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Stationary solutions for the 1 + 1 cubic nonlinear Schrödinger equation modeling repulsive
Bose-Einstein condensates (BEC) in a small potential are obtained through a form of nonlinear
perturbation. In particular, for sufficiently small potentials, we determine the perturbation theory
of stationary solutions, by use of an expansion in Jacobi elliptic functions. This idea was explored
before in order to obtain exact solutions [J. C. Bronski, L. D. Carr, B. Deconinck, and J. N.
Kutz, Phys. Rev. Lett. 86 (2001) 1402], where the potential itself was fixed to be a Jacobi
elliptic function, thereby reducing the nonlinear ODE into an algebraic equation, (which could be
easily solved). However, in the present paper, we outline the perturbation method for completely
general potentials, assuming only that such potentials are locally small. We do not need to
assume that the nonlinearity is small, as we perform a sort of nonlinear perturbation by allowing
the zeroth-order perturbation term to be governed by a nonlinear equation. This allows us to
consider even poorly behaved potentials, so long as they are bounded locally. We demonstrate
the effectiveness of this approach by considering a number of specific potentials: for the simplest
potentials, we recover results from the literature, while for more complicated potentials, our results
are new. Dark soliton solutions are constructed explicitly for some cases, and we obtain the
known one-soliton tanh-type solution in the simplest setting for the repulsive BEC. Note that
we limit our results to the repulsive case; similar results can be obtained for the attractive BEC case.

Keywords: cubic nonlinear Schrödinger equation; Bose-Einstein condensate; perturbation
theory; Jacobi elliptic function
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I. INTRODUCTION

Recently, the cubic form of the nonlinear Schrödinger
equation (NLS) has been used to model the dilute-
gas Bose-Einstein condensate (BEC) in the quasi-one-
dimensional regime [1]. In such a model, the potential
can be used to model a trap. A variety of potentials
have been proposed for BECs [2], depending upon the
specific application addressed.

Exact solutions for such cubic NLS equations have
been obtained for several potentials, such as the Kronig-
Penney potential [3] and the Jacobi elliptic function po-
tential of the sn type [4]. Exact solutions for the latter
case took the form of Jacobi elliptic functions of type sn,
cn, or dn, depending on the values of the model parame-
ter. In the limit of a sinusoidal potential, those solutions
are one possible model for a dilute gas Bose-Einstein con-
densate trapped in a standing light wave. BECs trapped
in a standing light wave have been used to study or have
been proposed to study
(i) phase coherence [5];
(ii) matter-wave diffraction [6];
(iii) quantum logic [7];
(iv) matter-wave transport [8].

Let V (x) be a potential function which has been nor-
malized so that maxV (x) = 1. Then, the n + 1 cubic
nonlinear Schrödinger equation (NLS) (also referred to
as the Gross-Pitaevskii model in some literature [9]) with

small potential reads

i~Ψt =

(

− ~
2

2m
∇2 + ǫV (r) + g|Ψ|2

)

Ψ . (1)

For our interests, we shall be concerned with the 1 + 1
model

i~Ψt = − ~
2

2m
Ψxx + ǫV (x)Ψ + g|Ψ|2Ψ , (2)

where g > 0. Our focus, then, shall be on the repulsive
case. Results for the attractive case will follow similarly.
Concerning BECs, stationary solutions to the one-

dimensional nonlinear Schrödinger equation under box
and periodic boundary conditions were considered ana-
lytically for the repulsive [10] and attractive [11] cases.
The stability of repulsive BECs in periodic potentials was
previously discussed in [12]. BECs in a ring-shaped trap
with a nonlinear double-well potential were recently con-
sidered [13]. Regarding the PT-symmetric case, a model
of a PT-symmetric BEC in a δ-function double-well po-
tential was also recently considered [14]. Further results
on multiwell potentials have been given [15].
While there have been numerical and some exact or

analytical studies on specific potentials, a perturbation
method for arbitrary potentials has not been proposed.
As for solutions in the literature, if ǫ = 0 we effectively
have the free particle potential and we recover an exact
solution. For an appropriate elliptic index, this exact
solution reduces to the standard dark soliton solution.



2

For a constant potential, V (x) = λ, we effectively have a
mass-shifted variant of the zero-potential case. Modern
approaches have been developed for more complicated
potentials. Since the ǫ = 0 case results naturally in Ja-
cobi elliptic functions, it is reasonable to assume a po-
tential which can be expressed as such a function. This
was done in [4] as a model of a trapping potential gen-
erated by a standing light wave. Naturally, since such a
potential is mathematically consistent with the form of
the ǫ = 0 solution, the authors were able to recover el-
egant exact solutions. Other potentials were considered
in [4], where a mix of analytical and numerical results
were given. This brings about a natural question: For
how many potentials can we exactly, or at the very least
analytically, solve the stationary states of the model (2)?
While the choice of a Jacobi elliptic potential is an exam-
ple of a complicated potential giving an exact solution,
this is more due to luck, since the natural unperturbed
solution is itself a Jacobi elliptic function.

In the present paper, we shall develop a perturbation
theory of stationary solutions to the 1 + 1 model (2).
As seen before, the lowest order term will be governed
by a non-linear ODE, resulting in a Jacobi elliptic func-
tion (a type of non-linear special function). If the elliptic
index is properly selected, this will give a dark soliton
type solution at ǫ = 0. For other values of the elliptic
index, we recover a space-periodic stationary solution at
ǫ = 0. So, for small ǫ, we carry out perturbation around
these non-linear special functions, effectively calculating
the corrections due to a small potential. In order to bet-
ter illustrate the results, we consider NLS equations with
a variety of potentials. Exact solutions can be obtained
when V (x) = 0, V (x) = V0 (a constant), or when V (x) is
a specific function of Jacobi elliptic functions. For other
situations, the first or even second order perturbation
terms are constructed; examples of cases we consider in-
clude the δ function potential, the linear potential, the
harmonic potential, the Coulomb potential, the Morse
potential and the quantum pendulum potential. These
potentials are selected more to demonstrate the range of
solutions possible; indeed, some specific potentials will
be more physically relevant for the study of BECs than
others.

The primary benefit to our approach is that it allows
for fairly general forms of the potential function. That
is to say, for sufficiently well-behaved functions V (x), we
can calculate the first-order perturbation theory for the
stationary solutions to the model (2) given potentials of
the form ǫV (x). Since we consider a type of non-linear
perturbation (the zeroth-order term is governed by a non-
linear differential equation), we need not assume a small
amplitude solution, requiring only that the higher order
corrections are small. Hence, the perturbation method
presented here is applicable for a wide variety of scenar-
ios.

II. STATIONARY SOLUTION AND ORDER

ZERO PERTURBATION THEORY

We begin by introducing the stationary solution

Ψ(x, t) = 2~

√

m

g
exp (−4i~mt)ψ(x) . (3)

This reduces (2) to the eigenvalue problem

ψ′′ = −ψ + ψ3 + ǫU(x)ψ , (4)

where we define the non-dimensional potential U by

U(x) =
1

2~
√
mg

V (x) . (5)

Now, integrating the eigenvalue problem (4) gives

ψ′2 = K2 − ψ2 +
1

2
ψ4 + 2ǫ

∫ x

0

U(y)ψ(y)ψ′(y) dy , (6)

which is not exactly integrable when U 6= 0. However,
observe that when ǫ = 0, the equation is, in fact, exactly
integrable. If we consider a perturbation solution of the
form

ψ(x) = ψ0(x) + ǫψ1(x) + ǫ2ψ2(x) + · · · , (7)

then we may obtain the perturbative stationary solution
to the 1 + 1 GP equation

Ψ(x, t) = Ψ0(x, t) + ǫΨ1(x, t) + ǫ2Ψ2(x, t) + · · ·

= 2~

√

m

g
e−4i~mt(ψ0(x) + ǫψ1(x) + ǫ2ψ2(x) + · · · )

(8)

Now, utilizing the perturbation solution (7), we see that
ψ0(x) satisfies

ψ′
0
2
= K2 − ψ2

0 +
1

2
ψ4
0 . (9)

Thus, our solution to (9), with the assumed initial con-
dition ψ0(0) = 0, reads

ψ0(x) = K sn

(√
2−K2

√
2

x+ x0,
K√

2−K2

)

, (10)

where sn(x, ν) is the Jacobi elliptic sn function with index
ν and x0 is an arbitrary constant which has the effect of
shifting the solution. Note that ψ′

0(0) = K, which clearly
follows in the context of equation (9). In the special case
where ν = 1 (corresponding to K2 = 1), we make use of
the identity sn(x, 1) = tanh(x) to obtain

ψ0(x) = tanh

(

x√
2
+ x0

)

. (11)

We shall frequently revisit the K2 = 1 case, as it will
greatly simplify some calculations. Such solutions, based
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around the tanh-solution, will be perturbations of dark
soliton solutions.
As it turns out, a number of equations in mathemati-

cal physics naturally admit solutions in terms of Jacobi
elliptic functions, particularly when we consider station-
ary states [16]. Regarding the construction of pertur-
bation expansions for such solutions then, due either to
added non-linearity or complicated potentials, it seems
quite reasonable to construct these perturbation theories
in terms of the Jacobi elliptic functions.

III. PERTURBATION SOLUTIONS FOR

GENERAL POTENTIALS

Let us now compute the higher order terms in the per-
turbation expansion (7) for the general potential U(x).
Notice we will utilize ψ0

′(x) as the function given by

ψ0
′(x) =

√

K2 − ψ0
2 +

1

2
ψ0

4 , (12)

where ψ0(x) is our previously determined function (10).
Placing (7) into our equation (6), we obtain ψ1(x) via the
linear differential equation represented in the first order
term in ǫ

ψ1
′(x) =

1

ψ0
′(x)

[(

ψ0
3(x)− ψ0(x)

)

ψ1(x)

+

∫ x

0

U(y)ψ0(y)ψ0
′(y) dy

]

.

(13)

Satisfying ψ1(0) = 0, our first-order term becomes

ψ1(x) =

∫ x

0

∫ y

0
U(z)ψ0(z)ψ0

′(z) dz

ψ0
′(y)

e
−

∫
x
y

ψ0(z)−ψ0
3(z)

ψ0
′(z)

dz
dy .

(14)
Notice we may greatly simplify the integrating factor in
our solution ψ1(x) by rewriting our integrand as

∫ x

0

(

ψ0(y)− ψ0
3(y)

)

ψ0
′(y)

ψ0
′2(y)

dy

= −1

2
ln(K2 − ψ0

2(x) +
1

2
ψ0

4(x)),

thereby reducing our integrating factor to precisely

e
1
2 ln(K2−ψ0

2(x)+ 1
2ψ0

4(x)) =

√

K2 − ψ0
2(x) +

1

2
ψ0

4(x)

= ψ0
′(x) .

This computation reduces our first-order solution given
in (14) to

ψ1(x) = ψ0
′(x)

∫ x

0

∫ y

0
U(z)ψ0(z)ψ0

′(z) dz

ψ0
′2(y)

dy . (15)

Now, in a similar manner, we may obtain our second-
order solution ψ2(x) by solving the relevant ODE subject
to ψ2(0) = 0, which gives

ψ2(x) = ψ0
′(x)

∫ x

0

M1(y)

ψ0
′2(y)

dy , (16)

where

M1(y) =

∫ y

0

U(z)
(

ψ0(z)ψ1
′(z) + ψ1(z)ψ0

′(z)
)

dz

+
3

2
ψ0

2(y)ψ1
2(y)− 1

2

(

ψ1
2(y) + ψ1

′2(y)
)

.

With this, we have determined the second order per-
turbation theory for the stationary solution under a gen-
eral potential U(x). In the next section, we shall utilize
our general solution to consider stationary solutions un-
der specific forms of U(x) and to explore the resulting
solutions.

IV. SOLUTIONS FOR SPECIFIC POTENTIALS

We now turn our attention toward a number of ex-
amples of specific potentials in order to demonstrate
the method. For a number of potentials, we demon-
strate the analytical construction of the perturbation so-
lutions for the dark soliton case. The corresponding re-
sults for the sn-waves can also be constructed, but we
omit such derivations as they are tedious. For all non-
trivial cases considered, we provide plots of the scaled
density g

4~2m |Ψ(x, t)|2 = |ψ(x)|2 in order to demonstrate
the influence of each potential on the obtained solutions.
As will be remarked later, the perturbation results are
in agreement with numerical simulations, for sufficiently
small ǫ.

A. Free particle

Note that the free particle solution, corresponding to
U(x) ≡ 0, is exactly determined by ψ0(x). As such,

Ψ(x, t) = 2~

√

m

g
K exp (−4i~mt)

× sn

(√
2−K2

√
2

x+ x0,
K√

2−K2

)

(17)
is a family of exact solutions (indexed by K > 0) for
the free particle. If we impose the condition |Ψ(x, t)| →
2~
√

m
g as x → ∞ and take K2 = 1, then we have the

exact solution

Ψ(x, t) = 2~

√

m

g
exp (−4i~mt) tanh

(

x√
2

)

(18)



4

for the free particle. Note that this is qualitatively dis-
tinct from the Hartree solution Ψ(r) ∼ ein·r. This so-
lution is the standard one-soliton solution for repulsive
BEC. In what follows, when we assume K2 = 1, we shall
obtain perturbations of this soliton solution. The first
and higher order perturbation theories are simply cor-
rections to this soliton solution due to the presence of a
small potential.

B. Constant potential

Let us consider the constant potential U(x) = λ. With
this potential, (1) models a vortex filament in an almost
ideal Bose gas [9]. Independent of U(x), ψ0(x) remains,
as given in (10),

ψ0(x) = K sn

(√
2−K2

√
2

x+ x0,
K√

2−K2

)

. (19)

Next, applying this constant potential U(x) = λ to ψ1(x),
denoted by (15), enables our inner integral in ψ1(x) to be

solved exactly as λ2ψ0(x)
2
. For simplicity, we will proceed

taking

a =

√
2−K2

√
2

and b =
K√

2−K2
. (20)

Recalling

d

dx
sn(ax, b) = acn(ax, b)dn(ax, b) , (21)

where cn(ax, b) =
√

1− sn2(ax, b) and dn(ax, b) =
√

1− b2sn2(ax, b) are Jacobi elliptic functions, we have

ψ1(x) =
Kλ

2a
cn(ax, b)dn(ax, b)

∫ x

0

sn2(ay, b)

cn2(ay, b)dn2(ay, b)
dy

=
Kλcn(ax, b)dn(ax, b)

2a2

[

sn(ax, b)[2b2sn2(ax, b)− b2 − 1]

(1 − b2)2[sn2(ax, b)− 1]

+
ax

1− b2
− 2

(1− b2)2
E(sn(ax, b), b)

]

.

(22)
Here E(x, b) denotes the incomplete elliptic integral of
the second kind.
Now, utilizing the simple condition where K2 = 1,

ψ1(x) becomes

ψ1(x) =
λ

8
tanh

(

x√
2

)(

2cosh2
(

x√
2

)

− 1

)

+
λ

16

(

1− tanh2
(

x√
2

))

ln





1− tanh
(

x√
2

)

tanh
(

x√
2

)

+ 1



 .

(23)
Of course, since the potential is constant, we may di-

rectly obtain the exact solution by solving

ψ′2 = K2 − (1 − ǫλ)ψ2 +
1

2
ψ4 (24)

and obtaining

ψ(x) = Ksn

(√
2−K2 − 2ǫλ√

2
x+ x0,

K√
2−K2 − 2ǫλ

)

.

(25)
This exact solution agrees qualitatively with the pertur-
bation solution when ǫ is small. Taking K2 = 1− ǫλ, we
recover the dark soliton

ψ(x) =
√
1− ǫλ tanh

(
√
1− ǫλ

2
x

)

. (26)

C. delta potential

The δ potential is given by U(x) = λδ(x − x0), where
δ denotes the Dirac delta function, λ ∈ R, and x0 ∈ R

is a constant. This potential arises in some applications
[17]. Note also that the results we obtain here are simi-
lar for the double delta potential [18]. Additionally, the
quantum Hall effect of bosons interacting through a delta
potential has been considered previously [19].
With this choice of potential and ψ0(x) as written in

(10), the inner integral in ψ1(x) becomes

∫ y

0

U(z)ψ0(z)ψ0
′(z)dz = λ

∫ y

0

δ(z − x0)ψ0(z)ψ0
′(z)dz

= λ(H(y − x0) +H(x0)− 1)ψ0(x0)ψ0
′(x0) ,

(27)
in which H denotes the Heaviside function

H(η) =

{

0 if η < 0 ,

1 if η ≥ 0 .
(28)

From here we find that

ψ1(x) =
√
2λψ0(x0)ψ0

′(x0)ψ0
′(x)

×
∫ x

0

H(y − x0) +H(x0)− 1

ψ0
′(y)2

dy .
(29)

Considering the special caseK = 1 and performing the
required integration, we obtain

ψ1(x) =

√
2

8
λ tanh

(

x0√
2

)

sech2
(

x0√
2

)

sech2
(

x√
2

)

× [M2(x) (H(x− x0)−H(−x0) +H(x0))

−M2(x0) (H(x− x0)−H(−x0))] ,
(30)

where

M2(x) = sinh

(

x√
2

)

cosh

(

x√
2

)(

2 cosh2
(

x√
2

)

+ 3

)

+
3
√
2

2
x .

(31)
Some solutions are given in Fig. 1 for the K = 1 case:

the dark soliton solutions. When λ > 0, the solutions
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FIG. 1: (Color Online) Perturbations of the dark soliton so-
lutions (K = 1) under the delta potential U(x) = λδ(x− x0).
We fix x0 = 0.

become unstable for large ǫ. In contrast, when λ < 0,
the perturbed solutions exhibit oscillation past the point
at which the impulse is placed. We have taken very small
values of ǫ in our plots. For larger values, the solutions
tend to either break down or become non-physical. For
x < x0, the solutions are invariant under perturbations
due to this type of potential, since the effect of the pertur-
bation is felt only for x > x0. Therefore, when x < x0 we
maintain the dark soliton structure, whereas for x > x0
this structure degenerates into an oscillatory branch, or
a non-physical branch with blow-up, depending on the
sign of λ.

D. Harmonic potential

Next we may examine the harmonic oscillator poten-
tial, U(x) = λx2 with λ ∈ R. Harmonic potentials have
been used as external potentials for BECs in a number of
studies as they serve as a relatively accurate and simple
model of a parabolic trap [20]. It should be noted that
such potentials can be generalized to include time depen-
dence [21], but this is beyond the scope of the present
paper as such generalizations (in general) deny us of a
stationary state of the kind we study here. Imposing the
K2 = 1 condition, ψ0(x) is given in (11). Let us define
the function

M3(x) =

√
2x

16

(

e2
√
2x + 8e

√
2x + 12 ln 2− 7

)

− x2

8

(

2 sinh(
√
2x)− 3

)

−
√
2x3

12
− ln(e

√
2x + 1)

8

×
(

8 sinh(2
√
2x) + sinh(

√
2x)− 6 dilog(e

√
2x + 1)

)

+
1

16

[

π2 + 2 ln 2 sinh(2
√
2x) + (16 ln 2− 2) sinh(

√
2x)
]

(32)

FIG. 2: (Color Online) Perturbations of the space-periodic sn-
wave solution under the harmonic oscillator potential, which
takes the quadratic form U(x) = λx2 .

FIG. 3: (Color Online) Perturbations of the dark soliton so-
lution corresponding to K = 1 under the harmonic oscillator
potential, which takes the quadratic form U(x) = λx2 .

so that the first order term ψ1(x) reads

ψ1(x) = λ sech2
(

x√
2

)

M3(x) . (33)

In Fig. 2, we plot solutions which are perturbations of
the sn-wave solution for the harmonic oscillator potential.
Then, in Fig. 3, we plot several perturbation solutions
corresponding to perturbations of the K = 1/

√
2 exact

solution (the dark soliton). Under the perturbation due
to the harmonic potential, the sn-wave solutions either
amplify or de-amplify, depending on the sign of λ. When
λ < 0, the solutions maintain their oscillatory nature,
but tend toward zero as |x| increases. Thus, the maxi-
mal density is found near the origin. The period of these



6

solutions decreases radially, and for large ǫ these solu-
tions resemble solitary waves with radiation or chirp in
the background. On the other hand, when λ > 0, the
solutions oscillate yet increase in density as |x| increases.
These solutions are expected to be unstable for large ǫ,
since the strong radial amplification is not physical. Re-
garding the perturbations of the dark solitons shown in
Fig. 3, the solutions appear stable for λ < 0 and unstable
for λ > 0. Indeed, even for ǫ = 10−3, the λ > 0 solutions
demonstrate blow-up for large |x|. On the other hand,
the λ < 0 perturbed solutions degenerate from the dark
soliton into damped sn-type solutions with increasing ǫ,
as can be seen from the density plots in Fig. 3. Again,
the oscillations decay more rapidly with increasing ǫ.
For sake of demonstration, we have included ǫ = 1

plots in Figs. 2-3. This solution was obtained numeri-
cally, since it is not in the perturbative regime. However,
as we see here, it exhibits qualitative agreement with the
perturbation results. It is worth mentioning that the
perturbation solution for this and other potentials have
been compared with numerical plots, and there is excel-
lent agreement for sufficiently small ǫ.

E. Modified harmonic potential

There have been a number of modifications to the har-
monic trap used in the literature [22]. One such poten-
tial is U(x) = λ(x2 + β/xα). Another useful potential
is U(x) = λ(x2 + β exp(−x2)). This latter potential is
useful in that it avoids a singularity near the origin.
Using the potential U(x) = λ(x2 + β/x) (that is, α =

1), we consider perturbations of the dark soliton in Fig.
4. When λ < 0, these solutions exhibit an asymmetry
with respect to x = 0. When β > 0, most of the density
is relegated to the x < 0 region, while when β < 0,
most of the density is relegated to the x > 0 region.
Like in the case of a pure harmonic potential, the density
oscillates yet decreases radially away from x = 0. For
these solutions, an increase in ǫ results in a decrease in
the amplitude. In the case of λ > 0, the solutions become
unstable at even small values of ǫ.
We next consider the potential U(x) = λ(x2 +

β exp(−x2)), and plot the perturbations of the sn-waves
in Fig. 5, and perturbations of the dark soliton in Fig.
6. When λ < 0 and β > 0, the solutions behave like
those in the pure harmonic potential, with the primary
difference being an even more rapid decrease in the ampli-
tude as |x| is increased. However, all of these solutions
still have maximal density at the origin. On the other
hand, solutions corresponding to λ < 0 yet β < 0 have
a double maximum in density (provided that ǫ is large
enough), occurring symmetrically on both sides of x = 0.
These solutions still decay in amplitude as |x| increases,
even more rapidly than their β > 0 counterparts. When
λ > 0, we actually obtain bounded and apparently stable
solutions for small enough ǫ. These solutions oscillate in
density, yet the oscillations amplify as |x| increases, until,

FIG. 4: (Color Online) Perturbations of the dark soliton so-
lution corresponding to K = 1 under the modified harmonic
oscillator potential U(x) = λx2 + β/x.

FIG. 5: (Color Online) Perturbations of the space-periodic
sn-wave solution under the modified harmonic oscillator po-
tential U(x) = λ(x2 + β exp(−x2)).

for large enough |x|, the solutions decay.
Regarding the perturbations of the dark solitons, we

find that λ > 0 perturbations are unstable, whereas for
λ < 0 solutions oscillate in density and gradually decay,
much like what we have seen earlier in the purely har-
monic potential case. For small fixed ǫ, we find that the
β < 0 solutions have higher central density than do the
corresponding β > 0 solutions.

F. Morse potential: an asymmetric trap

Single well traps that are asymmetric are sometimes
considered and can take a variety of forms. The
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FIG. 6: (Color Online) Perturbations of the dark soliton so-
lution corresponding to K = 1 under the modified harmonic
oscillator potential U(x) = λ(x2 + β exp(−x2)).

Morse potential is one example of an asymmetric trap
[23, 24]. The Morse potential is given by U(x) =
λ
(

e−2Ax − 2e−Ax
)

where λ > 0 and A > 0. In contrast
to the harmonic trap, the Morse potential increases more
slowly along the positive x-axis. In relation to BECs, the
Morse potential has previously been considered for mod-
els of trapped atoms [25].

For ease of computation, we set A =
√
2
2 , which we

may view as a scaling of x. This scaling makes the model
approximately integrable in the case of K2 = 1. Thus,
taking K2 = 1, we first compute the inner quantity of
ψ1(x), finding

∫ y

0

U(z)ψ0(z)ψ0
′(z)dz

=
λ√
2

∫ y

0

(

e−2z/
√
2 − 2e−z/

√
2
)(

ez/
√
2 − e−z/

√
2
)

(

ez/
√
2 + e−z/

√
2
)3 dz

= λ

∫ ey/
√

2

1

(η−2 − 2η−1)(η − η−1)

(η + η−1)3
dη

η

= λ

∫ ey/
√

2

1

(1− 2η)

η(η2 + 1)2
dη

= λχ(ey/
√
2) + λ

(

π + 1

4
− ln

(

1√
2

))

,

(34)
where by χ we signify the function

χ(η) = ln

(

η
√

η2 + 1

)

− tan−1(η) − 2η − 1

2(η2 + 1)
. (35)

FIG. 7: (Color Online) Perturbations of the space-periodic
sn-wave solution under the Morse potential U(x) =
λ
(

e−2Ax
− 2e−Ax

)

.

The first order perturbation theory is then given by

ψ1(x) = ψ0
′(x)

∫ x

0

λχ(ey/
√
2) + λ

(

π+1
4 − ln

(

1√
2

))

ψ′
0(y)

2
dy

=
λ√
2
ψ0

′(x)

∫ ex/
√

2

1

(

χ(η) +

(

π + 1

4
− ln

(

1√
2

)))

× (η2 + 1)4

η5
dη .

(36)
Simplifying this expression, we find

ψ1(x) =
λ

2

{

Θ
(

ex/
√
2
)

+
2 ln 2 + π + 1

8
sinh(2

√
2x)

− 2

3
sinh

(

3x√
2

)

+
4 ln 2 + 2π + 3

2
sinh(

√
2x)

− 6 sinh

(

x√
2

)

− 1

8
e−2

√
2x − 1

2
e−

√
2x +

5

8

+
6 ln 2 + 6 + 3π

2
√
2

x

}

sech2
(

x√
2

)

,

(37)
where Θ denotes the integral

Θ(η) =

∫ η

1

(

ln

(

ξ
√

ξ2 + 1

)

− tan−1(ξ)

)

(ξ2 + 1)4

ξ5
dξ .

(38)
We next consider the Morse potential for various val-

ues of A, and plot the perturbations of the sn-waves in
Fig. 7, and perturbations of the dark soliton in Fig. 8.
From Fig. 7, we see that perturbations to the sn-waves
for small ǫmaintain much of the form of the sn-wave solu-
tion for x > 0. It is the x > 0 side of the Morse potential
which is the weakest, so there is little forcing to disturb
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FIG. 8: (Color Online) Perturbations of the dark soliton so-
lution corresponding to K = 1 under the Morse potential
U(x) = λ

(

e−2Ax
− 2e−Ax

)

.

the unperturbed form of the sn-wave. On the other hand,
for x < 0, the space-periodic structure is destroyed, no
matter the sign of λ. When λ > 0, the solution is con-
fined to the right of the wall of the sharply increasing
boundary of the potential. To the right of this bound-
ary, the solution propagates as would a standard sn-wave.
On the other hand, for the λ < 0 situation, the density
rapidly decreases as x becomes larger in magnitude and
negative. For larger values of ǫ, this effect is strength-
ened, and the larger ǫ solutions very rapidly decay. The
strength of the asymmetric trapping potential decreases
as we decrease the parameter A. As A decreases, the rate
of decay of solutions corresponding to λ < 0 is slowed as
x → −∞. For large ǫ, asymmetries can develop. For
instance, in the ǫ = 1 solution shown, the maximal den-
sity occurs at a positive value of x, and is never repeated
(unlike the pure sn-wave, which exhibits density peaks at
regular intervals).

Regarding the perturbations of the dark soliton solu-
tion, Fig. 8 demonstrates that the qualitative influence of
the asymmetric potential is the same for the dark soliton
perturbation theory. Indeed, for the λ > 0 case, the solu-
tions are confined to the right of the stronger boundary.
To the right of this boundary, the solutions exhibit prop-
erties of the sn-waves. The location of the boundary is
shifted as the value of the parameter A is modified, how-
ever the general qualitative features of a perturbation is
unchanged with A. In contrast, the solutions correspond-
ing to λ < 0 are quite distinct in form from the solutions
shown in Fig. 7. Here, the perturbations of the dark
solutions in the λ < 0 case are confined to the left of the
weaker boundary and diminish completely upon interact-
ing with the stronger boundary. The effect is that these
solutions have maximal density at the right end of the
potential well, and oscillate while decreasing in average
density toward the left end of the potential well.

FIG. 9: (Color Online) Perturbations of the space-periodic
sn-wave solution under the lattice potential U(x) =
λ (1− cos(x)).

G. Quantum pendulum potential: a lattice trap

The quantum pendulum potential takes the form
U(x) = λ (1− cos(x)), where λ > 0. This is a good model
of an optical lattice type of potential, which has been
used to study BECs in a number of settings [26]. ψ0(x)
again remains as given in (10), but U(x) = λ (1− cos(x))
in (15) results in ψ1(x) of the form

ψ1(x) = ψ0
′(x)

∫ x

0

∫ y

0 λ (1− cos(x))ψ0(z)ψ0
′(z) dz

ψ0
′(y)

dy .

(39)
The K2 = 1 condition, which offers the simplification

ψ0(x) = tanh
(

x√
2

)

, allows for exact integration in ψ1(x).

Thus the first order term reads

ψ1(x) =
λ

576
sech2

(

x√
2

)

{

4 sin (x) cosh
(

2
√
2x
)

+ 8
√
2 cos (x) sinh

(

2
√
2x
)

−9
√
2 sinh

(

2
√
2x
)

− 36 sin (x) + 36x
}

.

(40)

In performing this integration, we mention the use of the
identity which takes 1− cos(x) = 1− (eix + e−ix)/2.
We next consider the pure lattice potential, and plot

the perturbations of the sn-waves in Fig. 9, and pertur-
bations of the dark soliton in Fig. 10. For both signs
of λ, we obtain space-periodic solutions as perturbations
of the pure sn-wave solutions, which exhibit radial sym-
metry about x = 0. The difference is that for λ < 0
the solutions decrease in overall density as ǫ increases,
whereas for λ > 0 the solutions increase in overall den-
sity. Furthermore, and unlike previous cases considered,
the oscillating solutions do not always show a tendency
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FIG. 10: (Color Online) Perturbations of the dark soliton
solution corresponding to K = 1 under the lattice potential
U(x) = λ (1− cos(x)).

to decay as |x| becomes large. Indeed, the solutions oscil-
late and exhibit density peaks which may increase over
space. Solutions have a local density peak at x = 0,
and then have symmetric secondary peaks. For λ < 0,
these secondary peaks are of lower value than the peak
at the origin, while for λ > 0 these secondary peaks are
of higher density than at the origin. Furthermore, past
the secondary peaks, some of the solutions have even
larger peaks. The actual structure of these peaks ap-
pears strongly dependent on the value of the parameters
and not just on their sign or relative magnitude.
Turning our attention to the perturbations of the dark

soliton solutions shown in Fig. 10, we observe that for
very small values of ǫ (of order 10−2 or less), the per-
turbation of the dark soliton results in an sn-wave type
solution. Here the sn-wave has the property that its den-
sity is bounded above by the original tanh density curve
of the dark soliton solution. However, increasing ǫ fur-
ther into the 10−1 regime, we see that solutions (for both
λ > 0 and λ < 0) are confined to near the origin, and do
not pass beyond an inner well. In its region of existence,
the λ < 0 solution exhibits oscillations, and closely ap-
proximates the dark soliton near x = 0. On the other
hand, the λ > 0 solution exceeds the dark soliton solu-
tion, while also closely approximating the dark soliton
near x = 0. So, for very small ǫ, the perturbed dark
soliton collapses into an sn-wave solution.

H. Double-well potential

Various applications call for double-well potentials [27].
One possible form of such a potential used is U(x) =
λ[(x2 − 1)2 − β], which gives a simple and symmetric
double-well. One may use the formulas in Section 3 to
obtain the first order perturbation solution corresponding

FIG. 11: (Color Online) Perturbations of the space-periodic
sn-wave solution under the double-well potential U(x) =
λ[(x2

− 1)2 − β].

to a double-well potential. We omit the details here, and
summarize the results. We consider the potential U(x) =
U(x) = λ[(x2 − 1)2 − β], and plot the perturbations of
the sn-waves in Fig. 11, and perturbations of the dark
soliton in Fig. 12.

Fig. 11 demonstrates that the perturbations of the
sn-wave solution respond strongly to a change in the pa-
rameter β, which serves to shift the potential vertically.
When β = 0, the small-ǫ solution matches the small-x
density profile of the un-perturbed solution. However,
as |x| increases, note that the perturbed solution decays,
with density tending toward zero. Increasing the value of
β has the immediate effect of allocating more density near
the origin, with less density present in the tails. Even-
tually, for large enough β, there is a qualitative change
in the solution. Indeed, in the large-β regime, we see
the formation of a double peak in density, present sym-
metrically on either side of the origin. The tails of these
solutions decay as |x| increases.

This type of bi-modal density distribution is particu-
larly well pronounced when we consider the perturbation
of the dark soliton solutions. Each perturbation solution
obtained demonstrates symmetric peaks in density, on
symmetric sides of the origin. As β increases, the density
increases. This makes sense, as a decrease in β increases
the well depth, permitting greater concentration of the
density near the origin.

In all of the cases considered here, we have considered
λ < 0. The λ > 0 case is strongly confined to the well,
and is more or less like that discussed in the case of the
harmonic potential.
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FIG. 12: (Color Online) Perturbations of the dark soliton so-
lution corresponding toK = 1 under the double-well potential
U(x) = λ[(x2

− 1)2 − β].

I. Harmonic potential with lattice trap

It is possible to combine a harmonic potential and
lattice trap, or another combination of traps, to obtain
pseudo or quasi periodic potentials, and this type of po-
tential has been considered previously in differing set-
tings [28].

One possible form of such a potential is U(x) = λ[x2+
β cos2(x)], which was used in [29]. This class of potential
was shown to be useful for studying the 1D dynamics of a
BEC of cold atoms in parabolic optical lattices [30]. We
shall present some graphical results, but shall omit the
detailed derivation of the perturbation solutions. Note
that perturbation results can be obtained for a number of
different types of lattice traps. We consider the potential
U(x) = λ[x2 + β cos2(x)], since this potential is reason-
ably simple and has been considered elsewhere. We plot
perturbations of the sn-waves in Fig. 13, and perturba-
tions of the dark soliton in Fig. 14. Again, we shall only
plot the λ < 0 case. The λ > 0 case is similarly behaved
to the solutions obtained previously for the harmonic po-
tential.

We see that the perturbations of the sn-waves decrease
in amplitude for large x and continue this manner of de-
cay as |x| increases. The interesting differences occur
close to the origin. For small ǫ and λ < 0, the solutions
allocate more density near the origin as β is decreased,
for negative β. Eventually, for β negative enough, we
find that the distribution becomes bi-modal near the ori-
gin, with a single peak near the origin being replaced by
a double peak which is symmetric with respect to the
origin. On contrast, for large enough β > 0, we find a
(relatively) small central peak at the origin, surrounded
by two larger peaks on either side. These solutions then
decay in average density as |x| increases. So, the max-

FIG. 13: (Color Online) Perturbations of the space-periodic
sn-wave solution under the modified harmonic oscillator po-
tential U(x) = λ[x2 + β cos2(x)].

FIG. 14: (Color Online) Perturbations of the dark soliton
solution corresponding toK = 1 under the modified harmonic
oscillator potential U(x) = λ[x2 + β cos2(x)].

imal density occurs either at the origin or in a pair of
maxima on either side of the origin, depending on the
value of β selected.

The situation changes somewhat when we consider per-
turbations of the dark solitons, as shown in Fig. 14. In-
deed, perturbation solutions corresponding to either sign
of β are similarly behaved, with density maxima spaced
symmetrical on either side of the origin. It appears as
though the total density is tied to the value of β. For
larger magnitude, negative β, the density is rather largely
congregated near the origin. For β near zero, the over-
all value of the density curve decreases, with oscillations
still present. For large positive values of β, the density
plot decreases further yet, and it appears as though the
period between the oscillations is decreasing.
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J. Elliptic function potentials: exactly solvable

models

It was previously shown [4] that the potential

U(x) = λsn2(x, k) (41)

permits a closed form exact stationary solution. This
is due in large part to the fact that the natural basis
for the ǫ = 0 problem can be given in terms of Jacobi
elliptic functions. It is natural, then, to wonder if more
complicated expressions can give similar results. To this
end, it is tempting to consider an expansion of a potential
in terms of Jacobi elliptic functions, say the potential

U(x) = λ1sn
2(x, k) + λ2cn

2(x, k) + λ3dn
2(x, k) . (42)

However, we quickly find that this cannot work, since we
have no superposition principle (due to the cubic nonlin-
earity). We can, nonetheless, find solutions when two of
the three λ’s in (42) are zero. The λ2 = λ3 = 0 case is
that considered in [4]. If we consider the λ1 = λ3 = 0
case, we have a potential

U(x) = λ2cn
2(x, k) . (43)

With such a potential we can obtain exact solutions in
the form of one of ψ(x) = Asn(x, k), ψ(x) = Acn(x, k)
or ψ(x) = Adn(x, k). For each choice, we obtain two
algebraic conditions relating the amplitude A, the ellip-
tic index k, and the parameter λ2. First, when ψ(x) =
Asn(x, k), we have the restrictions A2 = 2k2 + ǫλ2 and
ǫλ2 + k2. Thus, the solution takes the form

ψ(x) = ±
√

−ǫλ2sn(x,
√

−ǫλ2) . (44)

Assuming a solution ψ(x) = Acn(x, k), we have the con-
ditions A2 + 2k2 + ǫλ2 = 0 and A2 + ǫλ2 = 0, and hence
A =

√
−ǫλ2, k = 0, so

ψ(x) =
√

−ǫλ2cn(x, 0) =
√

−ǫλ2 cos(x) . (45)

Finally, assuming a solution ψ(x) = Adn(x, k) we have
the conditions A2k2+2k2+ǫλ2 = 0 and k2+A2+ǫλ2 = 1.
Denote a solution k by

k±,± = ±
√

3− ǫλ2
2

± 1

2

√

(3 − ǫλ2)2 + 4ǫλ2 . (46)

Then, we have four possible amplitudes:

A±,± = ±
√

1− ǫλ2 − k2±,± . (47)

We therefore obtain possible solutions of the form

ψ(x) = A±,±dn(x, k±,±) . (48)

For our final choice of potential, we consider the λ1 =
λ2 = 0 case, so that we have the potential

U(x) = λ3dn
2(x, k) . (49)

First, assuming a solution ψ(x) = Asn(x, k), we find that
A2 = −(2 + ǫλ3)ǫλ3 and k2 = −ǫλ3. Hence we have
stationary solutions of the form

ψ(x) = ±
√

−(2 + ǫλ3)ǫλ3sn(x,±
√

−ǫλ3) . (50)

Next, assuming a solution ψ(x) = Acn(x, k), we find
A2 = −ǫλ3 and k2 = ǫ

2+ǫλ3
, so our solution is

ψ(x) =
√

−ǫλ3cn
(

x,

√

ǫ

2 + ǫλ3

)

. (51)

Our final solution form is ψ(x) = Adn(x, k). Under this
assumption, we have two sets of constraints: either k2 =
0 and A2 = 1 − ǫλ3 or k2 = 3 and A2 = −2 − ǫλ3.
Therefore, we either have the solution

ψ(x) =
√

1− ǫλ3dn(x, 0) =
√

1− ǫλ3 (52)

(since dn(x, 0) = 1) or we have the solution

ψ(x) =
√

−2− ǫλ3dn(x,±
√
3) . (53)

V. CONCLUSIONS

We have shown that, by assuming a perturbation so-
lution in the Jacobi elliptic function solution of the NLS
equation with a free potential (V (x) = 0), one can con-
struct accurate approximations for the NLS equation
with non-trivial, though small, potential depending on
space. In this way, we have obtained stationary solu-
tions for the NLS equation with small yet arbitrary po-
tential. Note that the solutions themselves need not be
small, since such a requirement is unnecessary due to
the assumption of a non-linear manner of perturbation,
in which the order-zero perturbation solution is itself
governed by a non-linear, rather than linear, differential
equation. Subsequent terms in the perturbation expan-
sion are governed by linear differential equations, and
these added corrections to the order-zero term are small
(whenever the solution is in the perturbative regime).
When solutions are in the perturbative regime, we can
apply the general method outlined in Section 3 in or-
der to determine the influence of the addition of a small
potential on the order-zero elliptic function solutions.
In the case where the potential is either constant or

an elliptic function, we obtain exact solutions. When
the potential is zero, we have the class of dark soliton
solutions of the form

Ψ(x, t) = 2~

√

m

g
exp (−4i~mt) tanh

(

x√
2

)

,

which is the standard soliton solution for the repulsive
BEC. In the case of a non-zero yet constant potential, or
a potential expressed in terms of Jacobi elliptic functions,
we find that the space dependence of a stationary solution
scales as a Jacobi elliptic function. The case of elliptic
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potentials is in complete agreement with the results of
[4], where a Jacobi sn elliptic potential was considered.
In the present paper, we have reported similar results for
the case of potentials involving Jacobi cn or dn functions.
For the remainder of the potentials given, the pertur-

bation expansions do not terminate to give exact solu-
tions. However, for small potentials (which we model
as small ǫ), we obtain reasonably accurate perturbation
solutions at first or second order. This permits us to
study a number of different potentials resulting in the
solutions of NLS equations where exact methods neces-
sarily fail. While the perturbation results here assume
a zeroth-order solution in terms of a Jacobi sn function,
note that we could have considered zeroth-order solutions
in the form of Jacobi cn or dn elliptic function. The
solution methods for each would be analogous to those
presented here for the Jacobi sn case.
In the case where the elliptic function parameterK sat-

isfies K2 = 1, the Jacobi elliptic sn functions reduce to
hyperbolic tangent functions, so in this case the perturba-
tion results determine the first order (and second order,
where used) perturbation theories for the one-soliton so-
lution of a repulsive BEC under a small potential. In the
case of an attractive BEC (g < 0), we can obtain similar
results, where the perturbation is performed with respect
to the order-zero solution

Ψ(x, t) = 2~

√

−m
g
exp (−4i~mt) sech

(

x√
2

)

,

which is simply the one-soliton arising in the attractive
BEC situation with a free potential. Additional solutions
are also possible for the attractive BEC, and the study
of the NLS with arbitrary small potentials in the attrac-
tive case is another possible area of future work. While
the general method will be like that outlined here, there
will be certain fundamental qualitative differences in the
solutions.
While we have considered a number of potentials here,

our list of potentials is far from exhaustive. That said,
for any reasonable small potential, the methods outlined
here can be applied. Therefore, our elliptic function per-
turbation approach can allow one to study NLS equa-
tions which model the influence of any number of choices
of confining potentials for BECs. In principle, one may
construct higher order perturbation theories, but in order
to obtain qualitatively reasonable results often the first
order perturbation results are sufficient. The method can

also be coupled with numerical methods. Indeed, one can
assume an elliptic function solution for the order-zero
perturbation solution, and then obtain a successive sys-
tem of equations for the higher-order terms. Since each
of these higher order equations are linear, one may apply
a numerical routine to solve these equations. In this way,
one may numerically determine the higher order correc-
tions to the stationary solutions without the convoluted
higher order terms.
Note that it is also possible to consider potentials of

the form 1/xα. However, if α > 2, the solution to the
NLS can develop a non-removable singularity at the ori-
gin. In such a case, one should consider a non-local for-
mulation of the model. Either way, note that the pertur-
bation results here would be expected to break down for
such potentials, owing to the forced non-locality inherent
in dealing with such potentials which become arbitrarily
large near the origin.
It should also be mentioned that the results here can

be carried over to the scenario in which there are more
than one space dimensions. In this case, the stationary
solution is determined exactly by a solution to the PDE

△ψ + (1− ǫU(x))ψ − ψ3 = 0 . (54)

If one can obtain a solution to the ǫ = 0 non-linear equa-
tion △ψ + ψ − ψ3 = 0, then in principle, one may use
a method similar to that outlined here to construct a
perturbation solution which will give higher order linear
corrections due to the potential U .
Regarding another area of future work, it is possible

to study the stability of these types of dark soliton or
sn-wave solutions. The stability or instability of these
kinds of stationary states can be determined through an
application of the VK stability criteria [31]. It would
be particularly interesting to consider the orbital stabil-
ity of the sn-wave solutions. Recently, the stability of
these types of solutions has been considered for other in-
tegrable models admitting sn-wave type solutions, such
as the integrable WKIS [32] and LIA [33] models.
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