qanm ~ —22 Tm = 2(9aL|a(.‘$)|a:1 P Prria (1) ul+we (389)
" ) " for which the associated()\) can be computed exactly via a
=-In"(1-r)+ O(ln(l - H)) +.. Laplace transform, using (366). Expanding the result inlsma
= 21N+ ... (386) LYields
This yields for\ — —oo Zirial(A) = / dame*“(&“ —-1)
0
Z(\) = Zo(\) + géZ(/\) = —In(1—\)
1
=—In(1-)) 1+%1n(1—/\)+... . (387) +{—VE+1n(1—A)—§1n2(1—A) T
It is easy to see that this is consistent with a modified editic +0(z?) (390)
behaviour at small velocities the first term isZ*°¢()\) and the second one the correction.
N1 _ 2 Comparing the behavior at large negativef Egs. (387) and
Pli) ~ica @ o AT ltar O() (388) (390), we can thus identify = «, consistent with Eq. (388).

Note that multiplying (389) by a prefacter, = 1 + O(z)

52V or changing the exponential to-“l'+©®)] produces only~

.0r x1In(\) terms, subdominant w.r.t. the?(1 — \) atA — —oc.
Let us now discuss our results for the small-velocity expo-

1 5 nent. Using (388), together with (360) and (361), we find

2
i a=1- g¢ + O(e*) mnonperiodic (391)
1.0f
i 1
i a=1-— 3¢ + O(€*) periodic . (392)
0.5

Our predictions for the change efare thus quite large, and
tend to reduce the exponent. A naive extrapolatioa te 1,
L I Ll . 1 2 ¢ = 3 (depinning of a line) would suggest~ 1/3 signifi-
_w I 0.5 1.0 cantly reduced from the mean-field valagr = 1. Prelimi-
0 5 nary numerical results indicate that the exporentay even
) be negative ini = 1 [100]. A 2-loop calculation (or higher)

FIG. 13: (Color online)iZ()\), as obtained by (351) (thick red line), Wovldlf (f;“g;g}e gf:?;'g;gg”; ?Qrﬁ]”"’}g’tt'g"’;'hgoc')rr‘]teo}:;’r'?’]"é .
a reexpansion i\ (dashed thick green line) and numerical integra- P v u y

tion of Eq. (368), using Eq. (380) (thin black line). All fuions  n@mical exponent to one loop
agree in their respective area of convergence. =924 a+ 0(62) . (393)




Hence we could also write

a=z—-1+0(), (394)

40

Indeed that would imply

1 1

1.
LT se"0P () = gagf(S) = S () (403)

which holds for both periodic and non-periodic systems.

Again it would be interesting to obtain the higher-loop cor-

for smalls, which is exactly the result (397). It is then easy to

rections, since we did not find any general argument why theguess that

would be absent.

Finally the smallz behaviour can be studied more system-

atically. This is done in Appendix O where we obtain the
amplitude at small, > 0,

C «
P) ~ — C=1-——(4 b 395
(u) w 2( VE + 1) ( )
whereb; = % — 2In2 as defined above. This yields =
1—-0.711284«in good agreement with our numerical Laplace-
inversion. In principle this amplitude is universal and ¢en

measured.

4. The behavior 0§Z(\) for A — 1, and tail of P(«) at large

The behavior ofZ () in the limit of A\ — 1, which controls
the tail of P () for & — oo, is obtained in Appendix G. The
final result is

Z(\) = —In(1—\) + %52@) (396)

1 1

8 (1 — N2[In(1 — N2

5Z(\) + .. (397)

To obtain the tail ofP(u), one needs to inverse Laplace tran-
form Z(\). Before doing so, let us point out that this form is

incompatible with the naive expectation of a stretched expo

nential at large velocity,

P(1) ~is (398)
with ¢’ = B = a’ = § = 1 in mean field ¢ = 0). While it
would be hard to extradB, C’ anda’, we could extract as
follows. Expanding neaf = 1, we find

%573(1;) = —(6— e "Inu+0((6—1)2).  (399)

This is equivalent to

Loz = (0~ )R VEIA L o5 1)2) . @00)

Clearly, this is not of the form (397). Noting:= 1 — A, we
claim that Eq. (397) is equivalent to

~

SP () =~ —e™ i f(u) (401)

ol —

at larged, where f(u) has a Laplace transfornfi(s) :
Jo© divf (w)e~** which behaves at smailas

f(s) = F(0) + =

+m.

(402)

0

Ot In

1

1 p—

W — (404)

f@)

at largeu, for @ > 4. Indeed, the contribution fai > g

reads

£(0) = f(s)

2/ duse Sui,
o nu
:/ dwe™™ L
s Inw—1Ins
1
~—— (405)
Ins

In the partial integration from the first to the second line we
have dropped a terifl — e~%)/In 1, which is of orders.
In the last step, we have used thatfor> 0, firstinw—In s ~
—In s, and secondys — 0.

For the velocity distribution at largé, we thus finally ob-
tain

—U .2
.lfloop 0 — e_ 1 gu— 2
e v a  u? 9
= ——exp (1_6—1112(11)) + O(a®)  (406)

We remind thaty < 0, which has motivated us to write the re-
sult in an exponentiated form. Other forms are however possi
ble, such as corrections to the pre-exponential only. Tha fo
(406) renders the tail stronger decaying; it is plotted on fig
ure 14. In all cases, given the smallness of the correctiis, t
tail will be hard to see in numerical simulations. With the
help of Eq. (380), we have been able to evaluwdté:) up to

1 = 100, while the alternative representation (H7) works up
tow ~ 10. For these values af, the tail-behavior (406) is not
yet reached.

5. Alternative approach: Integrating over momentum first

Our result fordZ(\) given in Eq. (351), was a compact se-
ries expansion from which one first had to extract the asymp-
totic behavior at large, before being able to perform the in-
verse Laplace transform. A complementary approach, per-
formed in detail in appendix H, is to start from Eq. (330),
calculated(k, t) as given in Eq. (340), and first integrate over
t andk, the final result foZ(\), given in (H6), is now an
integral overt;. (Recall that above in Egs. (341) and (342)
we integrated first over, andt, leaving thek integral for the
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In(t P(W) ~ m? = m? —2Z%()\). The formula (328) then gives
100 200 30C 400 50C 600 . 20
52| N Dk, t1) = 22 R =——5 ___ (409
10 e T T
10-108}- \\ . . . .
S Following the steps in Section IV C 2, this leads to
~,
160| AN
107 \\ Zs =29+ 25+ .. (410)
2141 \\ - «
10 2§ = () )y = —= / Ji(k) (411)
SO ely Jk
10-268| RN 1
RN TJi(k) = Wjﬂ(k) : (412)
10322, AN S

The coefficientd = i and we have defined

FIG. 14: The exponentiated version (406) of the function

PLIP(4) for a = —2 (e.g. RF disorder inl = 1) (red dashed 0 9 0

line), compared to the mean-field result (ke= 0, blue, solid line). T k) = Zs Zs (413)
! k2+1-—277 k2+1-22%"

‘which is time independent. Graphically Eq. (412) can be-writ

end). We did not succeed in performing the final integral oveten as in (324),

t; analytically, although it is easy to compute numericalty. |
confirms the above results féZ()\). The advantage of this
method is that the inverse-Laplace transform can be done ex-
plicitly, yielding a (relatively complicated) integral peesen- a
tation (as integral over ) of 6P (4) givenin (H7). It confirms Zs=— |(Z
all statements made above, including the asymptotic behavi el
for small and large.

Note that in Egs. (341) and (342) one can interptas the
time of a kick (infinitesimal step in the force), or startimgé replacing the external wiggly lines of Eq. (324) by the fac-
of the avalanche, while time zero is the measurement timeors zg. Note that we have recovered Eq. (152) of [74] for
The timet; < 0 is an intermediate time, which must be inte- the statics, up to the two counter-terms discussed below. Fo
grated over the duration of the avalanche. Hence, if weaaste pedagogical purposes, we want to make further contact with
integrate ovek and thert; e [t,0] at fixed¢ we obtain the  the self-consistent equation obtained in [73]. To this aien w
joint probability that:(0) = « and the avalanche started at rewrite Eq. (412) as
t. Although it is a straightforward generalization we willtho

,  (414)

ive this result here. a a
g = [ o0 = 231~ 223)
ely Ji
=(Zs—Z%+ . )1 —-2Z%—Zs+..)
E. Recovering the avalanche-size distribution to one-loop — Zg— (ZS)Q _ [Zg _ (Zg)Q]
=Zs—(Z5)* = \. (415)

As discussed in section Il F, to recover the avalanche-size

distribution, one can use a source constant in tge= A Note that by going from the first to the second line, we have
during a large time windoW". The avalanche-size generat- qged in each parenthesis a subdominant term. From the sec-
ing function, noted her&s()), is obtained from the dynamic o to the third line, we have regrouped the terms, and finally

generating function studied here ia\] = T'Zs()). Inprac-  from the third to the fourth line we used the exact relation
tice it amounts to suppressing the final time integral in the e 79 — (29)? = A Eq. (415) can thus be written as

pression forZ[A].
For a source constant in time, the solution of the unper-

_ 2 o a
turbed instanton equation,( = 0) is Zs =2+ (Zs)" + —= | T (k). (416)

ely Jk

U Car RO RS PR [P \/ 7
€l2

The dressed response kernel then becomes

N =

) . where we recall the graphical interpretation of each term.
Rityp, = e FHI7228) =g, —¢)) | (408)  (The amputated lower response gave the factot /gl —
272).) Comparison with formula (151) in [73] shows that
which is simply the bare response up to the replacemertine recovers the result of the static calculation, provi@ed
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one replaces itV (k) the tree generating functiofi by Zg, ~ we can now identify the renormalized parameters. The second
which does not make a difference at this ordé);¢ne adds term leads ta\’(0") = A{(0T) + §A’(0), with

to Eq. (416) two counter-terms, discussed below,
0ty — ! 1A+ 1A+

. OA'(07) = =3A5(07)AG (0 )/k T me (420)

Zo=a+ 2P+ 5 [[Zw+gsm]  @n | |
ely Ji This is the correct FRG equation fax’'(07) [73]. The first
- =3(Z9)? Z? term gives

(418) .
6S =vAJ(0") [ o | G (421)

. . 0 k2 + m?2
In the statics these counter-terms appeared naturallyibg us k xt

everywhere the improved action. The first one comes from the FAZ(0T) 1 it
. . . 0 kQ 2 xt Uzt
renormalization ofA (u), thus all parameters which appear are  K2+m? [,

a

Ct(k) - (/{24-1)2 - 2+ 1 .

renormalized ones. The second also appeared naturallg in th e 1 _ )
statics from the definitions used there, while here it comes —A(0 )770/k (k2 + m2)? /t UgtOyliat + ...
T

as a correction from using the (over)simplified model, as is ) ) i ]
explained below. The last term gives, in agreement with [73], the renormdlize

=10 + 67,
1
F. Counter-terms and corrections to the simplified theory on = —Ag((ﬁ)??o/]C m . (422)

Reexpressing ()\) instead in bare parameters as a function of
renormalized ones, defines the counterterms as

In [73] the static avalanche-size distribution was comgute Z(Nimo, Ao) = Z(\m, A) + Z(\;m, A) . (423)
using the improved action, i.e. in terms of the renormal-
ized disordeA (u), which automatically includes the counter-
terms for the renormalization of the disorder. In the dyreni ZNn, A) = Ziee(Nim, A) + E(;Z()\) : (424)
there is an additional operator which is marginatlat d,. 2
and corresponds to the friction term in the dynamical actionwherea ~ A”(0), and given by Eq. (299), we only need
Computing from the start in terms of the renormalized fric-to expandZ;... to first order in the difference$A and én.
tion . is possible, but less convenient, hence here we perforrgq. (105) allows to restore units,
the calculation first in terms of thieare disorderAq(u) and )
the bare friction 7o, and then reexpress at the end the result 7, (\., A) = e 7 oo (
in terms of theenormalizedisorder and friction. This yields —A(0T)
an explicit derivation of the counter-terms.

We start from the bare action given in Egs. (81) ff.

1. Counter-terms from renormalization

Using that

S0

HereZuco(\) = — In(1—\) and we remember that’ (0+) <
0. To compute the r.h.s of Eq. (423) we substityte> ny =
n—on A — Ay = A — A, expand to linear order in the
§= / Ut (100 — V7 + M)y differences, and in the final result we replace, to this qrder
ot bare parameters by renormalized ones. This gives

+A6(0+)/ dmtﬁwt(v —l—umt)

1A+ 2
o 250 &) = <5AA'<(00+>) - %n) oy @9
+§AIO/(O+) / ﬁmtﬂwt/(v + ﬂmt)(’l} + amt/) . - ~,
xtt! X |:Ztree(,u) - luZtree(M):| ‘M:**A/(O+) .

nm

Here the subscript zero denotes bare quantities.

The effective action to one loop, = S + S, reads We now switch back to dimensionless units, setting> 1,

m — 1land—A’(0") — 1. Using(1 — \)(1 — k) = 1, we

- . _ then find
08 = Alo/((ﬁ)/ Ut (U 4 Ut ) (Ut Ut ) )
ztt’ ctry. _ 1"+
Z (N, A) = =2A"(0 ——— [In(1 — .

AN AN (n.8) ) [ e bnl n>+2127)
X [/ Ugeyty Ut Uger (U ty Usptr Ut Uy 1 ) Comparing Eq. (423) with Egs. (337), (299) and (333), we

x1tywtt! finally obtain

+ Tt T T, (Tt Uy, Ut Ugst) + - - 1
/zltlztz/t' tlat s (st ot ) TRE (k, k) = 2['€ +In(1 - '%)] m ' (428)

(419)
Note that to derive this counter-term we have used that
where here averagés.) are w.r.t.Sy. Corrections ta\”(07)  my i.e. that the mass is not corrected, a property that we now
were omitted, since they do not matter to this order. Ffom discuss in detalil.



43

2. Corrections to the simplified theory This term cancels the spurious mass correction. Note that in
another derivation, given in appendix V, both terms (42%) an

Let us examine more closely the effective action derived436) appear. _ . _
from the simplified theory, i.e. the first two terms in Eq. (321 TWO observa'uons.are in order: First of all, one can rewrite
We see that there appears an apparent correctian’toob-  the two terms graphically as
tained from the second line of Eq. (421),

1
2 __ _
Sampm? = AL(0F) /k — (429) / i [Baimpm® + Gagam?] =

However we know from the STS symmetry that the mzss- g .|
not be corrected. The reason for this artifact is subtle. Let (437)
us go back to the exact theory (302). When computing theyhile the first one naturally arose in the velocity theorysit
effective action, there is an additional term the second one which we derived above. Their crucial differ-
t ence is where the field is sitting in time, asi; at the same
0S = ﬁwt/ dt1 Ry o vra (U + 0) (U + 0) time ¢ as the response fielg}, or asu, at the earlier time’.
<t v Thus there is no correction 102 due to this cancellation, also
X A (v(t —t') +uge —use) , (430)  known as the mounting property (and frequently used, see e.g
[42,101]).
Second, we have used that'(u) decays to 0 fou — oo,
. short range disorder.
Finally, the additional loop correction (436) mustdeded
to our calculation based until now only on the simplified the-
(Ut + ) (Ugpr + U)Afc/g(v(f — ') 4 Ut — Ugpr) ory. It can be interpreted as an additional “counter-termn” t
subtract (429). To calculate it let us consider how this addi

not presentin the approximatiax(;,, (u) = A”(0). Although
it contains a third derivative (which to this order is not sup .
posed to matter), it gives a correction. To see this, we raacod'e
nize that

_ A/ gyl _ , > - ;
= 00 Bueg (vt =) + ot — o) - (431) tional term (436) contributes t&()). Indeed, it changes Eq.
Inserting this relation into Eq. (430), we obtain (268) to
t—t' [0+ V3 —1+2a,) a2,
0S8 = — . drR(r,z =0 . ~ -

/t’<t ! t/o R ) = _(uglct)Q - %Uit + 5addm2ugt . (438)

X 0,00 Dreg(0(t = 1) + Ut — tgrr) - (432)  Thisis equivalent to an addition (), equal to
We now integrate by part w.r.t’: there is no boundary term @) 5 "
att = t (since ther-integral then is zero); and there is no /5%15 = —0adam Ug, Ri=0,11,¢
boundary term at’ = —oo, since ther, A, (v(t — t') + t £<t1<0 .
Uzt — uge ) = 0. Thus only the upper bound of theintegral = _A”(()Jr)ﬁ/ S (439)
contributes, and gives g B2+ m

In terms of 7 (k, k) it reads
58 = — / Gt R(E—t', 7 = 0)0 Al (0(t—)+tigr—tige)
1

sm?
/ koK) =K—5——. 440
o (433) Jel" () = (440)
Thus we arrive at Both counter-terms together give, as already used in EQ)(35
65 = [ Gurtv + i) Tealles ) = T8 (I 1) + TR (k, )
3+ k2 2In(1 —
. SRR L) BVEY
) (1+k2)2
X //dTe*T(k TOAN (0T + Uy — U y—r)  (434)
Bo 3. First-principle calculation inu-theory
In the limit of smallv, the termAT., (v(t — ') + uer — Uz
can be approximated b (0*), thus We note that the two terms in Eq. (437) naturally appear
1 together in calculations based on the position figld, ¢), in-

(435) stead of the velocityi(z, t), see e.g. Eq. (3.22) and Fig. 9 on
page 13 of [48]. The question thus arises whether one could
construct the field theory directly for the position fieldtied
of the velocity field, and whether this would give directlyeth

1 combination (437). As we show in appendix V, both answers
2 _ +
(Saddm = —A/O/(O )/k m y (436) are“yes".

N A ~ .
0§ =—-A"(0 )/uwt(v—i_uwt)/k—kQ—l-l'
t

Thus there is an additional term
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G. Distribution of velocities for long-ranged elasticity Then the result fo6 Z(\) is
Although some systems with long-range elasticity are stud- 6Z(\) = LN dSa [* dk? k2 f (1/%) (450)
ied at their upper critical dimension (usually interfacathw el 4 Jo

dy. = 2), some require anexpansion around,.. This is the

case for instance for the contact-line or fracture frodts:(1, ~ For the choicgy, ' = (k? + 1)7/2 on which we focus from
pw=1,dw = 2),i.e.e = 1. We now indicate how the one- now on, the calculation can be brought in a form very similar
loop calculations of the previous sections can be extermled #0 the casey = 1 as follows:

these cases.

It turns out that the details of the velocity distribution-de  57()) — 1 dSq ~ A2 kd72f((/€2 i 1)7/2) (451)
pend on the precise form of the elasticity kernel at largkesca elh 4 Jo
This was already the case for the statics, and in [73] we estab 1 dSq [~ o/l 2 d/2—1
lished a general formula for the avalanche size to one loop as AR dyy* " (y? 7 =) ()

a function of the elastic kernel. This formula was applied in
[78] in the case of the contact line. Taking the integral to the critical dimensieh = d., and
Although we sketch below the calculation for an arbitraryusing that,,. = 2y and thafim. o elo = Sy, for any~, we
kernel, for simplicity we will concentrate on a kernel of the arrive at
form -
@) =g,  =cl®+p?)? . mP=o; (442) azm]d:d = /1 dyy" 7t (T = 1) (y) (452)
we setc = 1 by a choice of units. The upper critical dimension

dn. = 2+ is identified by the large-divergence of The two cases of most interest are short-ranged elasticity (

2, d. = 4), and long-ranged elasticity of the contact-line or
.1 fracture front ¢ = 1, d. = 2). For these cases, Eq. (452)
_ 2 _ € y Qe )
L= /ng = Gy ' (443) reduces (after a shift fromto z + 1) to

Heree = dy. — d d = el wherel, = [ (g2 SR o
oree > 0, andC,, = el wherels = J,(¢" + 62| = / dzz f(z +1) + O(e) (453)
1)7/2. The rescaled disorder parameter is defined by d=4 0
LR oo
q
At the fixed point, it reaches, in the limit of smait (small ~ Hence the two calculations are very similar. For short-eghg
1), the same value as before, independent,of elasticity, the results where given above. For long-raredest
] ticity (v = 1, d. = 2), we have plotted the resulting functions
a=—-A"0)=—=(c— )+ O(?) . (445)  fordZ(A) andéP(w) on figures 15 and 16. More details about
3 the calculation and the results are presented in appenttix .
Note that the avalanche size becomes particular we find that the exponent of the small-velocity be
Spn = mAA(0F) = pTIA(0%) = (elp) LA (0F )it havior changes to

(446) 2
and we refer to [73] for more details. We now use dimen- 2a=1+2a+0(¢) =1~ =0+ O(e?) . (455)
sionless units meaning that we exprassn units of 1/,
time in units ofr,, = n,,/m?, and all velocities in units of
VU = m3S,, /T (OF B, = L™9S,, /7). In these dimen-
sionless units the result for the center-of-mass veloaitysd V. FIRST-PRINCIPLE CALCULATION OF GENERATING
not change at the tree level, i.e. for mean-field. We will &rrit  FUNCTIONS TO ONE LOOP IN THE POSITION THEORY
the 1-loop result foZ (\), or P(u), in the form
9 A. General framework
ZN) = Zur(A) + aZ0Z(N) (447)
1 . 2 Let us now go back to the more conventional formulation

P(a) = —e™" +aZoP(a) (448)  of pinned elastic systems formulated in the "position tiy&or
i.e.uy, rather than in the velocity variable,,.

Let us go back to the original equation of motion in the
laboratory frame

inserting the factor o2/d for later convenience. For SR elas-

ticity d = d,. = 4, and one recovers the previous definition.
The calculation of Section 1V is easily extended to an arbi-
trary kernelgy. All we have to do is to replacé? + 1) by . .
gz ' Let us define, from formulas (345) and (350) o Ry gy Uartr = ~/m G Wart + F(uge, x)  (456)
fly) = [Tk, k) + T (k, 5)] (449) Ry} = 8t (Buwndy — g5,0) - (457)

k2—y—1 "
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250200 Note that here we have chosen to consideas a source and
. not included it inS, although this is a matter of choice. (Dis-
] order independent) initial conditions are easily specified-
1.5F sidering the path integral with fixed endpoints and convajvi
I with the normalized initial distributiorP[{u 1=, }]- Non—
zero temperature leads to an additional termil” [ 2, in
Sp.
I To obtain an exact formula for the observablg., w], we
0.5 need to consider the effective actidifu, u|, associated to
I Slu, u], defined in the usual way as a Legendre transform,

1 L L L L 1 L L L n L " L L L 1 f L L L 1 A
—1-0/—0-5/ s 10 Nl Wiw) = [ g bt [ s (463
r zx't xt
0.5

B Knowledge ofl" allows to obtain our observable as

1.0F

FIG. 155Z(>\) fortR elaStiCity (7 =Ld.= 2)- G[/L U)] = efa:t llztu;£w+fzt ﬁ;iw.q;;/wz/t—r[u“’w,ﬁ”’w]

u P(U) , , (464)
5 in terms of the solutions’;" anda”;" of the “exact” saddle-
point equations

or . or
[U, ’LL] = Uzt )

[u, 4] = / Gowere . (465)

(Suzt 5ﬂmt

These solutions are such that

e . ow
ugi = <umt>u7’w = /1/ gww’dw—m/t (466)
w ow
4‘1 5 u b = (Ugt) pw = S (467)

and thusi!;" vanishes whem = 0. There are other inter-
. . . esting properties. The covariance of the action under ti& ST
FIG. 16: u(_SP(y) for LR elasticity ¢ = 1/2, d. = 2). The form of transformationiy; — et + b, Wer — Wet +guar b implies

the curve is slightly different from the SR case, e.g. it sesszero that G[u, w + g¢| = e“¢G[u w], hence taking a derivative
for i slightly larger. w.r.t. w one finds the property

We want to compute an arbitrary generating function in the / g;;,u“,;” = / ot - (468)
position theory t t

Gl w] = oot ortine (458) Elvoete that because of the saddle point equation, in the deriva
It can be written as an expectation value with respect to the
dynamical actiorb [u, ], Doy W ity w] = Oy, In G, w] = / gohale  (469)
G[ ] W[H w] _ <€fzt HatUat+ [0, Ut g, ,w 't>5 .

one can differentiate only the explicit dependencewon
/D oSl [, Gaeg, [y wery+ [y nttiar The effective action can be computed in a loop expansion

as follows. ConsideV := (4, u) a shorthand notation for the
(459) fields. Then for an action of the form

This dynamical path integral is normalized to unity, S[U] = SolU] + Sais[U] (470)
[ D[u]Dla)eS"4 = 1. The dynamical action, now for the ®

Fj|splacemenu and a different response fieldinstead ofi.  the associated effective action can be computed as
is

_ o —Sais[U+8U]\ 1P1
S = Sy + Sais (460) F[(b] = SO[U] 1n<e a >$0 . (471)
So = / gt Ryt (461) Here(...)5 " indicates that averages ov&l should be per-
wa't! o formed using the actio, and that one keeps only graphs

S 1 A 162 which are 1-particle irreducible w.r.t. the vert8y;s. Hence
dis =75 |, dettat (ot —uarr) . (462)  hoce diagrams are sums of 1-loop diagrams.



B. Tree calculation

It is easy to see that, if one allows only for tree diagrams2n0Z R* R and one checks thé]]

one has

(U] = Tg + So[U] + SuwlU] = To + S[U],  (472)

since the only 1Pl tree diagram is the vertex itself. We have

definedl’y = %tr In S{ which is just a constant.
This leads to the tree approximation@f, w],

Gtree[M w] — efrt Ratuby™ + [, ab; g /“’ e — St ar ]
(473)
where in this Section the/;;", @/;;" are solution of the saddle-
point equation (465) with the replacemdnt— S, and will
also be denoted by";""***°, 4",""***° in the following. As is
well known, this is the sum of all tree diagrams in perturtati
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using thatA’(u) is an odd function. In the absence of disorder
the solutionisi = RTpandu = C-pu+R-g~ ' -wwith C =

tree _ e,uR-gfl-er%,u-C-u

as expected. Taking a time derivative of the first equatiom, o
notes the structure

(R +%)-a=g"w (479)

RV 4+ a=p (480)

i:zt,gc/t&’ - _59595/61526/ / ﬁzt”A/(uzt - Uzt”) (481)
t//

The scalar product-* denotes integration over the common
space and time arguments. We can now compute (473) by
substituting the solution of (476); again using (476) it &e&n
simplified into the two equivalent forms

theory of the non-linear part i.64;s. It leads to the mean-field Glu]™ree = oot Bty =3 [0 Wl Aluly,—ult))
theory, as discussed below. _ pu—taR u—tigtw (482)
Note that because of the saddle-point equation, in the - '
derivative
9. In Gtrcc[‘u w] = / g —1 o w,tree (474) 2. Expansion at small drivingg = 0™
Wt 9 - ! Yt
t,x’

one can differentiate only the explicit dependence wn
Choosing e.gw,; = vt one obtains

Ztrcc[‘u] _ Lfdathrcc[N’ w = ’Ut]

[ [

Here we have se&""*¢[u, w = 0] = 1, which is not neces-

v=0"F

(475)

sarily true, except if the system is prepared in the Middieto

state, which we now assume.

1. Tree saddle-point equations

Let us now specialize tg;1 = ¢% + m2. To tree level we
need to solve the following saddle-point equations:

100 Ugt + (m2 - vi)(umt — Wyt)

—/ ﬂmt/ A(Umt - umt’) =0 (476)
t/

vm@—viwﬁmm1/%mwwwm—%m
t/

— it . (477)

The solution of the above saddle-point equations can be ex-
panded in powers af,;, assuming thaf,; = (m? — V2)w,
is @ monotonous function of time for eachWe find

ul = ol Al =ald, 4 al, + ... (483)
From Middleton’s theorem we know that we should Iook fora
solution of the saddle-point equation such thigt”’ — v’ >
0fort —¢ > 0, henceu! should satisfy this property.

a. Lowest order: At lowest order, i.ew,; = 0T, the
first saddle-point equation leads, using (478), to the quasi

static solutioR’
VQ) /Hz’t“

while the second saddle-point equation leads to the “instan
equation” fora,

u® = A(0)(m?

x

(484)

(=100 — V2 +m?)ad, + crugt/ @l sen(t —t') = pay -
t/
(485)
where here and below we denote

o:=-A 0", (486)

Its solution is called:**, @** only when needed, otherwise and we use

u, 4. At non-zero temperature there would be an additional

term —2nyT'4,; on the r.h.s. of Eq. (476). Note that-*
vanishes foru = 0. We now consider sourcgs,; which
vanish at = +o00, hence we also assume tligt vanishes at
t = +oo. Note also thati,: — uyt + ¢(2), wer — War +

(—V2 +m?)¢(x) is a symmetry of the equations (STS). We

further have the remarkable property

_vi)/ﬁmt:/ﬂwta
t t

(478)

A/(umt - umt’) = —osgn(t - tl) + A" (O) (uwt - uwt’)
+O((’U/1t — umt/)Q) . (487)

27 Note that we expect that there are other solutions corretipgrio a non-
steady state, e.g. solutions with other prescribed boyratarditions.



b. Nextorder: To first order inw,; one finds

ul, = / (R +3) 4 gy fare (488)
x’t!
-1
al, :/ A" (0) [(RT)—1 +2T} o
I,,t/ xrt,xr
X / ﬁg,t/ﬁgltl (u;’t’ - U;/tl) . (489)
ty

We have defined

Yot = 0pgr0 [6,5,5/ / sgn(t — tl)ﬁgtl —sgn(t — t’)ﬁgt,}
ty
(490)
Shart = St ot (491)
We also used thaf i, = 0. Note that
/ Emt,w’t’ =0. (492)
t/

3. Caseft 1zt = 0 and connection to the velocity theory

In the velocity theory one is interested in observables)458
such that

/,uwt =0, ot = 0N (493)
t
where),; vanishes at = +co. Then Eq. (478) implies that

/ﬁzt =0 , Uy = —Opligy , (494)
¢

whereu,,; vanishes at = +oo. Note that at the level of the
MSR action one can rewrite

~ -1 ~ -1 .
/ uthIt,m,t,um/t/ = / umtwa,t,um/t/ . (495)
xt xt
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C. 1-loop calculation

Now we computd’[U] by including all tree and one-loop
diagrams. Itis then easy to see that

I\tr00+17100p[¢] _ S[U] + 1—\1[U] ,
) = %tr In&"[U] — %trlnSé’[U] ,

(501)
(502)

Let us denota

and we assumé&[U] to be small.
1

(9~ 'w, p). The saddle-point equations are thus
S'[U™°] = A, (503)
S'UI+ (@YU =A, (504)
hencell = U + O(T'"). To compute
G — eAU—S[U]—rl[U] (505)

we can thus considéi! as an explicit perturbation and to the
same accuracy, i.e. neglecting terms of ordeér)?,

G = Gireee U™ (506)

Going back to our explicit notations, we thus need to compute

_rt [ﬁu,w,trc(:’up.,w,trcc]

Glp, w] = G"[p, wle (507)

D. Explicit calculation

From now on, we focus on velocity observables, i.e. the
case

/ bot =0 ) ot = —Ohar (508)
t

The saddle-point equations in the velocity theory then reador which (493) and (494) hold, and will be used extensively

after some integrations by part:

R'+2)-u=g "t w=f (496)
(R™YT 4 )00 = o (497)
i:zt,m/iﬁ’ = 511’51515/ (498)
X |: - 20&12& + / ﬂzt”amt” A’/r/eq (Uzt - umt“):| .
7 -

To lowest order inv, i.e. forw = 0T we obtain
ig, =0, (499)
(100, + V2 —m*) a2, + o(a2,)* = At (500)

which is exactly the instanton equation (91), recovere@ her
from first principles. In section Ill B we have obtained it by
neglecting higher derivatives than the first&fu); we see
here that the contribution of these derivatives indeedslrees

if one looks at tree diagrams far — 0. They do not vanish
however to higher orders im, or at non-zero velocity.

below. One thus has th&y = 0 for w = 0. In this section
U = (4,u) denotes/tee = (/""" 4/**"*°) and all
derivatives are taken at the tree saddle point.
To computeZ(\) we need to expand to first order in.
The smallw dependence ob/***¢, denotedU here, can be

obtained from (503):

U=U"+U"'w+ O(w?) (509)
Ut =(8") g™ w,0). (510)
We need to compute
I = %tr(lnS"[U]) —tr(InR™")
1 _
= 5(8")asSis,Us + -
= %(8”);5 ggw(s");f} gl w4+ O0@w?) . (511)

We now go beyond the tree calculation and consider oneFor now, we ignore the quadratic substraction. Greek irdice

loop corrections.

denote eithefi or u and all contractions are implicit.
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At this stage this is still general enough to treat a non-used extensively below. The above relations arise becaeise w
uniform A,.. However for simplicity we will now focus on are working in the position theory in a case where we compute
the case of a uniform\,; = )\, i.e. on center-of-mass ob- velocity observables.
servables. The saddle-point solution is then uniform and we We now need the inverse second-derivative matrix. One can
denoteii,; = 49 = —0,uY. Itis independent ofy. first invert the2 x 2 block structure

We need firstS”, the matrix of second derivatives. It is

-1 — — T
computed in Appendix J for generél, then specified for (8Mzi = —(Sila) 'S0 (Si,) = —RTS,R
U'ee for generalu. Here we need it only in the case (508), (5”)55 =S/t =R"
and for a uniform\, hence we can usg @7 = 0 and it sim- =1 _ rom =1 _
o : (8" = (St =R
plifies further into ut
(8" =0, (525)

Sl.=0 512 . .
. w S 00 (512) where the inversions on the r.h.s. refers only to the spade an
(Sun)atare = Ouar A7 (0) ity (513) " time dependence. Given that in addition one 8gs, = 0,
S/, =R '+3% (514) there are only three distinct terms in the sum (511) of order
S = (RT)y™1 +xT. (515) O(w), and which we denote
. . . 1
The “self-energy’s. is defined in (490), and reads 6T = 5(8”)558{{{%(8”);5 g b w
St = Ooar Let (516) H(S")zuSinu(S s 97w
S// TIS/AN R S// T} P ) 526
Y = 0[6tt// sgn(t — t1)ay, — sgn(t — t')ay] S au Sl S aa 9w (526)
t We now specify to a unifornw,; = w;. The third derivative
= —0[26p 01 — sgn(t — t')dpup)] . (517)  tensor is computed in Appendix J2. It is important to note
that S!/, and all components of””’ are local in space, i.e.
Note that S sitr 2y s = Ozarar St 4, - We can then make the momen-

tum structure more explicit, using the above second-devva
/ i =0. (518)  matrix, and write
t/

. . 6Ty = or{ 4 67 4 67 527
The first component is actuallx(0), but can never appear ! oo (527)

for velocity observables; hence we dropped it. To pursue, we 5r§1> = _lmi’/ [Rf .S 'Rk}tt’ [3’/’ “Ro - w]
k

' wiu tt!
define the dressed response

(2) _ T
R=(R'+%)". (519) Ty = mQ/k [Ric] oo [Situu - Ro - w],s
In Fourier 5F§3) - _mQ/k [Rg]tt’ [Siua RG-St Ro - w] t
_ —1

(Ri)uwr = Rpawr := (R + %), (520)  All three terms are matrices in the time indices only, i.e.
with (R; '), = Ry}, This dressed response is related tothe  [Silu],,, = A”(0)a7ay (528)
one defined in (269) and (327), [S%U} e, = (840, — e, )sgnlt —t') |

Ryer = 0t — tl) e—(k2+1)(t—t')+2 [ dsal ) (521) [Sg;u} e, = —Al/(o) [(6,5/,51 b, )’&to, _ 5tt"&t01} ’
Namely one has and[SY! i, =[Sy, ], Note that we can define
Rktt’ =~ (Bt)_lett/(“)t/ s (522) 7?rt = / ROtt'wt/ (529)
t/

where the~ means that it is true up to a zero mode. Thegng replace it above since it appears on the right in all three
correct identity, proven in Appendix K, reads terms (527).
We now specify to the choice of most interest for us here,
$_oo Namely the driving at small but finite constant veloaity =
vt’. In that caseR; is not a well-behaved expression, since it
(523)  may contain an additive term in the position of the parabola.

. ) o ) Fortunately, in the calculation below, using (524) only fible
upon acting on a test functiafy. This implies the following  |owing combination will appear:

property
R, = Ro,p = —m?(t=t)+2 [ dsig (530
atRktt’ — Rktt’at’ (524) L Y \/t: out v l’<t ‘ ( )

1

/t’ R v = /t,(at)ilett’at/ (Pt — o) + kz——i—l



In particular,

lim O,R; = v/ Ro 1, = Lz ) (531)
t——o00 to<t m

sincea? — 0 for s — —oc.
It is shown in Appendix L that the third term vanishes,
T =0, (532)

Hence we only need to compute two contributions.
Substituting (528) into (527) we compute the first term,

1 - -
6:[‘51) = —EA/I(O)U’I”I’L2 ’Rktlt@tlu% Btzutoz
k,t,t!t,ts
X Rtht’(Rt — Rt/)sgn(t — tl)
1 -0 ~
= —§A”(0)0m2 RktltRktzt/u?] u?z
k,t,t’ t1,ts
X 8,5(%/ (Rt — ’Rt/)sgn(t - t/)
= A"(0)om? RktltRthtﬁ% ﬂ?zath
k,t,ty,to
= vA”(0)om? Rose ®(k, t)? (533)

k,t! <t<0

To obtain the second line we have integrated by part over
andt, and used (524). No boundary terms are generated since

U vanishes at = +oo. We used thad; 0, (R,
tl) = —(“)tat/’Rt/sgn(t — tl) =

— Ry )sgn(t —
—20p R 6(t —t'), i.e. thereis

afactor of2, not4. This is the first term obtained in Eq. (326).

Graphically, this can be written as

te---at to--- t/
Y IR YR
t1e----ets Wy 11 ¢----ets Wy

5T =2

t & mt
. \@\\ . (534)
tl & - - - t2 Wiy
Only the first term is non-zero.
For 5F§2), we find
ST = m? Rettr St vt Rty (535)
k,t,t
= —mQA”(O) Rktt/(?tﬂ?(Rt/ — Rt)

kt,t/

= mQA”(O)/ ﬁ?@t [Rktt’ (Rt/ — Rt)]
k,t,t

= mQA”(O)/ [0 Rysr Oy Ry — @ R O Ry
k.t t’

We have used thaR;, = 0, absence of boundary terms

[Rktt/ﬂto(Rt/ — Rt)]iztg = 0ando;Ry = 0y Ry = 0.
We have also employed (524).
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Now we can use (523) with, = 1 which gives|,, Ry =
Ji Rrer = (14 k*)~" and obtain, using (530) and (531)

5T :m%A”(O)[ / / Rogre, ®(k, 1)
k Jta<t'<0

1 -0
I — R . (536
/kkz‘f'l/tzqut Ott2:| ( )

The first term is exactly the term proportional to the single
®(k, t) in our previous calculation (326). The last term can be
calculated, recalling the definition:= — k

’UAN / - / dtQ/ dtut Rout,
= m?vA”(0 )/k e (537)

Graphically, this can be written as

e 4 -t
ot = W + M\
th wt5

2b
ST =

(538)
We can now put all together and obtain
t Fl
Z(N) = Z"¢(\) — 313% - (539)

which coincides with the result (332), (330) apart from the
additional contributiondx [, (1 + k?)~*. This contribution,
equivalent to (439) and (440), exactly cancels thg:) in

Z () to one loop, as it should and automatically removes the
guadratic divergence. It is thus exactly the quadratic temun
term. While in Section IV F 2, it came via some manipulations
on the seemingly vanishing terX” (v(t—t')+uqzt—uge ), in

the present calculation it appears automatically, andasae

to the zero mode of the velocity theory.

VI. CONCLUSION

In this article we presented in detail the novel tools and
methods which allow to calculate the statistics of velesiin
an avalanche for the prototypical model of an elastic iaef
driven in a random environment. It is the extension to the dy-
namics of our work on static avalanches, and the quasestati
reveals to be closely connected, albeit different, fronmstia¢-
ics. The dynamical observables are much richer as we aim to
calculate many-time correlations. The problem of how to de-
fine an avalanche, and the steady state measure for avalanche
statistics, is addressed and allows to make progress. At the
same time connections to avalanches following a kick, or non
stationary avalanches are discussed. The Middleton threore
which allows to order all realized configurations in timegys
a crucial role at all stages of the derivation.

Our construction starts by identifying the correct mean-
field theory, valid in space dimensiods> d,.. We discover
that it is given, up to renormalization of a few parameteys, b
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a simple tree theory, itself equivalent to a non-linearansin 10T
equation. This tree theory is interesting in itself. For tka- .
ter of mass of the interface éxactlyreproduces the ABBM i
model; it settles an important question concerning thalitsli 8
of the ABBM model, introduced before as a toy model. The [
full space-time statistics of the velocity field is found te b
given by the Brownian force model (BFM). This model is ex-
actly solvable, reducing the problem to solving a spacetim | ..
dependent instanton equation. Our methods allow to obtain4
a host of new results for the probability distributions at-se ]
eral times and a number of results at non-zero wave vegctor
which go beyond the ABBM model. A salient result is the
time asymmetry of the avalanche shape, which, within mean |
field, manifests itself at the local level (or at non-zejdut = _‘4‘ — _‘3‘ — _‘2‘ — _‘1‘ — 6 s
not for the center of mass. The universality of our results is
discussed and quantified. . o FIG. 17: The functiori(s) defined in (A1) forn = 1 (red, thick,
Continuing to 1-loop order, we obtain the distribution of | o right curve) up tor = 7 (upper left curve).
instantaneous velocities in an avalanche for an elastid-man
fold, as e.g. a magnetic domain wall, driven through disorde

These results are new, and have never been addressed befgre, \\ -« supported by ANR Grant No. 09-BLAN-0097-01/2.

They are the basis for furth_er work on the avalanche duration;)\,e thank the KITP for hospitality and partial support throug
and shape, beyond mean-field theory. NSE Grant No. PHY11-25915
Many of the results of the present article can be confronted ' '

to experiments, and for this purpose we have extended them
to long-range elastic kernels which are ubiquitous in reatur
There are numerous experimental systems at their upper crit

ical dimensions (e.g. magnets) and non-zgrobservables ) , , )
have not been measured and discussed previously. For other/Ve give here the inverse Laplace transform (211) in a series

classes of systems below their upper critical dimensioa, th'ePresentation. By inspection we find that for any fiffitéhe
techniques introduced here provide a novel and at present tt+1 has simple poles on the negative real axis at s, <
only way to attack them. —1/4, n = 1, ... the closest one to zero crosses over from
Let us list a few important prospects for the future. Sincest(1) = —1/T'atsmalll’tos, = —1/4 atlarge". Since all
we now know how to describe the space-time structure of. < —1/4 we can writes = —+£. Notingz = tan ¢ the
avalanches within the mean field theory, using the Brownypoles are solutions of,, = %tan 1, —nm /2. The function
ian force model, it would be interesting to develop analyti-s,, (T') is better represented as a functiorsgf
cal and numerical techniques to solve its evolution, andesol

of

Appendix A: Laplace inversion for a time window

the space-time dependent instanton equation beyond what ha 4 [% — arctan(y/—1 — 4sn)]
been done here. This should yield a detailed description of 1 = /1 1ds, o s=sn(T) (AD)

the space-time processes involved in an avalanche, and shed

light on their physics. Avalanches have similarities adael represented in Figure 17. Now we can compute the residues
differences with branching processes, and the spatiaksblap and using the equation satisfied by the poles we find, amaz-
an avalanche is an important observable for experiments. Wegly, that they are all simply all equal tg/T". Hence

have voluntarily focused on the small driving-velocity itm

since at present the FRG is better controlled in that limit, 1] & s (T U

but an important challenge is to understand the finitee- PU) = 75 > el : (A2)
havior, and in particular whether thedependent avalanche n=1

exponents present in the ABBM model survive beyond means

field theory. Other more far-reaching issues are to treat non he smallZ” behavior of the poles is

monotonous driving, hysteresis and to extend the theory for 1 1
systems which do not obey in an obvious way Middleton’s Is1(T)| = T + 6 +0(T), (A3)
theorem. (D) (n — 1)2r2 . 9 . 1 1
Sn = - — e —
T2 T 4 72(n+1)2
Acknowledgments +0(T) . (A4)

. . Hence at small” we get
We are grateful to Alexander Dobrinevski for numerous ¢

useful remarks. We thank Andrei Fedorenko, Alejandro 1y
Kolton and Alberto Rosso for stimulating discussions. This PU) ~ To¢ ; (A5)



consistent with the velocity distribution, as discussedhia
text. For largel” the poles behave as
1
e (T_) |

2p2 8 (71'2712)
To leading order at largé’ one can keep only the first two

™n
T2

1 487302
nT = =
sulT)] = 7 + D .

terms, and approximate the sum by an integral, which repro-

duces the correct asymptotic result

Y u_xZnly 1 —U/4
Nﬁ/o dne® 712 _72\/%(]3/26 ,
(A6)

PU)

equal to the avalanche-size distribution as discusseden th

main text.

Appendix B: Irrelevant operators and response function

The effective action of the position theory in the laborgitor defined forn > 3. We definel, =
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Let us thus discuss here the dynamical parf odnd con-
sider the dynamical coefficient3,,, as examples of irrelevant
operators. For concreteness we restrict to SR elasticity wi
dyw. = 4. The perturbative correction to the inverse response
function reads, to lowest order in the disorder (see e.2])10

_//OO ﬁe*(tfﬂnz)%(l _
qJ0 n

(SR_I e*iwt)A//(O‘i’) ,

q=0,w =
(B4)
which leads in the limit o) — 07 to

on = —nl,A"(07), (B5)
5Dy = (1) L1 A7 (0) (86)

A
I, = / (k2 +m?2)™ . (B7)

k

Ais an UV cutoff. Ford < 6, to which we restrict, we have
lma oo Iy = m*=2" 1, with I,, = [, (k* +1)7"; itis well-
(4m)??T(2 — 4) as the

frame can be written in an expansionin powers of the responsgna|ytical continuation to any; with I, = ma=41, for d < 4;

field 4 as
) — 1 ) )
i, u] = Z = umltl...Umptprﬁzltlnﬁzptp [u] . (B1)
p=1 p xi,t;

The termp = 1 expanded to linear ordef; ,[u] =

R;im,i_t,um/t/ + O(u?) defines the exact inverse response

function. Expanding the latter in time derivatives defines t

renormalized dynamical parameters, more conveniently ex-

pressed in the frequency domain,

R_l

q=0,w

= m? + niw + Z D, (iw)™ .

n=2

(B2)

Similarly, in the limitv = 07 the local time-persistent part of

the termp = 2 defines the renormalized second cumulant of Using —ma
m

the disorder\ (u),

Fﬁzt7ﬁz/t/ [{uzt = ut}] = LdA(’LLt — Ut/) . (83)

lim

[
Similar definitions hold for the-th disorder cumulant(®)
from the term or ordep in I'. All renormalized quantities
depend implicitly onmn.

The main pointis that near= d,. and in the limitm — 0,
the only relevant terms, i.e. operatorslinaren and A(u),
irrespective of the details of the bare model. Fet d,,. — ¢,

e > 0, all other pieces of are irrelevant, i.e. higher orders in
e. Ford = d,,. they are higher powers ity In(A/m).

In Refs. [73, 74, 98], this property was discussed in detail 1
for the disorder-part of, for instance that the dimensionless

(i.e. rescaled by the appropriate powengfhigher cumulants

the integrall, becomes UV divergent fat > 4.
One now defines the dimensionless inverse response func-
tion atg = 0, with times scaled using the characteristic time

Tm - T]/mQI

Rfl(w) = me(inm) (B8)

f@)=1+y+>_ Duy" (B9)
n=2

D, = D,m*" 2y~ . (B10)

The D,, are dimensionless. Let us now discuss the two rele-
vant cases:

() d < 4:

In+l = (2TL + 2 — d)fn+1md_2"_2,
Egs. (B5)—(B7) lead to the RG equation, up2¢?),

—mOyn = —nA”(07) (B11)
—my,D,, = —2(n — 1)ﬁn
+(—1)n(2n+2—d)L‘—TlA“(o+), (B12)

€l2

using the rescaled disorder (28). Sincedox 4 the behavior
of A(u) is universal for smalln, so are the behavior efand
of the coefficientsD,,. The first equation giveg ~ m?~ =,
i.e. 7, ~m~* with

z=2-A"(0")=2— e+ 0(e?) .

-G
— (B13)

C? = O(e?) forp > 3, and similarly, that the non-local part of The exponent is the dynamical exponent, with< 2. In the
the second disorder cumulantige?). Since the local second second equation we can use [73]

cumulantA = O(e), it implies that the renormalized disorder
V = O(y/e) is local and gaussian, and that all other disorder
operators are irrelevant.

jnJrl - F(n—|—1_d/2) d—s4 1
eI, 20(n+1)T(3—d/2) 1) (B14)
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Hence ford < d,. the scaled dynamical coefficients convergehence form — 0 the model is well described by the ABBM
asm — 0 to universal fixed point values, given to lowest order model with constant but non-universal parameteasido.
in € by

D. =8 A*”(O+) _ (D" 1-G c (62) Appendix C: A differential equation for Z(\)
" T 2n(n—1) 2n(n—1) 3 '
Ford — d.. — find | | (B15) We give a very general argument of how to calculgte),
ord = dyc = 4 one finds analogously without calculating the instanton. This method works fdr al
~ 1) Ao+ )42 ] — flrst-or(_jer instanton equations.
D,, ~ (=1 () = (=1)"an G . The instanton equation away from the source reads

"7 2nn—1)In(A/m)  n(n—1) 3In(A/m)
R __(B1) dva(t) = a(t) — a(t)* = f(a(t)) (C1)

Hence at the upper critical dimension the dimensionlestk coe ) o

ficients D,, decay to zero at smath, thus the model is faith- Where we have allowed for a possible generalization to an ar-

fully described by the BFM and ABBM mean-field equations Pitrary functionf(a). To obtainZ (), one has to integrate its

of motion, with (only two) parameters;, ando,,. The be-  solution

havior is universal, and largely independent of detailshef t t(\)
bare model. Fotl < d,. the model is not described by mean- Z(\) = / dta(t) (C2)
field theory, but by a new universal fixed point which is stud- -
ied in Section IV. We can obtain the inverse response functio a(t(A) = A. (C3)

for>d2: due—e by inserting (B15) into (B8) and summing oVer e that the translational zero-mode in timeudt) is not
nz4 fixed in (C1), but by the condition (C3). Compared to the

1 ~ standard solution, there is an arbitrary change in the tifme o
— * +
fly)=1+y+ 5((9 +1)In(y +1) —y)A™(07) . (BL7)  measurement. Taking a derivative w.k bf the last two equa-

Thus the final result for the inverse response function to ontlonS yields
loop, i.e.O(e) accuracy is dZ(X) -
. T = ) 4
R =@ +m?(1+iwmm=)” +0(?).  (B18) _ (A)
q,w m t =1. C5
( ;) 20| _, o (C8)
We used the result (B13) for the dynamical exponenThe - . .
behavior for largevr,,, > 1, i.e. in the limit of small mass., Combining these two equations yields
is R;L-N (z‘w)Q/Z as expected from scali_ng. This provides a dz(\)  a(t) ~at) c6
derivation of the dynamical exponent at finite frequency. o Ba(t) o = Fa@) o ) (C6)
t=t t=t

(i) d >4 where in the last step we used the instanton equation (C1).
The FRG flow of the disorder for this case was discussedsing (C3) we find the simple result
in [103] (Appendix H) and [73] (Appendix B). There are two
phases: (a) if the (smooth) bare disorder is small, it remain dz(») _ A _ (C7)
smooth under coarse graining, i.e. there is no metastgbilit dA f)
no cusp, and no avalanches. (b) if the bare disorder is Iarge]{ s
than a thresholdA(u) acquires a cusp, but flows back to
zero asA (u) ~ (2)?=*A(u), where A(u) is non-universal, dZz(A) 1 cs
and equivalentlyA(u) ~ A*~?A(u) is non-universal. Al- dx T 1-X" (C8)
ternatively, if one considers a non-smooth and weak bar
disorder (i.e. with a cusp im\y(u)), then perturbation the- The solutionis
ory converges, schematically — Ay ~ IL,O(A%) where Z(A)=—-In(1-X), (C9)
I, ~ A% — m?=* sincel, is now UV convergent and dom- ) , o )
inated by the UV cutoff (see [73] for details). where the integration constant is fixed by demanding that
Since the rescaled disordér flows to zero agn — 0, Z(0) = 0.
the FRG equations (B11) shows thatonverges to a non-
zero valueng asm — 0, hencez = 2. The value of
R = Mo exp(— fA dﬂTA” 07)) obtained from (B11) is non-
universal, since ;he flow of the disorder is itself non-unsad.
The coefficientd,,, on the other hand, using (B11) converge
to zero as

(@) = @ — 12, the case usually considered, we arrive at

Appendix D: More details on the ABBM model

In this appendix we use dimensionless units. Let us rewrite
Eq. (233) as

Q= —d,J (D1)

~ (_1)71 m\d—4
Dy~gr= (F) A0Y: (B19) T, 1) = —((vQ) — (v — 1)Q) , (D2)

2n(n—1) VA
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where J (v, t) is the current of probability. The equation for We recallz = 1—e~* and that) satisfies (D1) with ag — v,
the eigen-modes is

(V1= v72)?
—sQ = 0,(0,(vQ) + (v—v)Q) . (D3) I E—
_ _ (O (vQ) + ( )Q) o Q(v,vl,t)mvl—e 1 ~ O(vo — Vi) . (D9)
Let us first discuss the case> 0. The general solution is VAart(vyvg)3/

_ =1 _—v —14v

= CiL CyU(— D4 . .

_Q(V.) Ve [OILTTT V) + (. s,0,v)] , (D4) We have checked with Mathematica thfgf dv Q (v, vi,t) =
given in terms of the Laguerre polynomials and confluent hy-1, and that thé-function piece in (236) is crucial for this prob-
pergeometric functions. The Laguerre polynomials can onlyability conservation.

haves = n = 0,1,2,.. since for different values they do |t tyrns out that the two expressions (D7) and (236) co-
not decay fast enough at infinity For these integer values of jhcide forv > 0, i.e. Q(v,vi,t) = Quo(v,v1,t) as we
the two solutions become linearly dependent. These Laguerhaye checked numerically with excellent accuracy (the con-
solutions for alls = n have the peculiarity thahe current vergence of the sum over is very good). However thé
vanishes at thf origini.e J(v = 0,t) = 0, more precisely  fynction in (236) is not reproduced. Hence the terms 1
J(v=0,t) ~v”atsmallvforalln > 1. In addition the cur- oW have a finite integral over. This integral does not add
rent vanishes everywhere far= 0. For the hypergeometric up to 1. Somehow the = 0 term is replaced, foo = 0 by

i i _ _ I'(v) v .
solution the currentig (v = 0,1) = r—- a delta function, multiplied by the factef 1. This factor

In their work [2, 3] ABBM retained the solution with zero takes into consideration the absorption at zero, which i no
current at the origin, hence the solution which vanishes fopresent.

Voo, Other boundary conditions at > 0, such as absorbing
Qn(v) =v"te VL= Hy) | s=n=0,1,2,... ones, can be studied, which we leave for the future.
(D5)
They thus obtained the normalized propagator [2, 3],
Qu(v,tlvi, t) = v e Appendix E: Checks of the 3-time formula for MF (ABBM)
= n! v—1 v—1 —nt
8 Z I'(v+n) L Ly (v)e™™, (D) We now want to check the 3-times correlation. We use the
e . formula
a formula valid forv > 0. The termn = 0is Qo(v) =
v'~le=v/T'(v) and integrates over > 0 to unity, the oth- o° 2 42
o0 . ! —v i a b
ers to zero. Hencd,” dvQ(v,vi,t) = 1. Since the cur- / dve™"I1(2av/0) [1(2bv/v) = I (2ab)e™ ™, (E1)

rent vanishes at the origin for all times (i.e the total proba
bility for v > 0 remains unity), for large times the probability
reaches the stationary state which has zero current evergwh

Q(v,vi,t) = Qo(v).

which yields:

Let us now consider = 07. One then finds that (i) the La- /d’02€>\2v2Q(’03, 2, 2")Q(v2, v1, 2)
guerre polynomials must again be of integer order to behave
well at infinity (one hasl;'(v) = 1, L7 '(v) = —v, and so B \/U—Te”l VI3 mize ) sz
on). (ii) The Laguerre solution correspondingrto= 0 be- U3 2"y
haves ag~" /v, hence is not normalizable. (iii) The Laguerre JI=2"
solutions forn = 1, 2, .. have anon-zero current at the origin. x I (27\/1;3@1) . (E2)

(iv) The hypergeometric solution does not behave well at the
origin ~ 1/v unlesss is positive and integer, in which case it R 3
again becomes identical to the Laguerre solutions. The onlyi€rery = §+$—1, y=7—-Aandl—z" = (1-2)(1-2").
possible solution for the propagator thus seems to be orA; = 0 we find

Qu=o(v,v1,t) =v e ZnL;I(V)L;I(Vl)e_nt , (D7) /dvz Q(vs,v2, 2" )Q(v2,v1,2) = Q(us, v1,2"),  (E3)
n=1

which is the limit of (D6) forv = 0%, where the terrm = 0
has dropped because its prefadt¢r(v) vanishes.

On the other hand, inspired by our result from the text, we .
found that there is another expression for the propagator a/
v =0T, namely 0

as expected for a propagator. Other useful identities are

~ 1 _1-z
dv3eA3”3Q(U3, Vg, Z/) = 6712(1*7) (e”2 2T(1—2X3) — 1)

~ (1—2)vq (E4)
Q(VQ, Vi1, t) - Q(V27 Vi, t) + 5(\/2)67 = (D8) o0 ~ e Y1 1 vy _ 1=z
N / dv1 M1 Q(vg, v1, 2) =—e = (evzzU*“I) - 1)
~ \/1 — Z _vitve Il (2 > \/V1V2) 0 V1 V2

Q(v2,v1,t) = vie” o :

N (E5)
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This allows to obtain This shows that the 3-time velocity probability can be writ-
ten as a product of 2-time propagators, i.e. the 3-time \tgloc
probability at tree level (i.e. in the ABBM model) is Marko-
U1 vian.

e vt

/ e>\1v1+>\2v2+>\31}3 X Q(’Ug, Vo, z')@(vg, V1, Z)
v1,v2,v3>0

=In(1 — X2" — Xa2’ + A\ Aa22))
+In(1 — Aoz — A32” + Aadz22’) — In(2” — Ag22’)

—In (1 S A = Ay — A3 4 A Aaz + At daz” 4+ AgAg2!

- /\1/\2)\322') : (E6)
We recognize that the last logarithms. Taking the three Appendix F: Spatial correlations in the tree theory
derivativesdy, 05,0, gets rid of the other terms, and shows

that
- "~ . ~ Here we give further calculational details concerning Sec-

v10203Q(v3, 02, 2')Q(v2, v1, 2 = LTZ) L, 06 9202000 23 tion Il H, in particular we work in the steady state to lowest

. . . . order inv and in dimensionless units. The results are exact
Since the latter expression is also the inverse LT Ofy he tree theory, i.e. the BFM in an or for SR disorder
G133010203P(v1, 02, v3), and since neither function contains i, the mean-field theory. For the 3-point function to firsterd
a¢ function, we obtain in v, computed in the text, let us indicate the following inte-

~ ~ — gral formula, useful to generate a series expansion(imith
Qo3P (v1,v2,v3) = Q(v3,v2, 2" )Q(va, v1, 2) - (E8) t; <ty <0):

P — 2 2 2 2 rt1 62(1+q2)t’

Uty U gp, €N100 = v——e~ () ttta) 1y 4 \(eht — 1)} [1 + Ae'2 — 1)} / At ————— . (F1)
L= —oo  [L+ et —1)]

Let us now detail the calculation of the 4-time correlatiandtion, from which we will also extract the avalanche shiapthe

stationary state. Consider the sousge= \od(t — to) + A\30(t — t3) fortg < t1 < t2 < t3. In dimensionless units, this gives

1 P 1
TT Tt <1 <)+ e
A3 (14+Xo)Azeto+Xo(1—A3)e?s e

ot < to) . (F2)

Uy =

The dressed response function has six sectors. We indiobt¢hmse needed:

RS, = — )07 )

(1 — /\0)(1 — )\3) + )\0(1 — /\3)6tb—t0 — )\0)\36t0_t3 + (1 + )\0)/\36tb—t3

P = , e <ty <tg<t
(1 — /\0)(1 — /\3) + )\0(1 — /\3)8ta7t0 — )\0)\38%72&3 + (1 + )\0)/\38%7253 b 0 3
1+ Ag(etbit‘% — 1)
P = , ta<to <ty <t F4
(1 — /\0)(1 — /\3) + )\0(1 — /\3)615‘17260 — )\0)\38%72&3 + (1 + )\0)/\38%7253 0 b 3 ( )
1+ )\3(6tb7t3 — 1)
= T (1) to <ty <tp <tsz. (F5)
We now use
(1+As(e” % = 1)(1+ dp(elo — 1)) for ¢’ > ¢
/ Riots_ (1= 20)(1— Ag) — Aohgelo s o (F6)
rep IO 1+ Ao(1 = Az)(e" 77 = 1) + e T h3(1 + Ao) fort’ <t
(1 — )\0)(1 — /\3) — /\0/\3€t07t3 0
We must split the integral into two parts,
erLdao'l:thlﬂfqt2e)\3Lda3 — 2’[}(/ —|—/ )Rz?tf?t/R(t](jizft/ {/Rzltog,t/,t} . (F7)
t'<to<ty to<t' <ty t
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The resultis

’[}(()\3 - 1) 8t3 — Agetl)z ((/\3 — 1) 8t3 — A38t2) 2
(()\0 — 1) (/\3 — 1) ets — )\0/\38t0) 4
—¢%—1)(=2tg+t1+t . L e Ng+1)A3—eB3 No(A3—1
y e( q )( otti+t2) o Fy (3, 2 (q2 + 1) ,2q2 + 3; etO&O&S,eng ()\0,1(;%)\2,13)
> +1

e(iq271)(t1+t2)73t3 ((/\0 _ 1) ()\3 _ 1) els — /\0)\3@150) 3
(A3 —1)3(2¢* + 3¢ + 1)

2 to—ts3
X{ (o = 1) (24> + 1) [(=e2)) Ly (3, 2(° +1) 524" +3; %)
-

1 . - a-
e}\()L uouqtlu_qtzekgL uz —

_|_

tl—tg)\
+e2(@ )0,y (37 2(¢* +1):2¢” +3; e,\ 13)]
5 —

to—tgA
20 (42 + 1) [eQ(f“)tﬂ Py (3, 2 +1;2 (¢ + 1) ; ‘1713)
-

ettt g (3902 £ 132 (g2 1) ; s F8
217q+7(q+)7)\3_1 ()

We checked that fog = 0 this expression yieldéhaAlZl()\o, A1, A2, A3)[x,=x, =0 and that for\y = 0 it yields (285). This
expression is not invariant by time reversal i.e. by simétaus changegs — —t3,t1 — —ta, to — —t1,t3 = —tg Ag <> As. It
is invariant however, af = 0. The non-invariance by time reversal can already be seehned#-point function, taking,0x,:

90— (0*+2)T—(g°+1)(2t1+3t2)
(1+¢*) 2+ ¢*)(1+2¢*)(3 4+ 2¢°)
X |2 (2(]6 + 9(]4 + 13(]2 + 6) e((342+2)t1+(2q2+3)t2+(q2+1)T) 14 (q2 4 2) q28(q2+2)t1+2(‘12+1)t2+%

g g g g o —2d
U1 /2t U—g,t,Ur /2 = VL

A +2) qu(q2+1)t1+(2q2+3)t2+% ~3(2¢%+1) qze(q2+1)(t1+2t2) + (2¢* + 7% + 6) (P H1) Bt +202+T) | (F9)

This function is not symmetric by — —t2 andto — —t4.

If we take the limithg, A3 — —oo we obtaindy, tqt, t—qt, 04, Which we do not reproduce here. One can check that the first
hypergeometric term yields zero, although the limit is guitlicate. Taking-0;,0;, and dividing by the duration distribution
we find our final result:

oo e '
<uqt1u*qt2>03 = m{
2 (e — %) 2,—(+1)(t1+t2) {26t1+t3 (€2q2t1 _ 1) _ 2+t _ 2t (6(2q2+1)t1 _ 1) +e2t1}

(e — 1) (efs — et1) (efs — ef2) e(~a"~1)t1—(a*+1)t2=3t3

* 2¢* +3¢* +1

X (1 _ 2q2) etl-‘rtz + (1 _ 2q2) et1+2t3 + (1 _ 2q2) et2+2t3 + (2q2 _ 3) et1+t2+t3 + (2q2 + 1) e3t3

(247 + 1) e 4 (2g2 + 1) €20 — (262 4 3) 2}

x| (2¢> +1) (_62(‘12“)“) 2F1(3,2(® +1);2¢° +3;¢" %) + (2¢° + 1) 2F1 (3,2 (¢° + 1) ;2¢° + 3;¢7 %)
+2(+1)e™ (e(2q2+1)t1 2F1(3,2¢° + 152 (2 + 1) ;e 7)) — oFy (3,2¢° + 1;2 (¢ + 1) ;e_t3)) } } (F10)

where we have sef = 0 for simplicity; the general case is obtained setting> t; — t9, i = 1,2, 3.
|




Appendix G: Behaviour of the 1-loop correctiond Z(\) near
A=1

Here we indicate how we extract the behaviof 8{ \) near
A = 1. We recall our result

0Z(N) = i an K" (G1)
n=2

with a,, given in Eq. (352), and repeated here
~ (n—=3)(n—2)?In(n —2)

" 2n?
+61n(2) —2n(n+1)(In(2) — 1)
n?(n+1)
~(n=1)(n((n—6)n+2)+6)In(n—1)
n%(n+1)
(n? — 8n+3)In(n)
2(n+1) ’ (G2)
agzlinganzl—lnél. (G3)

From the relation1 — A\)(1 — k) = 1, in order to getZ(\)
in the limit of A\ — 1, which controls the tail ofP(«) for
u — oo, we need this expression far - —oco. However,
the series expansion has a convergence radigsoinonly 1,
equivalent to\ < 1/2. A first thing one can do, is to re-
express this series ikt

SZ(N) = ank" = cM. (G4)
n=2 p=2

The formula for the coefficients, is

Cp:(P_l)!gan%. (G5)

The convergence radius 6 ()\), as a series of, is 1. While
this is useful for intermediate values bf it does not allow to
study the singularity fon — 1. In order to analyze the latter,
we now derive an expansion & (\) in powers of-1/x. We
start with

6Z(N) =) an(=1)"(=R)"
n=2

dn T

an(—k)"  (G6)

_ 2 -
A ¢, 2misin(mn)

CZ Cl

A /A
l2—‘101j3456

FIG. 18: The complex: plane with the contours; of Eq. (G6) and
C2 of Eq. (G7). The branch cut startingrat= 2 is indicated.
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The contour starts ak + id, goes to3 + i0 passes left 08
and then goes toc — id, for any0 < ¢ < 1, see figure 18.
The formula uses the residue theorem, and that the residue of
Sin(”—m) at integern is (—1)™. Two remarks are in ordeg,,

has three different branch-cut singularities, starting at 2,

n = 1, andn = 0, and going ton = —oco. Singling out
the termas avoids crossing the branch-cut startingiat 2,
which would not be allowed. Second, one could try to move
the explicit factor of(—1)™ into (—«)™. This does not work,
for two reasons: First of ally/ sin(nw), when prolonged to
the complex plane, converges exponentially fast. This doul
not be the case far cot(n), to be used to produce the non-
alternating sign. Worse", for negatives, when prolonged to
the complex plane, actually diverges in the lower half-plan
This is why we use the formula as is.

Having an integral representation foéZ(\), we can now
prolong analytically forx — —oo, by deforming the contour
of integration taC,, which starts at-co + i, goes ta2 + 9,
then passes at the right Bf and finally goes fron2 — ¢ to
—o0 — 10; see again figure 18. This gives

20y = 28 [y - 2 <—K~>2JG?)

Note that while the integral representation (G6) is congetg
for —1 < k < 0, the representation (G7) is valid feroo <

k < —1; the smallerx, the better the convergence. We have
checked the integral representation (G7)dce —8,i.e.\ =
8/9 numerically. Then both (G7) and theseries (G4) give
§Z(8/9) = 8.17538, with a relative error ofl0~". Therefore
trusting our integral representation, we can now analyfa it
large negative. Then it will be dominated by the contribution
at the beginning of the cut singularity af,, which starts at

n = 2, see the first term of (G2), and the corresponding plot
18. Therefore for large negative the integral (G7) is given

by

§Z(N\) ~ ?i % —(n— 2)8111(” =2 (L
2

K KJQ
= B O(Un(—n)P) (G8)

One can obtain more subleading terms by expandingo
higher powers irin — 2). Doing this, we find

, 1 1 21 + 272
0Z(A) =k [8[111(_%)]2 T3 RP T 16—

N 15 + 472 N 585 + 21072 + 147?
AIn(—~r)]® 48[In(—~)]6

S (P N
4 2 ) In(-x)" 7

We can test this series against the integral (G8): We find for
k = —10' thatéZ = 2.887 x 106 with a relative error of
10~%. Fork = —10'%°, we find§Z = 2.400 x 1094, with

a relative error ofl0~9. Forx = —10'999 we find§Z =

(G9)
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1992 H £ —6 2 2t
2.361 x 1075, with a_relatlve error ol0~° (probably from _ ke ke Ei (—2t1) (k + 2kt1 — 2)
the numerical integration). (ketr — 1)3
Expressed in terms of, our final result is given in Eq. (397) — 2keMEi (—ty) (Ketl + kel — et — 1)

of the main text.
+ k% = 2r%e" + 2ke’ —1In(t) —yE — 1 + In(2) |(H3)

Appendix H: An alternative approach to express the 1-loop

tern: @ 122t
contributions 6Z(\) and 6 P(u). Tei (kykyty) =

(k2 + 1)2(rel — 1) °

(H4)

Here we calculate the 1-loop correctiéf (\) by first in-

tegrating over momentum. More precisely we start from EqSeveral checks are in order: First, the two counter-terms,

(330), calculateb(,t) as given in Eq. (340), but instead of when integrated ovet; reproduce the one given earlier in
Eq. (341) and (342) we first integrate oveand therk, leav-  Eq. (350),

ing the ¢1-integral for the end. In order to be able to per-
form the k-integration, we have to introduce counter-terms

right away. The term involvingp(k,t), with the necessary / 1) 2)
k,k,t k,k,t
counter-term7." (k, x, t,) becomes <0 Jei (ki) + Toi (ks i)
k(3 +k?) +2In(1 — k)
TN (k1) = ) : (HS)

(
o0 t 1 ) inite limi

. 0112 | +(1) Second, both7( (k,t1) and J¥)(k, t1) have a finite limit

_/0 (k7)dk {‘7“ (k, 5, 1) +/ dt (k, )R (. 1) for 1 — 0. This is why the last term in Eq. (H2) was added,

— 00

K22 El (—t;) even though thé-integral would have been convergent with-
= Tetll — kEi(t1) out the term at fixed; ..
kel (k4 kelt (2t — 1) — t1) We thus have found an integral-representatiodfof\) as
- Ty (eeh — 1) (H1)  defined in Eq. (351), with the same counter-terms,
t7c(t1)(ka K, tl)
2
_ ket (2kelt — 1) kel kel titt (H2) §Z(N\) = TV (k,t1) + T (s, 1) . (H6)

B2+ 1) (ket —1)  K2+1 K> +1 t1<0
The second term involvingb(k,t)?, with the necessary

2) The two contributions were given in Egs. (H1) and (H3).
counter-term7..” (k, k,t1) becomes

We now note that all terms in Eq. (H6) are algebraic func-
g2 (K, t1) tions ofx, and thus of\. Hence the inverse-Laplace transform

oo t is possible. Replacing, by ¢ to alleviate the notations, this
- / (k%)dk? [jc(f)(k, Ky t1) + / At ®(k, 1) R(k,tl)} becomes
0 —o00

= [ o et [ gt g -
fi(t) = et(2t + 3)Ei(—t) — ' (2t + 1)Ei(—2t) + Ei(t) + €' (2 - %) —e '+ % +2 (H8)
fa(t) = [ (2" —8e* +12e*") t + €' — 4e* + 6" — 664t] Ei(—2t)
+ [( — 2t 4 8e2t — 12e3t) t— 3et + 1062 — 7e3t + Geﬂ Ei(—1)
- [m(t/z) + yE} (262 + €3) + et + 13¢! — 1262 + 4¢P + sl 362? o1 g (H9)
fa(t) = [ (8 —2e*) t — e*' + 4" — 6€4t:| Ei(—2t) + [ (2¢% —8e*") ¢ +2¢* — 26" + 684t:| Ei(—t)
—[I0(t/2) + 1] (¢ +2¢%) + 6! — 962 4 4¢™ —1 (H10)

Lty € ) at 3ty g e 1y
fa(t) = et + 5 e Ei(—2t) + |e* — e”"t|Ei(—t) + 5 —¢ Tt 5e In(t/2) + ve (H11)
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This is a closed expression f6P (). We can now check all  with

our statements made in the main text. First of all, we repro- AlR = _In(2) (14)
duce the plot on figure 11. 2T )
For the smallz behavior, we remark that the integral (H7) LR _ 2 (n? +n —6)In(2)

Up>g = — ng(n ¥ 1)

is dominated by the terms proportionaldo® (=<, in the
(n—4)(n—3)(n—2)In(n —2)

limit of small t. The leading contribution comes from expand-

ing f2(t) for smallt, and reads + 2n?
(2—n)(6+2n—Tn?>+n?)In(n — 1)
. _alnt _In(d) + e n2(n+1)
Py, (1) ~ —2/t<0 ¢ty =2———. (H12) L (n=1)(®0* ~9n+2)In(n) 5)
2n(n+1) '

Note thatfs;(¢) and f4(t) could also contribute at the same Forn — oo, the leading behavior is
order, but they have no term proportionalliot, thus they —2In(n) — 3 —21n(2)
only correct the subleading term 1/4 leading to the final al® = 2

result n
Comparing with Egs. (376) and (386) shows that

In(i) + 2 1 _ 12 ZMR(\) = —In*(1 — o f —00. 17

n(u) + ’@—i— 7—In L O(nu) . (H13) 0Z = (N) n“(1—-X\)+ or\ = —o0 (17)
U Thus

ZMR(\) = Zo(\) + ad ZHR(N)

+0(n™?) (16)

P (i) = —2

To obtain a systematic expansion one rescales«t and in-

tegrates term by term inthe series expansion at small This =-In(1-AN[1+alh(@l-XN+...]. (I8)
confirms the predictions given in Eq. (388) for the exponentrys is consistent with a modified critical behavior at small
a, and for the constantt in Eq. (395). velocities

1
P;EEI(U) ~aul E , a= 14+ 2a+ 0(62) . (|9)
The behavior fox — —oo (i.e. A — 1) now reads

dn In(n — 2)

Appendix I: Long-ranged elasticity v = 1
OZER (\) ~ 7{ — L (—gr)"
,U,—l( ) C2 2 Z 4 ( K:)

In this appendix, we calculate all relevant quantities fRr L

elasticityy = 1, d. = 2, with the kernel defined in the main _ K2 + O( K ) (110)
i 5] -
text. We found in Egs. (447) and (454) that 41n(—rk) [In(—k)]
This implies a different tail than in the SR case.
Z"B(N\) = Zo(\) + a6 Z"R(N) (1)
SZMR(\) = / de(z+1)f(z+1)+0(e),  (12) b. Second method
0

We find, analogously to Egs. (H1) and (H3), the integral
wheref(z) is defined in the text, in other words, the calcula- representation
tion is identical to the short-range case, except that whien i

grating overk, we have to replacé¢ d(k%)k? by [ d(k)(1 + SZMR(\) = TV t) + TP (k,t1) . (111)
k?). This replacement can be performed before or after the t1<0
time integral. The contributing terms are
t1
TN (k1) = —5—— (122)

2ty (kett — 1)
X [QIietl (2t1E|(—t1) — 1) + 2Kk — 2’}/Et1 — 2t1 In (—tl)}

2 2t
TP (k,t,) = %
In this method, we first integrate oveleading to formulas (ke —1)
(345) and (350); then we integrate ovewith the modified X [Ei (—t1) (—2r%€*" — 4K%e* by + dre™ + drke®")
measure. The series expansion is then given by

a. First method

+Ei(—2ty) (k%€*" + 4k t) — dre®') + 2K7
— 4r%e" 4 2K%e* — (yg + In (—t1)) (2ke™ + 1)

57VR(3) = ;agﬁ,{n (13) +1n(2) (25 + 26 +1) | (113)
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Inverse-Laplace transforming Eq. (111) yields an integearesentation foP™" (1),

PR (a) = Po(i) + a PR (1) (114)

- i LR LR LR ()2

P = [ et e T | T+ e ) o

(et —1)(2e't — 2t + €')
t

ER(E) = [(de! = 1662 + 24e™)t + ¢! — de? + 6e™ — 12| Ei(~20)

LR (1) = —el (4t + 1)Ei(—2t) + 4e'(t + 1)Ei(—t) + (116)

] (—et 4+ 16¢% — 246™) ¢ — de’ + 126 — 2¢¥ + 12| Ei(—1)

3 t_ 3 2t 3t __ 1
+2e7! + 30t — 322 4 1263 4 = C t+ (ef —4€® — 6™ [In(—t) + 7]

+ (8¢* +€*) In(2) + (4€* + 2¢%) tIn(2) — 12 (117)
LR (1) = [(1683t — 4e)t — e 4 4eBt — 126‘”} Ei(—2t) + [(46% — 16e3)t + 262 + 4¢3 + 126‘”} Ei(—t)

+12¢" — 18¢*" + 8¢ — (e*' 4 8¢™") [ln(—t) + ”yE} + (7€* +2¢*) In(2) + (2¢* +4¢*") tIn(2) =2 (118)

() = (2€3tt + 5 ‘“) Ei(—2t) + (—2€*t + e + 2¢*") Ei(—t) + ' — 2¢*" 4 ¥
3 3
_§7Ee3t + ( o % In(2) — 2¢ e* In(—t) + e*t1n(2) (119)

The analysis of the small. behavior givessP*®(i) ~  u=u" =0, anda = a°. Hence
—2‘“7“, hence is consistent with the above result (19).

" _ " ~0 ~0 ~0 ~0
Sunu re 511'A (O) |: - umtatt/ / Ugty + Uyt Uy
ty

Appendix J: Second-order derivativesS” and third order 11 -1
derivatives 5"’ Struy,y = B+ X)ar
SQIJ./ztu 2t ((RT)_l + ET)
1. Second-derivative matrix zt,z't!
s;’nu oy = —0220A(0) . (J5)
We give here the matrix of second derivatives of the action:
S = O { R / Uty A (Ut — Uy, 2. Third-derivative tensor
ty
+ gy Uy A (g — uzt/)} J1) In the text we need the third derivative tensor only at the
y 5 5 tree saddle point withv = 0. It can be obtained from (J4)
Sunu Il 5tt' (770616/ - vm +m )
_6;3;3/ |:6tt/ / amh A/(umt - uwtl)
1 / S’L/l./;t’u. 2/t Yyt uzltl (‘]6)
ty
— A (tgr — gy )i } 32
(U;Et Uyt )umt ( ) _ 6mm’Al(0+)(uit _ U;t/)sgn(t _ t/)
SN " 5tt’(_7708t/ - Vz + m2)
uttu ¢ ¢ / S’L/l./;t’u. 2/t Yty uzltl (‘]7)
~ t
_6II/ |:5tt// Uzt A/(uzt - Uztl) !
h = 0, A"(0) [5tt' / g, (U — Ugy,) — Uy (U, — u;t’):|
+A/(umt - umt’)ﬁ/wt} (‘]3) t2
" ~1
S,Z“u i = —6M/A(umt — umt/) (J4) " _Sunu 14Uy ty u11t1 (‘]8)

We will need it at the tree saddle point and to lowest order in It [ R B }
w, i.e. forw = 0, where according to the previous section Ouar A'(07) |Burr | gy, st — t2) = sgn(t = )ity



Consider now the uniform cage,; = p; andag, = .
ThenS”! = Opara, Sy ¢, with:

xt,x't! x1,t1
[Sttltrre, = 0 (0te, — Oty )sgn(t —t')
[Stvulttre, = —A"(O)(étt’tl/ iy,
ta

—5“/11?1 — 5“1’&?/ + 5t/t1'&?/)

(39)

[Stualtrre, = [Shtwlttaer

Appendix K: Dressed response functions for velocity
observables in the position theory

We note that with notatio,; — ¢;:

/ (R + X)) (K1)
o

= 0101+ K0+ 0n — [ senlt — )il (60 — 1)
t/
Hence for a smooth functiogy:

/ (R~ + X) 4w dyr
t/

= Oy + K2y + b + / sgn(t — t')ig
t/
= (0 + E* +1 —20Y)0s
_ o2/t ar'ay, (0 + K2+ 1)672 Jtat'al, 0y
Hence apart from a zero-mode in time,

(R D) = (9) 7 e W (9 + k2 +1)e =2/ 40 gy,
(K3)

. (K2)

The zero-mode can be treated as follows. Consider the con-
stant vectory;, = ¢_., = const. Then because of (518) one

has

/(R*1 + D) = (B2 + 1) oo - (K4)

This implies that the vectap, = ¢_, is an eigenvector of
R~ + 3, with eigenvalug:? + 1. Hence one also has

1
-1 -1 _
/t’(R + E)tt/ v = k2 + 1¢7oo .

This yields
/ Rt brr = / (R7'+ E)t_t/léf)t'
t/ t

= (@)t W (9, 4 k2 4 1)L 2 W G lp, — ¢ )
1
+k:2—+1¢_°° . (K6)
Using the definition oR, givenin Eqgs. (327) and (521), we
can rewrite Eq. (K6) to get the fundamental equations

Rueer o = /(3t)71Rktt/3t/ (b — P—o0)
t/
L1
k241
O Rty = Ry Opr

(KS5)

t
P—o0 (K7)

(K8)
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The subtraction o_ ., from ¢, is noted for clarity reasons
only. A first corollary is

(R + 3w ) =tr(mR™Y) . (K9

Similarly one finds that

1

= ((r +2>tt/)T = (r'+3)

/

(#)+27) »
(K10)

tt’
Appendix L: Third diagram 6T'{*
We now turn to the third contributio:ﬁff’):

(3) _ 2 1" 1
0Ly = =m” [ Ri'tSa,u, 4y, Rotats Suyyu,, Ria

=m2aA"(0) / Rt — ey Jsgn(t — t1)
tt't1taty
X R0t2t1ﬁt02ag4Rt4 (Ll)
Using thatR . = 0, and exchangingandt’ we get
ST = m20A"(0) / R sgn(t — t')Rowye
tt'taty
X 8t2ﬂ?28t4ﬂ?47€t4
= vm?cA"(0) / O [Riwersgn(t — t')]
tt'tatats
X Rotyeiig, U, Rotyes o (L2)

where we have used (524) and (530). Now we use that

Bt [Rktt/sgn(t — t/)]
= Rktt/(?t/sgn(t — tl) + Rktt/&gsgn(t — tl)

= —20(t —t') [Rtrr — Riearr] - (L3)
SinceR it = Ry = 0 we find
5T = 0. (L4)

Graphically, this can be written as

--e—p—e - - &= UWy;
t1 to tq

- - w
+ 1 ﬁ:’t/ s t(:'t4 > (L5)

These terms are zero: The first term is the response at equal
times. The second term, when viewed in standard diagram-
matics can be mounted, moving one arrow-head ftoto ¢,

or vice versa. So it is expected to be zero anyway.

3
s =



Appendix M: 1-loop expansion for the lowest cumulants

1. Expansionin) of Z())

Let us first recall the result for the one loop contribution to
Z(X) to all orders inx derived via perturbation of the instan-

ton equation and displayed in Eq. (345). Here we reexpress i

as a function of\ and display it up to to order 4 i,

Z(\) = Zo(\) + A / Tk N) + Tk, ) (M1)
k
1 23+ k%) A2
kA = 7t (1+k2)(2+K2) 2

2(108 + 128k? + 47k* 4 6k5) A3
(1+k2)(2+ k2)(3+ k2)(3 + 2k2) 3!

6(16 + 13k2 + 2k*)(45 + 22k + 4k*) M4
(14 k2)(2+ k2)(3 4 k2)(4 + k2)(3 + 2k2) 4!

+0O(X\°) . (M2)
The counter-term has the expression
A 2 (k? 4 2) A2
Tk, ) = — - — M3
TR 241 (k2+1)% 2! (M3)
2(3k24+7) N3 12(2k%2+5) \* .
2BRAT)N 12ERIHN

(k2 +1)* 3! (k2 4+1)% 4!

As requested for a counter-term, in the suf{k,\) +
Tk, \), the terms proportional to/k? and1/k* at large
k cancel, and one is left with

Tk, A) + T (kA

A2 At 1 1
2 A 2N 5\ & -
= |+ 5t +0 (A )} k6+0<k8)(M4)
2. Diagrammatic calculation of the lowest-order cumulants
We recall from Section Il B that
o~ A" )
up i vZ(\) 4+ O(v?) . (M5)
n=1 ’

The cumulants, or equivalently the moments, were compute
at tree level up tow = 5 (and arbitrary times), in Section I

i.e. using only the local cubic vertex. Here we compute the

1-loop correction to this result, at equal times, and show ho
the result (345), after re-expansioninis recovered. The di-
agrammatic rules are those of the simplified theory, which ha
(i) a cubic, local-in-time vertex proportionalto= —A’(0%);

(i) a non-local-in-time quartic vertex proportional 8" (0),
which comes from the (simplified) interaction

Ssimp _

dis —_U/ amtamt(v'f'amt)
xt

+%A”(o)/

x

ﬂ/mtﬂ/wt/(v + ﬂmt)(v + ﬂmt/) . (M6)
t
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Due to the quartic vertex, 1-loop diagrams are now possible
in contrast to the cubic theory, which has only tree diagtams
Since we use dimensionless units below, wesset 1 and
A"(0) — —A. Note that we have written the action (M6) in
the co-moving frame to make apparent théerms, but the
calculation can also be made in the laboratory frame; then on
ust remember that has an average
Let us first discuss the two lowest orders and their diagram-
matic representation.

To order)\ there is a single diagram

/ 1
e 1+ K2

This term involves the verteX” (0) represented by the dashed
lines. Itis also the usual representation of the disordeexe
A(u) and identifies to it whenever there are 2 entering legs.
Since all our contribution ar®(v) thev has been chosen in
the lowest + « field, which will be the case in all diagrams
written in this section. Propagators with arrows are bare re
sponse functions] /(k2 + 1)e~*"(t~*) in Fourier. External
arrows are in the same numberrag 4" to match the exter-
nal @ fields. External legs are at zero momentum (since we
compute center-of-mass velocity moments) but internakone
carry momentum, to be integrated over (1-loop diagrams).
To order)\? (two outgoing lines), there are 4 contributions:

Ut =0

(M7)

-3 / 2(3+/€2)
Uy =V | 55
(1 k2)(2+ k2)
=v(20h 4+ 215 + 415 + 414) (M8)
1 1
D, = I = =
! ’ T2+ )2+ K?)
Dy = A (M9)
T 2T 214 k2
dp, = A —
s ST+ )2+ K2)
(M10)
1
1
‘ 11
Dy= | I = - . (M11
* N ’ 1= 1y M

3

We see that both the cubic and the quartic vertices appeatr.
One can check that the sum of these terms with their indicated
weights reproduces (M2).



At third order, one has

Uy = v

— / 2(108 + 128k? + 47k* + 6k°)
k (

1+ k2)(2 + k2)(3 + k2)(3 + 2k2)

21

ﬂ)/_ 16 N 5 8 .
e K2+2 0 k243 2k24+3  k2+1

11
=V Z dlfz .
i=1

This comes from 11 diagrams:

4+ k2
6(1+ k2)(2+ k2)(3 + k2)
1 3

I, =

I = 54 k?
PTEIR)2+ (BT A
Ty =
I, =

6(1+K2)(2+ k2)
Ts =

b= e BT

(M12)
dy =12
(M13)
dy =12
(M14)
ds =12
(M15)
dy =12
(M16)
ds = 24
(M17)
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T = ds = 24
I 7+ 4k? (M18)
7 6(1+k2)(2+ k2)(3 + k2)(3 + 2k2)
d7 =12
(M19)
ds = 12
(M20)
Ty = do =12
19 + 5k2
Iy = M21
P 36(2+ K2)(3 + k2) (M21)
T = dio = 24
L = (M22)
Ty = dyy =24
I (M23)

This calculation illustrates how the complexity increases
formidably with the order, and how powerful the algebraic
method developed in section IV is in summing these contribu-
tions.



Appendix N: Series expansion of thex,

Theb; defined in the text can be obtained, for 3 as

b — —16 428 x 7 — k[10 — 2% + 3k(k + 1)]

b k(k+ 1) (k- 1)(k — 2)
+6 P (—1,1,k—2),

(N1)

where®y,(a, b, ¢) is the Lerch® function.

Appendix O: Small-velocity behaviour

Let us discuss in more detail the expansiond®f(u) at
small %, looking also at subdominant terms. Denoting=
—Aandthuss = s/(1 + s), we can expand at large

(Ink)I—1
VTTG)

for j = 1,2,..., where¢;(x) is analytic arounds = 1 and
¢;(1) = ¢(j)- Hence

Lij(k) = —In(1 — +¢;(K), (01)

L (1i5) = WH)% +¢()
+§: dsf
- (1 +0 (5)) +((G)+0 (1)

We also have

s

s
1+s

) = —(Ins)* +1Ins (27E — % + )
wro().

1
—8) = —(Ins)* + (25 + b1)Ins + ?(bg -1)

(02)
Hence we find for large

5Z(A

1
+0 (n—;) + analytic . (03)
s
We have the following Laplace transforms:
In 7 1
LT s nue_ 3 (In 5)? 4 v In s + analytic (04)
U
1
LT, s— = —Ins (05)
U
. Ins B,

forn =0, 1, ..., where in the first two lines the Laplace Trans-

form is defined via the correctly subtracted formula. We can

surmise that

5P (i) = _471*37;”’1 _plnd {1 + %’[L(bz 1+ O(u))}
+K +0(u) . (07)
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Appendix P: Adiabatically switching on of the disorder

In this appendix, we recuperate the missing terms of the
velocity theory, as discussed in section IVF 2. Itis suggest
from the discussion in that section, that these terms coalld b
boundary terms, lost in a partial integration in time. Sitize
theory is causal, the time in questiontis> —oo; physically
it is related to the preparation of the system: Remind, theat w
crucially use that we are in the Middleton state.

In order to be on the safe side, we could switch on the dis-
order adiabatically slowly, which will suppress any bouryda
terms at timg = —oo, since there is no disorder at that time.

Let us start from the equation of motion for the velocity (for
short-ranged elasticity, and a soutgg constant in space)

(815 — Vi + 1)uzt = 815 [F(Ut + Ugt, .I)gt] + m25u')t (Pl)

We have added aadiabaticfactorg; which can e.g. be chosen
as

ot

g =e with § — 0. (P2)

Note that the exact form is not crucial, but this particular
choice will simplify some of the ensuing calculations, sinc
gt = gt—v' g’ - This gives

=8 = =S80 — Sais
-Sy = / Tt (0 — V2 + 1)y
xt

(P3)
(P4)
1 . /
—Sais = 3 Uzt Uyt O Op [A(V(t — ') + Ugt — Uzt ) gegr ]
xtt!

= ~Si — Sad — Sl (P5)

—35(1?3 - % / ) Uatlize 9e e Op Oy A(v(t — ') + Uzt — Ugr)
wtt (P6)

_Séilb? - /tt, Uty Jege Oy A(v(t = 1) + ey — tar) (P7)

_Sc(li? - % /ztt, Ut g Jege Av(t — 1) + et — tzy)  (P8)

We now study correctjons 845, which may intervene in our
generating functior*“(®), Noting that all diagrams contain
response-functions which decay in time at least exporlgntia
fast, or more precisely faster as

| Rt | < o= lt=t'Im? , (P9)
we have two types of diagrams for our new perturbation ex-
pansion (for the case of interest— 0):

(i) Connected DiagramsThe disorder vertex at timeis
attached tof = 0 via a string of response functions;
then we can make the replacemegnt- 1, andg, — 0.
Especially this reproduces all diagrams of the velocity

theory. Only the verte)é‘é?g contributes. E.g. all dia-
grams given in appendix M 2 are of this form.



(i) Disconnected Diagramdf the disorder at time is not
attached t@ = 0 via a string of response functions, then
the integral ovey; may produce a factor of, g, = 1,
even thoughy, ~ 6. As a consequence;t is of order

1/6, and all response functions connected via a string of

response functions tomay have both time-arguments

at very large negative times, and thus are to be evaluated

in theflat backgroundi? = 0 (since(i;) — 0 fort —
—00.) (For an example see below).

We now discuss the leading-order correction. It comes from a

term withoned, g, i.e. from_séilg:

—S(gils) = / Ut Ut G GOt A(V(E — ') 4 Ugt — Ugy)
xtt!

t
= / ﬂztﬂzt/gt/gt(v =+ ﬂzt)A/ (/ dT['U + ﬂzT])
xtt! t’
(P10)

In order to conform to the rules discussed abowe must
somehow be connected to= 0, whereagi;» may not. This
gives the only possible diagram

1 /g — — —
_Séis) - th \.t:>

The times aré’ < 7 < t < 0, where onlyt — 7 will become
very large,~ % Therefore we can sét = gy +Gr—1gs
gt~ and the ensuing integrgl _, 9., = 1. The dotted
line indicates this factor off7<tgf,t. Furthermore, since

(P11)

~
~

both timesr andt’ are very negative, the response function

Ryrer — Rpre. This gives

_Sc(ﬁlg — t/UT \.t:>

= / / (’U + uzt)Rth/g.T—tA”(OJr)amt + 0(6)
kJt'<r<t

:A%W)A 111@+%mm+0@ (P12)

k2
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At leading order we now have to replace the remaining fields
by their expectations; we also drop the tern(db):

Wy,
~Sh =
t/ - =
T t
— UAI/(O+)/ 1 / ROtt ao
K2+ 1 Sy cico 2
1
= A" (0" / P13
e (P13)

This is exactly the additional term found in Eq. (436), or in
the more rigorous derivation in Eq. (537).

We also note thafgg can not contribute (at least at leading
order), since we need to gainfiée time integrals. That im-
plies that both response-fields must be contracted insigle th
interaction, which is impossible due to causality. However
there will be a contribution at 2-loop order.

Further we note that, in spirit, the above derivation is
similar to the one given in section IVF2: In both cases,
it was important that the second derivative of the disorder
A"(v(t —t') + ur — uy), decays, as a function of the time-
distancet — t/, to 0, which allows for a partial integration
(eating up the time derivativé).
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